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ABSTRACT

Daily maximum and minimum summer temperatures have increased throughout the majority of Europe

over the past few decades, alongwith the frequency and intensity of heat waves. It is essential to learn whether

this rise is expected to continue in the future for adaptation purposes. A study of predictability of European

temperature indices with the Met Office Hadley Centre Decadal Prediction System (DePreSys) has revealed

significant skill in predictions of 5- and 10-yr average indices of the summer mean and maximum 5-day

average temperatures based on daily maximum and minimum temperatures for a large area of Europe,

particularly in the Mediterranean. In contrast, the decadal forecasts of winter mean/minimum 5-day average

temperature indices show poorer skill than the summer indices. Significant skill is shown for the United

Kingdom in some cases but less than for the European/Mediterranean regions.

Comparison of two parallel ensembles, one initialized with observations and one without initialization, has

shown that the skill largely originates from external forcing. However, there were a few cases with hints of

additional skill in forecasts of decadal mean indices due to the initialization.

Model realizations of extreme indices can have large biases compared to observations that are different

from those of themean climate indices. Severalmethodswere tested for correcting biases, as well as for testing

the significance and quantifying uncertainty of the results to rule out cases of spurious skill. Bias correction of

each index individually is required as biases vary across different extremes.

1. Introduction

Throughout the majority of Europe there has been an

upward trend in daily maximum and daily minimum

summer temperatures over the past few decades that has

been attributed in part to human influences (Christidis

et al. 2012). As a result, the frequency and intensity of

heat waves in Europe has also increased. Since climate

model projections suggest that this rise will continue,

it is important for impacts research to make accurate

predictions of changes in heat wave indices. A recent

study by Eade et al. (2012) demonstrated skillful pre-

dictions of moderate (1 in 10) temperature extremes on

decadal time scales. Here we complement that study

by assessing less moderate extremes and focusing on

the prediction of summer and winter extremes for the

United Kingdom and Europe. Precise predictions of

future heat waves are not currently possible given the

chaotic nature of the climate system, reducing our ability

to make effective adaptation decisions. However, if we

can effectively quantify uncertainty surrounding these

predictions, this would allow an improved understanding

of the risks posed by climate change and more effective

planning for the future. In this study the level of pre-

cision associated with climate predictions is assessed on

a decadal time scale using the Met Office Decadal Pre-

diction System (DePreSys).

Following the devastating effect of the 2003 European

heat wave (Fink et al. 2004) and 2010 Russian heat wave

(Barriopedro et al. 2011), there have been many studies

of the seasonal predictability of summer temperature
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extremes. Seasonal predictability of summer 2-m tem-

peratures in Europe has been found to be less skillful

than elsewhere in the world because of the difficulty of

model simulation of blocking systems, which is a com-

mon cause of heat wave events in this region (Palmer

et al. 2008). Following model improvements,Weisheimer

et al. (2011) found it possible tomake skillful predictions

of seasonal mean 2-m temperature, particularly at the

upper tail of the distribution, suggesting that some

models can perform well for hot extremes. The reason

for this is that the warming trend in southern European

land temperatures is captured well by seasonal forecasts.

Another possible source of predictability arises from

the link between dry springtime soil moisture levels,

leading to higher summer temperatures and the occur-

rence of heat waves. In a study of the effect of soil

moisture initial conditions on the summer climate pre-

dictability, Conil et al. (2009) found that realistic soil

moisture boundary conditions are necessary to predict

summer climate anomalies across Europe. This is

thought to be due to feedback mechanisms involving

land surface–atmosphere interactions whereby the

coupled temperature and drought conditions are am-

plified (Seneviratne et al. 2010). For example, low soil

moisture levels in spring lead to reduced evaporