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ABSTRACT

The detection of climate change signals in rather short satellite datasets is a challenging task in climate

research and requires high-quality data with good error characterization. Global Navigation Satellite System

(GNSS) radio occultation (RO) provides a novel record of high-quality measurements of atmospheric pa-

rameters of the upper-troposphere–lower-stratosphere (UTLS) region. Because of characteristics such as

long-term stability, self calibration, and a very good height resolution, RO data are well suited to investigate

atmospheric climate change. This study describes the signals of ENSO and the quasi-biennial oscillation (QBO)

in the data and investigates whether the data already show evidence of a forced climate change signal, using

an optimal-fingerprint technique. RO refractivity, geopotential height, and temperature within two trend pe-

riods (1995–2010 intermittently and 2001–10 continuously) are investigated. The data show that an emerging

climate change signal consistent with the projections of three global climate models from the Coupled Model

Intercomparison Project cycle 3 (CMIP3) archive is detected for geopotential height of pressure levels at a 90%

confidence level both for the intermittent and continuous period, for the latter so far in a broad 508S–508N band

only. Such UTLS geopotential height changes reflect an overall tropospheric warming. 90% confidence is not

achieved for the temperature record when only large-scale aspects of the pattern are resolved. When resolving

smaller-scale aspects, RO temperature trends appear stronger than GCM-projected trends, the difference

stemming mainly from the tropical lower stratosphere, allowing for climate change detection at a 95% confi-

dence level. Overall, an emerging trend signal is thus detected in the RO climate record, which is expected to

increase further in significance as the record grows over the coming years. Small natural changes during the

period suggest that the detected change is mainly caused by anthropogenic influence on climate.

1. Introduction and background

With the Global Positioning System/Meteorology

(GPS/Met) experiment on board the MicroLab-1 satellite,

launched in 1995 (Ware et al. 1996), a new active limb-

sounding technique to scan the earth’s atmosphere was put

into practice. The Global Navigation Satellite System

(GNSS) radio occultation (RO) technique allows the re-

trieval of information in the upper-troposphere–lower-

stratosphere (UTLS) region. This part of the atmosphere

is governed by a complex interaction between dy-

namics, transport, radiation, chemistry, and micro-

physics (Mohanakumar 2008) and reacts particularly

sensitive to climate change. This study assesses the us-

ability of RO data in climate change science. It investigates

the response to El Niño–Southern Oscillation (ENSO) and

the quasi-biennial oscillation (QBO) in data and whether

a climate change signal is emerging in the RO record.

Most upper-air datasets, such as radiosondes or mi-

crowave satellite data, were not primarily intended for

climate monitoring. They are affected by uncertainties,

for example, in cross calibration between satellite data,

inhomogeneities due to introduction of improved instru-

mentation, and other systematic changes, all of which

yield long-term trends uncertainties. Requirements for

data suitable for climate monitoring are outlined by, for
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example, Ohring et al. (2007), for a discussion of drawbacks

see, for example, Karl et al. (2006) or Randel et al. (2009).

The RO method shows promise to overcome these de-

ficiencies. It provides vertically well-resolved profiles of

bending angle, refractivity (N), geopotential height (Z),

pressure ( p), and temperature (T) for the UTLS, which we

define as the region between 5 and 35 km. The RO method

uses GNSS radio signals (practically so far from the U.S.

GPS), which are received by a low earth orbit satellite

(LEO). Scanning through an atmospheric limb results from

the relative motion between the transmitter and receiver

satellite placed on opposite sides of the limb. An occulta-

tion event occurs when a GNSS satellite sets down or rises

from behind the Earth as seen from the LEO satellite.

Detailed descriptions of the method are given by, for ex-

ample, Kursinski et al. (1997), Steiner et al. (2001), and Hajj

et al. (2002).

Very briefly summarized, the measured core quantity

is the signal phase at two GPS frequencies, which is

proportional to the distance between the transmitter

and the receiver. These phase measurements are based

on precise atomic clocks, which enable long-term sta-

bility and International System of Units (S.I.) trace-

ability of RO measurements (Leroy et al. 2006b). The

so-called excess phase is the part of the signal phase

caused by the atmospheric refractivity field, adding to

the vacuum phase path. The latter can be derived from

precise orbit position and velocity information of the

GPS and LEO satellites and is subtracted. Based on the

excess phase and orbit arc data, acquired as a function of

time during the occultation event, atmospheric variables

as a function of altitude are then retrieved that are found

closely consistent among different satellites and over

multiple years.

Remarkable consistency between data from the two

satellites Challenging Minisatellite Payload (CHAMP)

and Satélite de Aplicaciones Cientı́ficas-C (SAC-C) was

shown by Hajj et al. (2004). Similar excellent consistency

results were gained more recently by Foelsche et al.

(2008b, 2009) for different Taiwan/United States For-

mosa Satellite Mission 3/Constellation Observing System

for Meteorology, Ionosphere and Climate (hereafter F3C)

based RO products, where seasonal RO temperature

climatologies of different satellites were found to be in

agreement to within ,0.1 K in the UTLS. Also, for

multisatellite monthly climatologies at zonal resolutions

as used in this study the deviation of temperatures from

the satellite mean was found ,0.1 K between 8 and

25 km, in line with Pirscher (2010). For global means,

consistency is found even within 0.05 K (Foelsche et al.

2011). Furthermore, for the two months with GPS/Met

data used in this study (October 1995 and February

1997) it has been shown that the error characteristics are

not worse than those of the more recent F3C data

(Pirscher 2010). Thus, RO data from different satellites

or sensors can be combined without intercalibration or

temporal overlapping as long as the same processing

scheme is employed and data quality is tracked (Foelsche

et al. 2008b; Pirscher 2010). Nearly all-weather capability

is achieved by the use of radio signals, which penetrate

the atmosphere in nearly all conditions and are almost

insensitive to clouds and aerosols. Near-polar orbits en-

sure global coverage of measurements with already

a single LEO satellite. Regarding typical numbers of

occultation events, the CHAMP satellite with one receiv-

ing antenna provided about 250 events per day while the

six-satellite F3C constellation provided up to 2500 events

per day.

The utility of RO data for climate monitoring has

been analyzed in various studies, using 1) simulated data

or proxies such as climate model data (e.g., Steiner et al.

2001; Foelsche et al. 2008c; Ringer and Healy 2008;

Lackner et al. 2009; Lackner 2010); 2) real RO data of

various satellite missions (e.g., Schmidt et al. 2004;

Leroy et al. 2006b; Foelsche et al. 2009; Steiner et al.

2009; Schmidt et al. 2010); or 3) comparing RO data to

other satellite datasets (e.g., Gobiet et al. 2007; Steiner

et al. 2007), reanalyses or analyses data from Numerical

Weather Prediction (Borsche et al. 2007; Foelsche et al.

2008a). Structural uncertainty, defined as unintentional

bias arising from the chosen methodological approaches

(Thorne et al. 2005a), was analyzed for RO data from

four different processing centers by Ho et al. (2009).

Low structural uncertainty estimates together with full

error characterizations (e.g., Steiner and Kirchengast

2005; Pirscher et al. 2007; Foelsche et al. 2008a) un-

derline the value of RO data for climate applications.

Section 2 introduces data and methods of the study.

Results are presented in section 3 and discussed in sec-

tion 4. In section 5 a summary is given and conclusions

are drawn.

2. Setup of detection study

The optimal-fingerprinting technique for signal detec-

tion relies on data from observations and climate model

simulations. Beside those datasets, reanalyses and ra-

diosonde records are employed for trend comparisons

and for better understanding of the RO data response to

the ENSO and the QBO. Linear regression is applied to

estimate the variability of these large-scale atmospheric

patterns governing variability in the ULTS. The first part

of this section presents the spatiotemporal study setup,

the data, and their characteristics. The second part gives

an overview of the methods used.
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a. Datasets

The study is based on single refractivity, geopotential

height, and temperature (all as functions of pressure)

trend patterns of UTLS RO multisatellite climatologies.

The anticipated climate change signal is estimated from

an ensemble of anthropogenically forced scenario runs

of three global climate models (GCM) of the Fourth

Assessment Report (AR4) of the Intergovernmental

Panel on Climate Change (IPCC; Meehl et al. 2007).

Natural variability is based on preindustrial control

simulations of the same models.

The focus region of our study is the UTLS within

508S–508N, where the best RO data quality is provided

(Steiner et al. 2009). A horizontal resolution based on

five zonal regions was employed, consisting of a tropical

band between 108S and 108N and 4 bands at 308–108S/

108–308N and 508–308S/308–508N. The data are used on

8 pressure levels spanning from 300 hPa (approximately

9 km) to 30 hPa (approximately 25 km). For all inves-

tigations, we consider monthly mean time series for the

1995 to 2010 period from which the average seasonal

cycle over the analysis period was removed. Table 1 gives

an overview on the datasets and their resolutions.

1) RO DATA

The setup of the analysis is closely tied to the avail-

ability of RO measurements. First RO measurements of

the earth’s atmosphere are available from the GPS/Met

experiment for several periods from 1995 to 1997. We

only use the best quality data given for October 1995 and

February 1997 (Schreiner et al. 1998), when sufficient

data were gained to calculate monthly means. A con-

tinuous multiyear RO record became available with

CHAMP (e.g., Wickert et al. 2004), which was launched

in 2001 and delivered measurements until 2008. Because

of the sparse data caused by satellite instrument problems

in July and August 2006, these two months are excluded

from the analysis. Besides GPS/Met and CHAMP, data

from the following satellites are used for the RO record

until mid-2010: SAC-C (e.g., Hajj et al. 2004), Gravity

Recovery and Climate Experiment (GRACE-A) (e.g.,

Beyerle et al. 2005; Wickert et al. 2005), and the six sat-

ellites of the F3C mission (e.g., Anthes et al. 2008). We

employ monthly-mean zonal-mean multisatellite clima-

tologies within 1995 to 2010 (see Table 1 for details).

Together with the two GPS/Met months, a total of 107

monthly-mean climatologies spanning across about 15 years

are at hand. Two time periods are considered for the de-

tection study: 1) the intermittent period 10/1995–07/2010

including GPS/Met data, and 2) the continuous period

9/2001–7/2010 (only gap 7–8/2006).

The generation of profiles of atmospheric RO param-

eters and climatologies is based on the Wegener Center

occultation processing system OPSv5.4 (Gobiet et al.

2007; Kirchengast et al. 2007; Fritzer et al. 2009). The data

are available online at www.globclim.org (December

2010). A short overview on OPSv5.4 is given by Steiner

TABLE 1. Overview of datasets and resolutions.

Number of GCM simulations: Twentieth

century concatenated with

Data Name Institution Period SRES A2 SRES B1

RO GPS/Met Wegener Center for

Climate and Global

Change (WEGC)

10/1995, 02/1997

CHAMP WEGC 09/2001–06/2006,

09/2006–09/2008

SAC-C WEGC 09/2001–01/2002

04/2002–11/2002

GRACE-A WEGC 03/2007–07/2010

F3C WEGC 08/2006–07/2010

(6 satellites)

Radiosonde RICH University of Vienna 10/1995–07/2010

RaobCORE University of Vienna 10/1995–07/2010

HadAT Met Office 10/1995–07/2010

Reanalysis ERA-40 ECMWF 01/1980–12/2001

ERA-Interim ECMWF 10/1995–07/2010

GCM CCSM3 NCEP–NCAR As RO, PICTRL: 340 yr 5 7

ECHAM5 MPI-M As RO, PICTRL: 340 yr 3 3

HadCM3 Met Office As RO, PICTRL: 340 yr 1 1

Resolution

Horizontal 508–308S, 308–108S, 108S–108N, 108–308N, 308–508N; complementary: 508S–508N

Vertical 8 levels: 300, 250, 200, 150, 100, 70, 50, 30 hPa

15 OCTOBER 2011 L A C K N E R E T A L . 5277



et al. (2009), and a detailed description can be found in

Pirscher (2010). Briefly, RO phase and orbit data from

the University Corporation for Atmospheric Research

(UCAR; Boulder, Colorado) are used to derive bending

angle profiles, which in turn lead to refractivity. Vertical

integration of refractivity, which is closely equivalent to

air density, yields pressure. Geopotential height is com-

puted by integrating the latitude- and height-dependent

acceleration of gravity over the RO-derived altitude

(divided by the standard acceleration of gravity) and in-

terpolating it to pressure levels. The equation of state is

used to compute dry temperature. The relation between

refractivity (N), pressure (p), temperature (T), and hu-

midity is given for each measurement point by the Smith–

Weintraub formula (Smith and Weintraub 1953):

N [ (n 2 1)106 5 k1

p

T
1 k2

pw

T 2
. (1)

Here, n is the refractive index, pw the partial pressure of

water vapor, and k1 5 77.6 K hPa21 and k2 5 3.73 3

105 K2 hPa21 are empirically determined constants. Above

the midtroposphere, atmospheric humidity is small. Thus,

the second right-hand-side term in Eq. (1) can be ne-

glected, meaning that a ‘‘dry’’ atmosphere is assumed

(valid for the UTLS from about 300 hPa upward). If water

vapor is available, dry temperature is always lower than

physical temperature (Foelsche et al. 2008c). As atmo-

spheric water vapor is very likely increasing when the

climate warms (Held and Soden 2006), dry temperature

trends associated with warming cannot exceed physical

temperature trends, unless there would indeed be a de-

crease in absolute humidity.

RO climatologies derived from binning and averaging

the RO profiles (Foelsche et al. 2008a, 2009; Pirscher

2010) feature well-defined error characteristics. The

overall total error for single-satellite temperature cli-

matologies of 108 zonal means below 30 km was esti-

mated as ,0.3–0.5 K, where the greatest contribution is

due to uneven sampling (Pirscher et al. 2007; Foelsche

et al. 2008a) and getting smaller when more satellites

are used (Foelsche et al. 2009). The sampling error (SE)

can be estimated via reference atmosphere fields, such

as the European Centre for Medium-Range Weather

Forecasts (ECMWF) analysis fields, which can be as-

sumed to statistically represent the ‘‘true’’ atmospheric

variability. ECMWF profiles, collocated in space and

time to RO profiles, are computed and averaged to

monthly mean zonal bins. The SE is then estimated as

the difference between the monthly mean field from

these collocated profiles and the monthly mean from the

full ECMWF analysis fields (Pirscher et al. 2007; Foelsche

et al. 2008a; Pirscher 2010). It is subtracted from the RO

climatologies to mitigate the influence from uneven

sampling, further reducing the error of the climatologies

(as discussed in Foelsche et al. 2008a; Steiner et al. 2009;

Foelsche et al. 2011). For processing scheme induced

structural uncertainty an upper bound of 0.03% (5 yr)21

was estimated for global refractivity trend monitoring,

which corresponds to about 0.06 K (5 yr)21 for temper-

ature trends (Ho et al. 2009).

2) MODEL DATA

To estimate the expected climate signal and the nat-

ural climate variability for optimal detection a multi-

model, multirealization dataset is used. It is based on

three GCMs of the IPCC AR4 archive: 1) the Commu-

nity Climate System Model, version 3 (CCSM3) (Collins

et al. 2006) from the National Centers for Environ-

mental Prediction (NCEP) and the National Center for

Atmospheric Research (NCAR), United States; 2)

ECHAM5 (Roeckner et al. 2003) from the Max Planck

Institute for Meteorology (MPI-M), Hamburg, Germany;

and 3) the third climate configuration of the Met Of-

fice Unified Model (HadCM3) (Gordon et al. 2000;

Pope et al. 2000) from the Met Office Hadley Centre

(UKMO), United Kingdom. The model output is avail-

able via the World Climate Research Programme’s

(WCRP) Working Group on Coupled Modeling [Cou-

pled Model Intercomparison Project cycle 3 (CMIP3)]

multimodel database, along with model information

(available online at http://www-pcmdi.llnl.gov/ipcc/model_

documentation/ipcc_model_documentation.php, December

2010). The three GCMs perform without flux corrections

and include stratospheric ozone depletion and recovery

forcings (Roeckner et al. 2005; J. Meehl et al. 2007, per-

sonal communication), which is particularly important

for an adequate simulation of stratospheric temperatures

(Forster et al. 2007). According to an analysis of Reichler

and Kim (2008), the models belong to the five best-

performing models without flux correction, meaning

that they show good agreement with observations in

their time-mean state of the climate.

The expected anthropogenically forced climate change

signal (hereinafter fGCM) is estimated from climate

simulations of the twentieth century (experiments run

with greenhouse gas increases as observed in the twen-

tieth century), which are concatenated with Special Re-

port on Emission Scenarios (SRES; Nakićenović et al.

2000) A2 and B1 simulations beyond 1999. For these sim-

ulations, direct (all GCMs) as well as indirect (HadCM3)

or semidirect (CCSM3, ECHAM5) sulfate aerosol forcings

are used in addition to greenhouse gas and ozone forcings.

The period to calculate the trend signals is chosen consis-

tently to the RO data. Natural variability is assessed with

preindustrial control simulations (hereinafter PICTRL) of
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the models. Details about the available number of forced

simulations and used PICTRL years are given in Table 1.

Climate model and reanalyses data (see section 3)

were first regridded to a common 2.58 3 2.58 grid in

latitude and longitude, then area-weighted zonal means

were calculated. The model and reanalysis data are used

after interpolating them to the same spatial resolution

as the RO data and are limited to the same spatial and

temporal coverage. Geopotential height, temperature,

and specific humidity (all provided by the data centers as

functions of pressure) are used to calculate refractivity

based on Eq. (1) for GCMs and the reanalyses.

3) REANALYSES AND RADIOSONDE DATA

For the analysis of large-scale patterns, such as ENSO

or the QBO, 40-yr ECMWF Reanalysis (ERA-40)

output (Simmons and Gibson 2000; Uppala et al. 2005)

is used. The reanalysis was chosen because it provides

a record with continuous spatial and temporal coverage.

Furthermore, ERA-40 was found to match best the in

situ observations in the climate mean state (Reichler

and Kim 2008). To complete the tropospheric picture

of the patterns, we employ additionally all available

pressure height levels from 300 hPa to the surface. The

ECMWF ERA-Interim reanalysis (Simmons et al. 2007a,b;

Uppala et al. 2008; Poli et al. 2010; Simmons et al. 2010)

and the radiosonde temperature records Radiosonde

Observation using Reanalysis (RAOBCORE, version

RAOBCOREv1.4; Haimberger 2007), Radiosonde Inno-

vation Composite Homogenization (RICH; Haimberger

et al. 2008) from the University of Vienna, and the Hadley

Centre radiosonde temperature dataset (HadAT; Thorne

et al. 2005b) were used to compare with RO results, es-

pecially for assessing the consistency of trends based on

the full temporal coverage compared to those based on

the incomplete RO record between 1995 and 2001.

b. Methods

The detection study is based on an ordinary least

squares fingerprinting approach following Hegerl et al.

(1996). Additional analysis of large-scale patterns and

their share in the total variability are implemented with

multiple linear regressions.

1) OPTIMAL FINGERPRINTING

Optimal fingerprinting (see, e.g., Hegerl et al. 1997;

Barnett et al. 2005; Hegerl et al. 2007) can be considered

as generalized multivariate regression. An observed

record y is represented by a scaled (b) estimated ex-

ternally forced climate change pattern (guess pattern,

X), which contains the response to anthropogenic forc-

ings and an estimate for internal climate variability (�):

yRO 5 XfGCMb 1 �PICTRL. (2)

As observed climate change signals y we use the

spatial trend patterns of RO parameters, representing

latitude–height slabs.

The guess pattern is presented by the average of the

20-member fGCM ensemble. Averaging over 20 ensem-

ble members will reduce the influence of internal climate

variability on the guess pattern by a factor of more than 4.

While this noise may still lead to a slight underestimate

of the forced signal, it will not lead to spurious detection

(Allen and Stott 2003; see discussion in Hegerl et al.

2007). Therefore, the use of an ordinary least squares fit

is appropriate here.

The PICTRL data are on the one hand used to rep-

resent the data (RO, fGCM) in a dimension-reduced

EOF space (where the covariance matrices of the noise

are diagonal, truncation levels are discussed below) and

to estimate the scaling factors (b̂), which modulate the

amplitudes of the guess patterns. On the other hand,

a second statistically independent sample of PICTRL

data (referred to as control) is employed to access the

uncertainty in the detection variables. To obtain the two

samples, the PICTRL data of each GCM were divided

into halves. The shortest PICTRL simulation (HadCM3)

provides 341 yr. To avoid disproportional weighting,

170 yr of each of the three models were used to compose

one sample (of 510 yr) and likewise for the other sample.

Based on the two samples with 510 yr of data each, the

PICTRL trend pattern matrices equivalent to the used

RO periods were then generated. The individual trend

patterns were calculated without temporal data overlap.

The eigenvectors (pooled in F) and eigenvalues (pooled

in the diagonal matrix L) of the decomposed covariance

matrix of the first PICTRL trend sample were used to

represent the trend patterns in the dimension-reduced

EOF space (bdata) and to estimate in the following the

respective scaling factors (b̂data):

bdata 5 L21FTydata, and (3)

b̂data 5 (bT
fGCML21bfGCM)21

bT
fGCML21bdata. (4)

The subscript ‘‘data’’ stands for RO, fGCM, and control

trend patterns for their presentation in the EOF space in

Eq. (3) and for RO and control concerning the estimation

of the scaling factors in Eq. (4). The null hypothesis that the

scaling factors of the observations are zero is tested by

means of the distribution of the control scaling factors.

To assess whether the climate variability of the

PICTRL simulations adequately represents the variabil-

ity of the observations in the truncated space, a residual
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consistency test following Allen and Tett (1999) was per-

formed. The aim is to have no explicit reason to distrust the

uncertainty estimates in the analysis. This is true if the

regression residuals (r) are consistent with the noise esti-

mate from the control simulations. If the noise in the

truncated EOF space is normally distributed, its variance

will be Chi-square (x2) distributed,

r2
k 5 �

k

i51
[(bRO,i 2 b̂RO,ibfGCM,i)

2
l21

i ] ; x2
k21, (5)

where k is the number of retained EOFs. If the residuals

are outside 5%–95% confidence bands, there is evi-

dence that the optimization has focused on poorly

sampled or poorly simulated features of the response,

yielding unreliable results (Allen and Tett 1999).

2) INFLUENCE FROM MODES OF VARIABILITY

ON RO DATA

The UTLS variability is mainly influenced by two at-

mospheric patterns, the QBO and ENSO. Originating in

the tropics, they also impact higher latitudes’ conditions.

A multiple linear regression model was employed 1) to

estimate the share of the patterns in UTLS variability

for RO data and 2) to remove the ENSO signal (from

GCMs and RO) and the QBO signal (from RO). It is

given for each gridpoint by

y 5 a0 1 a1t 1 a2QBO 1 a3ENSO 1 �. (6)

The regression coefficients are the constant term a0,

the trend coefficient a1, the QBO coefficient a2, and the

ENSO coefficient a3. Here, � denotes the residual error

term. For the QBO the monthly mean 50-hPa zonal

wind index (available online at www.cpc.ncep.noaa.gov/

data/indices/qbo.u50.index, November 2010) of the Cli-

mate Prediction Center (CPC)/National Oceanic and

Atmospheric Administration (NOAA) was employed.

For ENSO we used for the observational records the

seasonally smoothed monthly N3.4 index (available

online at www.esrl.noaa.gov/psd/forecasts/sstlim/global/

indices_global, November 2010), made available from

the Physical Sciences Division of the NOAA. For the

GCMs we estimated the N3.4 index as standardized

5-month moving average of the 1000-hPa temperature

mean in the N3.4 region (58S–58N, 1708–1208W) of the

respective trend period (tests confirmed a correlation of at

least 98% between 1000 hPa and sea surface temperature

fields, the latter were not available for all models). We

identified and considered a four-month atmospheric

lag for ENSO, which is consistent with Seidel et al.

(2004) and Steiner et al. (2009). The coefficients of

determination (R2) were used for an estimate of the

model-explained variability due to the individual pat-

terns.

The IPCC AR4 models do not produce meaningful

QBO variability. Figure 1 shows tropical time series of

the RO parameters N, Z, and T from observations (left)

and the fGCMs (right). While four QBO periods are

clearly visible in the RO records (best in temperature

above 100 hPa), the signal is not only lacking in the

multimodel mean fGCM (right) but also in the vari-

ability in individual GCM simulations (not shown). To

FIG. 1. (top) Refractivity, (middle) geopotential height, and (bottom) temperature anomaly time series of the (left)

multisatellite RO record and (right) fGCM ensemble mean in the tropics (6108). The periods with available RO

measurements are marked with dotted lines in the fGCM plots. Note that as the fGCM ensemble is an average of

20 simulations, it will show a smooth climate change signal, while the observed record may be influenced by both

climate variability and change.
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get a cleaner climate signal and comparable internal

variability for the datasets we removed the ENSO signal

from the GCMs and the ENSO and QBO signal from

the RO data by applying Eq. (6).

3. Results

In this section, we first briefly discuss the solar influence

and then in particular the influences of the ENSO and the

QBO on the RO trend patterns. Detection results are

presented in the second part of this section.

The contribution of solar forcing to global warming

was broadly discussed by Hegerl et al. (2007) and more

recently reviewed by Gray et al. (2010). Stott et al. (2003)

concluded that in the second part of the twentieth century

anthropogenic forcings explained most of the warming,

with solar signals being likely much smaller. Over the

about last 20 yr solar trends are likely to have been in op-

posite direction in regard to expected global tropospheric

temperature changes (Lockwood and Fröhlich 2007; Kopp

and Lean 2011). The solar influence on the RO record

comes in via residual ionospheric errors and was estimated

as a temperature bias of 0.1 to 0.2 K around 20-km height

for solar maximum versus solar minimum conditions (e.g.,

Gobiet and Kirchengast 2004). This effect should become

negligible if more than a single solar cycle is covered.

GPS/Met measurements took place around the beginning

of the last solar cycle, when solar activity was at a mini-

mum. The beginning of the CHAMP measurements co-

incided with the maximum of the cycle and lasted until

the ensuing minimum, so that the solar signal during the

CHAMP period would rather counteract an anthropo-

genic climate change signal.

a. ENSO and QBO during the RO period

Since the RO record is rather short, ERA-40 was used

as proxy to learn about ENSO and QBO in the UTLS

for adequate interpretation of these patterns in the RO

data. ERA-40 offers a sufficient record length to calcu-

late mean patterns of the different modes.

The N3.4 index for ENSO and the evolution of the

50-hPa zonal wind index for the QBO are shown in Fig. 2

for the RO period. A positive QBO index (QBO1)

refers to a phase governed by westerly winds and posi-

tive temperature anomalies around 50 hPa. The easterly

phase is hereafter referred to as QBO2. The QBO in-

dex shows a rather steady progress of the oscillation,

covering almost four periods between fall 2001 and

summer 2010. The two months of the GPS/Met mea-

surement period in 1995 and 1997 were each influenced

by a different QBO phase of medium amplitude. ENSO

exhibited only weak to moderate events during the RO

period and, most importantly, the first two measurement

months fall in a period with almost no ENSO signal.

During the fall 2001 to winter 2007 period and after mid-

2009, weak to moderate El Niño conditions prevailed,

while the months in mid-2006 as well as mid-2007 to mid-

2009 were governed by La Niña conditions.

Figure 3 illustrates zonal mean average El Niño,

La Niña, and neutral conditions based on ERA-40 data

between 1980 and 2001. The RO patterns (not shown)

are based on few and not very distinct events but are

similar to the ERA-40 patterns; they feature smaller

amplitudes and are more confined to the tropics, so that

the change in sign of the anomalies occurs around

208S/N. The mean El Niño patterns were calculated

(including strong events which are not present in the RO

period) from the 1986/87, 1987/88, 1994/95, and 1997/98

events; the mean La Niña patterns from the 1984/85,

1988/89, 1998/99, and 1999/2000 events; and the neutral

patterns are based on the years 1980/81, 1981/82, 1989/

90, and 1992/93. All patterns were gained by averaging

August to ensuing July values. The 1982/83 and 1991/92

El Niño events, which coincided with volcanic erup-

tions (El Chichón in 1982 and Pinatubo in 1991), were

disregarded. For refractivity and temperature, the stron-

gest and spatially most confined UTLS ENSO character-

istics (positive tropospheric and negative stratospheric

temperature anomalies for El Niño phases) are found in

the tropics and subtropics around 300 to 200 hPa along

with significant differences between the two phases, as

shown in Fig. 3 (right panels). The significance of the dif-

ference of the four El Niño and four La Niña patterns was

determined with a Mann–Whitney U test (Milton 1964).

For geopotential height, the strongest ENSO pattern sig-

nal emerges around 100 hPa, thus significant differences

appear also at higher levels than for refractivity and tem-

perature and also for the tropical troposphere. Yet the

significant differences are more restricted to the tropical

bin (6108S/N).

FIG. 2. (top) Index values for QBO (50-hPa zonal winds) and

El Niño (N3.4) for the RO period 1995–2010. Months with avail-

able RO measurements are highlighted in gray.
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The zonal mean average ERA-40 QBO signal is

depicted in Fig. 4 and shows a well-defined stratospheric

signature of the pattern. The RO patterns (not shown)

feature stronger amplitudes of the phases and a more

pronounced contrast between the low and midlatitudes.

The significance test (Fig. 4, right panel) is based on 8

westerly and 8 easterly QBO phases. They were gained

by averaging over all months during a phase with index

values .5 for QBO1 and index values ,25 for QBO2.

The 1988/1989 QBO1 phase was ignored as only 3 suc-

cessive months exceeded this threshold value. Signifi-

cant differences between the phases are restricted to the

tropics above 100 hPa and polewards of 308 latitude

around 200 and 100 hPa.

The proportion of QBO and ENSO variability on

the total variability is finally based on the RO data and

illustrated in Fig. 5. It was assessed with R2 in the multi-

linear regression model (see section 2). The result is con-

sistent with the ERA-40 mean patterns, showing for the

monthly RO record of 5 zonal mean bands the greatest

QBO-explained variability in the tropical stratosphere

(’30% QBO-explained variability). ENSO governs the

tropical UT and the LS above 50 hPa for refractivity and

temperature and the tropical troposphere and tropopause

region for geopotential height (’40%–50% ENSO-

explained variability). QBO and ENSO both impact the

stratospheric refractivity and temperature variability at

northern midlatitudes (’15%–25% explained variability).

b. Characteristics of trend patterns

The RO and fGCM refractivity, geopotential height,

and temperature trend patterns are presented in Fig. 6

for the intermittent 1995–2010 (Fig. 6a) and the 2001–10

period (Fig. 6b). The fGCM ensemble shows for temper-

ature across the latitudes a rather smooth tropospheric

warming (up to around 50 hPa) and a stratospheric cooling

above. Refractivity features a reversed trend pattern,

and the geopotential height field exhibits a general

increase, following the thermal expansion of the tro-

posphere. The RO record, in contrast, presents more

distinct patterns, which are more strongly affected by

atmospheric variability.

The trend patterns do not depend much on taking the

GPS/Met measurements into account, only the pattern

amplitudes increase for the 2001 to 2010 period (cf. left

panels of Figs. 6a and 6b). The strong RO temperature

trends near 100 hPa in the tropics and above 70 hPa in

the northern subtropics and midlatitudes are the most

striking differences to the fGCM pattern.

Since the GCMs do not reproduce the QBO signal,

it was removed from the observations for all further

calculations, using linear regression [Eq. (6)]. The ENSO

signal was removed from both observations and models

(see section 2). The RO trend patterns without QBO

and ENSO signals are shown in Fig. 6, middle panels.

Elimination of the QBO and ENSO signal primarily

FIG. 3. Average (left) El Niño, (middle left) La Niña, and (middle right) neutral (top) refractivity, (middle) geo-

potential height, and (bottom) temperature pattern as well as (right) locations of significant differences between

El Niño and La Niña events according to a Mann–Whitney U test (indicated by red and yellow colored boxes).

Between 30% (geopotential height) and 42% (refractivity) of all UTLS grid points show significant pattern differ-

ences. Patterns are based on 1980–2001 ERA-40 data.
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influences the trend amplitudes, but it hardly affects the

trend patterns and also does not considerably change

the pattern correlations with the fGCMs. Below 100 hPa

the tropical and subtropical trends are slightly stronger

after removal of QBO and ENSO. The reason for this

is that mid-2002–end-2005 was a period of rather pro-

nounced El Niño conditions and regression of ENSO

leads to cooler temperature anomalies. On the other

hand, mid-2007–mid-2009 was a period of La Niña con-

ditions and regression of ENSO results in warmer tem-

perature anomalies, leading to overall somewhat stronger

trends. Above 100 hPa the combination of a positive

ENSO and negative QBO index, as occurring in mid-2003

and in the second half of 2005, leads to warmer anomaly

values after removal of QBO and ENSO; and vice-versa,

anomalies turn cooler when negative ENSO and positive

QBO indices coincide as is the case past 2005 (e.g., mid-

2006, mid-2008, and mid-2009). For the fGCM patterns,

the ENSO signal was removed for each simulation sep-

arately before calculating the ensemble mean. Because

of the large ensemble, this has only a very small influence

on the guess pattern. The ENSO signal has also been

removed from the control simulations used to estimate

the uncertainty in the signal estimates to reflect the ob-

servations and their processing.

To cross check the RO patterns and to make a rough

estimate of the influence of the missing months between

1995 and 2001 on the trend signal, we compared them to

ERA-Interim reanalysis and RICH, RAOBCORE, and

HadAT radiosonde trend patterns. Figure 7 depicts the

RO temperature trend patterns for the two investigated

periods (left panels) and the equivalent trend patterns

of the other datasets. Above about 150 hPa the patterns

of the datasets are fairly similar and exhibit comparable

amplitudes (ERA-Interim shows somewhat stronger

trends and has a characteristic warming/cooling fea-

ture above/below 150 hPa, which is a peculiarity of this

reanalysis; Poli et al. 2010). Below about 150 hPa all

FIG. 4. Average (left) QBO1, (middle left) QBO2, and (middle right) neutral (top) refractivity, (middle) geo-

potential height, and (bottom) temperature pattern as well as (right) locations of significant differences between

QBO1 and QBO2 events according to a Mann–Whitney U test (indicated by red and yellow colored boxes). Be-

tween 20% (geopotential height) and 28% (refractivity) of all UTLS grid points show significant pattern differences.

Patterns are based on 1980–2001 ERA-40 data.

FIG. 5. Explained variance (R2 5 coefficient of determination) of

the variability induced by (left) QBO and (right) Niño in RO time

series of (top) refractivity and (bottom) geopotential height.

Temperature results are not separately shown here since they are

very similar to refractivity.
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comparison datasets differ more from RO and also

amongst themselves, indicating more long-term stability

weaknesses of the non-RO data in the troposphere

(significant evidence exists for a high long-term stability

of the RO data as discussed in section 1).

The ERA-Interim and radiosonde trend patterns for

the continuous period 1995–2010 are also inspected

(lower panels). Apart from the strength of the trends,

they are similar to the intermittent and shorter patterns

of the considered RO periods above about 200 hPa; be-

low especially the radiosondes show more tropospheric

warming, similar to RO for its more limited periods

(RICH and RAOBCORE had shown tropospheric

cooling in the tropics for the limited periods).

The potential dependence of the RO 1995–2010 trend

patterns on the GPS/Met months can be considered as

the main weak point regarding the RO pattern. But the

close match of the intermittent 1995–2010 and the 2001–

10 RO pattern as well as the basic similarity of the in-

termittent and continuous patterns of ERA-Interim and

radiosondes (with their own limitations in long-term

stability) underpin the sufficient quality and robustness

of the RO trend patterns and their adequacy for the

detection study. Also when comparing continuous 1995–

2010 anomaly time series of the other datasets to the RO

data good agreement was found throughout the UTLS,

including the two GPS/Met months; the latter also show

good representativity when compared to annual averages

of the years 1995 and 1997 of the other datasets. Fur-

thermore, we recall that the sampling of the GCM data to

calculate trends was done fully matching the ‘‘observa-

tion mask’’ of the available RO data. Hence, we imposed

the intermittent coverage in time from the RO data on

both the model fingerprints and the model-based samples

of internal climate variability. Sampling model data in the

same way as observations is standard practice in de-

tection and attribution and avoids introducing bias to

results due to missing data in observations (see Hegerl

et al. 1996, 1997, 2007; Stott and Tett 1998). This sub-

sampling can be applied in space or time, and unless the

sampling characteristics of data and models at the sam-

pled points are substantially different, this will yield re-

liable results. Estimating the submonthly sampling error

in the RO, which is found very small anyway (see section

2), and then correcting for it (Foelsche et al. 2008a;

Steiner et al. 2009; Foelsche et al. 2011), avoids any re-

maining possibility of the spatial and temporal sampling

influencing our detection results.

The similarity of trends for the long and short periods

(see below) and the consistency of detection results be-

tween both periods (with less significant, but similar signals

for the shorter period) further increases confidence that

the sampling characteristics in the RO data does not in-

troduce a problem. It is worth remembering that since RO

FIG. 6. (top) Refractivity, (middle) geopotential height, and (bottom) temperature trend patterns for trends per decade based on (left)

original RO anomalies, (middle) RO anomalies with QBO and ENSO removed, and (right) fGCM ensemble mean anomalies with ENSO

removed. (a) Results for the intermittent 1995–2010 period and (b) for the 2001–10 period are depicted.
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data need no cross-satellite calibration, the early data

are fully comparable with the later data (this is also

demonstrated by similarity of trend patterns with other

dataproducts, discussed below). In addition, we coanalyze

the shorter continuous 2001–10 period, which contains no

time gap, as well as coanalyze the broad 508S–508N single-

band region, as a complement to the latitude-resolved

analysis.

c. Detection requirements

For the detection analysis, the RO, fGCM, and control

trend patterns are transformed into a truncated PICTRL

EOF space (see section 2). It is required that these

truncated patterns are still able to represent most of the

anticipated signal of the data. The fGCM ensembles with

their mostly dipole trend patterns (see Fig. 6) only need

few EOFs to be reasonably well rebuilt. Figure 8 shows

the original RO trend patterns (QBO and ENSO re-

moved), the rebuilt patterns using the first k 5 5 eigen-

vectors, and the pattern correlations between original and

rebuilt patterns for 1–20 EOFs. Generally, the pattern

correlations increase quickly with the number of retained

EOFs, yielding around 60% for 5 retained EOFs. Slightly

more EOFs are needed to rebuild the temperature and

geopotential height patterns, though the displayed rebuilt

patterns in Fig. 8 already capture most of the expected

signals and are very similar to the fGCM patterns. For

the 2001–10 period (not shown), the pattern correlations

between RO and rebuild patterns are slightly lower but

similar to the 1995–2010 period.

Optimal fingerprinting is based on matching observed

and model-simulated patterns and thus relies on rea-

sonably realistic simulated variability from the climate

models at the analyzed space and time scales. The three

climate models used feature different variability charac-

teristics (shown with respect to RO variability in Fig. 9).

The CCSM3 temperature and refractivity variability pat-

terns show best agreement to the RO patterns, even

though the amplitudes are slightly smaller, particularly in

the stratosphere. HadCM3 exhibits a less distinct vari-

ability between UT and LS, but slightly higher amplitudes

than CCSM3 in the troposphere. ECHAM5 shows for

refractivity and temperature very strong UT variability (3

times stronger values than the RO record) and, compared

to the other models, average LS variability. For geo-

potential height, the tropical and subtropical ECHAM5-

simulated variability is stronger than the RO variability

and about two times as strong as in the other two models.

All three models show for this parameter slightly less

midlatitudinal variability than the RO record does. Even

though variance estimates are noisy in time, particularly

for the climate system where large-scale variations tend

to show autocorrelation, these model variability features

are based on several hundreds of years of data, suggest-

ing real differences between the models. Checking RO

against ERA-40 and ERA-Interim variability (not shown)

FIG. 7. Ten-year temperature trend patterns for the (top) intermittent 1995–2001 and the (middle) 2001–10 period,

based on (left to right) RO, ERA-Interim, RICH, RAOBCORE, and HadAT anomalies. (bottom) The patterns

based on all months from 10/1995 to 07/2010 are shown.
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exhibits very similar variability amplitudes with only mi-

nor differences (below a factor of ’1.5 for anomaly

standard deviations) in the tropical tropopause region for

temperature and refractivity. Figure 9 depicts the ratios

between the RO and model-simulated variability. The

ratios are based on standard deviations of detrended data

from 1995 to 2010. The fGCM variability was calculated

by stringing the 20 different simulations of 15 yr each

together. Results based on PICTRL data (not shown) are

consistent to the fGCM ones. The observed and model

variance vary at most within a factor of 2 when all model

simulations are considered (Fig. 9, left column). Deviations

in UT refractivity and temperature are mainly caused by

ECHAM5, which contributes with 6 out of 20 simula-

tions (besides CCSM3 with 12 out of 20 simulations)

considerably to the fGCM ensemble variability. For geo-

potential height, the observed and model variability agree

very well over the study region. At large, the ensembles of

the three models do cover a representative range of ob-

served variability, as required for optimal fingerprint-

ing, particularly for geopotential height. Variability in

the upper part of the stratosphere seems under-

estimated, particularly by ECHAM5 and HadCM3.

However, our key results indicate no inconsistency be-

tween model and residual variability in the truncated space

used in our analysis (see below).

4. Discussion of trend detection results

A residual consistency test from Allen and Tett

(1999), see section 2, was used to test the null hypothesis

that the climate variability of the control simulations is

a realistic representation of the observed variability in

the truncated EOF space. The regression residuals in the

EOF space are related to a x2 distribution and can be

used to determine the number of retained EOFs, which

give a realistic estimate of climate noise. Figure 10 de-

picts the model to observations ratio of cumulative re-

sidual variances for 2 to 16 retained EOFs, and the

respective x2 values corresponding to a 5%–95% confi-

dence limit. The test values are required to fluctuate

around one and to remain within the confidence limits for

a low number of EOFs. Compliance with these require-

ments shows that observations and models exhibit com-

parable variance for the number of retained EOFs and

corresponds to being unable to reject the null hypothesis.

For the 1995–2010 period (Fig. 10, left), the refrac-

tivity values for less than 17 retained EOFs are arranged

close to the upper confidence limit, indicating a rela-

tively high model variability compared to the observa-

tions but within consistency. For geopotential height

and temperature, reliable test results are obtained for

about up to 10 retained EOFs. Similar results are gained

for the 2001–10 period, where residual consistency for

refractivity is given for up to 14 retained EOFs, for geo-

potential height and for temperature for up to 6 EOFs.

These numbers of EOFs retain in case of refractivity

99%, in case of geopotential height 98%, and in case of

temperature between 91% (6 EOFs) and 97% (10 EOFs)

of the variance of the signal. Beyond that, the regression

residual increases sharply. This may either indicate sam-

pling problems of noise, or, more likely, focus on small-

scale features of the signal that are not reliably modeled in

the GCMs. We exclude these features by limiting trunca-

tion as described above. Different truncations for different

data products are reasonable, as the EOF truncations re-

solve different data characteristics.

Detection of a climate change signal can be claimed

if the null hypothesis that the observed climate change

is part of the natural climate variability can be rejected.

In this case, the uncertainty range (10 percentiles or

5 percentiles) excludes zero, that is, there is a less than

FIG. 8. (left) Original RO trend pattern with QBO and ENSO

removed, (middle) rebuilt pattern using 5 PICTRL EOFs, and

(right) pattern correlation between original and rebuilt pattern for

k 5 1, . . . , 20 EOFs (k 5 5 in red) for (top) refractivity, (middle)

geopotential height, and (bottom) temperature, based on the 1995–

2010 period.

FIG. 9. Ratio of (left to right) RO to fGCM ensemble mean

anomaly standard deviations, RO to CCSM3, RO to ECHAM5,

and RO to HadCM3 anomaly standard deviations for (top) re-

fractivity and (bottom) geopotential height. Temperature results

are not separately shown here since they are very similar to re-

fractivity.
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10% or 5% chance of a type-1 error of the null hy-

pothesis being true. Based on the distribution of the

control scaling factors b̂
control

, which can be assumed to

be Gaussian (Hegerl et al. 1996), the uncertainty in the

RO-based scaling factors b̂
RO

can be determined in

a one-tailed t test, with the results indicating that the

observed trend pattern is significantly distinct from in-

ternal climate variability and thus likely represents

a changing climate, for example, in response to green-

house gas increases. Consistency between the observed

and forced climate signal is given, when the RO scaling

factors and uncertainty ranges include unity.

Figure 11 shows the RO scaling factors and their

10%–90% and 5%–95% uncertainty ranges (error bars),

which are estimated as 61.3 control standard deviations

and 61.7 control standard deviations, respectively. For

the shorter 2001–10 trend period (Fig. 11, right), the

uncertainty ranges are broader than for the 1995 to 2010

period (Fig. 11, left). The RO scaling factors for re-

fractivity and geopotential height, which correspond to

numbers of retained EOFs that passed the residual

consistency test, are close to unity. For temperature, the

scaling factors vary around 0.4 if the large-scale aspects

of the pattern are considered. When 7 or more EOFs are

retained, the scaling factors ‘‘jump’’ by about 1.5. This

jump reflects the strong RO temperature trends in the

tropics, which start to be resolved when 7 or more EOFs

are considered (Fig. 8, bottom left and right).

At the chosen a 5 10% significance level, climate

change based on the intermittent 1995–2010 period

cannot be detected for refractivity, where the a values

range between about 13%–30% for up to 10 retained

EOFs. For geopotential height, detection can be af-

firmed for 5–9 retained EOFs at the 10% significance

level. For temperature detection cannot be claimed at

a 10% significance level (a values around 30%) for up to

6 EOFs. For 7–10 EOFs, which also pass the residual

consistency test, a scaling of about 2 is needed to adjust

the fGCM trend pattern to the RO pattern. This in-

dicates that RO temperature trends, especially in the

tropical lower stratosphere (see Fig. 8, bottom left), are

significantly stronger than fGCM trends. Steiner et al.

(2009) found, in a classical time series analysis for trends

in February 1997 and February 2002–08, tropical lower-

stratosphere trends in RO data also somewhat stronger

than in GCMs (while at the same time consistent with

radiosonde trends). For the shorter 2001–10 period,

detection at the 10% significance level is not yet possible

except for the full 508S to 508N band (see below), but

the scaling factors for low-order EOFs vary only little

around one. Depending on the scale of resolved patterns,

confidence levels of around 70%–75% are achieved for

refractivity and of around 80% for temperature. Geo-

potential height results are close to detection at a 10%

significance level, with confidence levels of about 85% for

more for 3–6 retained EOFs.

Averaging over all latitudes between 508S and 508N

(not separately shown) yields detection at a 10% sig-

nificance level or better for geopotential height and

temperature, for both the intermittent period and the

continuous 2001–10 period. Only for refractivity, the

detection results are less clearly pronounced. For

the continuous period, detection depends on the number

of retained EOFs, while for the intermittent period re-

sidual consistency is not achieved for refractivity. Our

results are in addition robust to not subtracting the

sampling error (at least 90% confidence for geopotential

height and refractivity). If ENSO and QBO are not

subtracted, confidence levels decrease but results are

broadly consistent. Furthermore, the RO detection re-

sults are consistent with results of a stability test (also

called perfect model study) employing a GCM simula-

tion for the RO record (not shown either). Using RICH

and RAOBCORE temperature fields at the same ob-

servation mask as RO data (not shown) leads to de-

tection results consistent with RO in both periods,

similarly showing an emerging climate change signal,

confirming that the RO measurement of changing at-

mospheric temperatures is robust. Using ERA-Interim

instead, detection results are comparable to RO results

for geopotential height in the intermittent period. For

temperature and refractivity, signals of climate change

cannot yet be identified from the ERA-Interim product.

As the ERA-Interim is a blended data and model

FIG. 10. Results of the residual consistency test according to 2–16

retained EOFs for (top) refractivity, (middle) geopotential height, and

(bottom) temperature for (left) 1995–2010 and (right) 2001–10 pe-

riods. Plotted are cumulative model to observation ratios of residual

variability (k 2 1)/r2. The dotted lines mark the 5% and 95% x2

limits.
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product, this difference is not a concern. For the shorter

continuous period, all data products, including ERA-

Interim, show consistent detection results compared to

those we obtained using the RO data.

Summarizing, the multisatellite RO records show an

emerging climate change signal, which is—most clearly in

geopotential height fields that reflect overall tropospheric

warming—consistent with the GCM projections for the

given intermittent 15-yr period and the continuous 9-yr

period. The results are consistent with theoretical RO

detection time estimates from two simulation studies.

Leroy et al. (2006a) used 12 IPCC AR4 GCMs and

an optimal detection approach to estimate the detection

time in log-dry pressure trends (which can be related via

the local scale height to geopotential height trends as

function of pressure as we used here) with a 95% confi-

dence as 6–13 yr. These authors also stated that geo-

potential height may be the quantity detected earliest,

which is found confirmed. Simulations of UTLS RO

bending angle profiles (from which refractivity derives by

weighted integration of bending angles over height) were

used by Ringer and Healy (2008) for detection time es-

timates of 10–16 yr based on an autoregressive model

approach. The results are furthermore consistent with the

estimated trend patterns in refractivity, relative pressure/

geopotential height, and temperature from GCM simu-

lations discussed by Foelsche et al. (2008c); these authors

also discussed why refractivity is expected to have less

detection capability, which is confirmed here as well.

Naturally forced climate change is probably small and

of opposite direction over our study period. No major

volcanic eruption took place during the investigated

period. Changes in solar radiation probably provides

only a minor forcing for the period 1995–2010 (see Kopp

and Lean 2011, who discuss natural and anthropogenic

changes over 1980–2010 in detail), and the solar cycle

would have most likely caused tropospheric cooling

over the shorter period 2001–10. This suggests that the

detected change, most clearly the overall tropospheric

warming, has been mainly caused by anthropogenic in-

fluence on climate.

5. Summary and conclusions

This study aimed to investigate the usability of the RO

record in climate change science. An optimal-fingerprinting

approach, which enhances the signal (trend) to noise (nat-

ural variability) ratio, was applied to test whether RO ob-

servations within the period 1995 to 2010 exhibit an UTLS

climate change pattern in refractivity, geopotential height,

and temperature fields, which is consistent with the expec-

ted climate change signal as projected in GCMs. Former

studies (Leroy et al. 2006a; Ringer and Healy 2008;

Foelsche et al. 2008c), based on GCM or simulated RO

data, have shown that a climate change signal should be-

come detectable in RO parameters within a 6–16-yr record.

The influence of QBO and ENSO, the main patterns

of UTLS variability, on trend estimates was assessed via

FIG. 11. Results for the uncertainty in the scaling factors for 1–20 retained EOFs of (top) refractivity, (middle)

geopotential height, and (bottom) temperature for the (left) 1995–2010 and (right) 2001–10 periods. The error bars

signify the 10%–90% and the 5%–95% uncertainty range based on the control scaling factors. If for a certain k the

residual consistency test is passed, it is marked with a circle around the respective scaling factor.
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multilinear regression. The RO data show a clear re-

sponse to both modes of variability, with significant in-

creases in geopotential height throughout the atmospheric

column in the tropics, and significant tropospheric warm-

ing in response to El Niño. The response to the QBO is

strongest in the stratosphere, with increased geopotential

height and stratospheric temperature in the tropics. The

QBO was removed from the observations for further

analysis only since the considered GCMs do not include

QBO variability. The ENSO signal was removed for both

observations and GCMs to get a cleaner climate change

signal. Two trend periods were considered, 10/1995 to 07/

2010 intermittently and 09/2001 to 07/2010 continuously.

Though only an intermittent RO record is available, the

trend pattern is consistent with the intermittent 15-yr as

well as the continuous 9-yr radiosonde and reanalysis

pattern above around 150 hPa.

An emerging climate change signal, consistent with

model estimates, can be detected at a 90% confidence

level both for the intermittent 15-yr and the continuous

9-yr RO geopotential height record; the 9-yr record so

far in the broad 508S to 508N band only. The latitude-

resolved trend signals of the 9-yr period are still masked

by natural variability, indicated by a broad distribution

of control trends, which makes climate change detection

difficult, even though the scaling factors indicate a con-

sistency between RO and GCM trend patterns. Low

confidence is achieved for temperature when only large-

scale patterns are considered. Retaining more than 6

EOFs, RO temperature trends are stronger than the

GCM projected trends and allow for climate change

detection at a 95% confidence level. For refractivity,

detection is not yet possible at a 90% confidence level.

These results are in line with the expected emergence of

climate change signals as discussed in the previous

simulation-based studies cited above.

Since natural changes (solar, volcanic, and internal

long-term variability modes) have been found of minor

relevance during the period, our results suggest that the

changes detected in geopotential height—reflecting

overall tropospheric warming—and temperature have

been mainly caused by anthropogenic influence on cli-

mate. Concluding, our study showed that the GNSS RO

method offers a high-quality climate record for UTLS

climate variability and change studies, and that these

data capture an emerging trend signal, which is expected

to gain further in significance over the coming years.
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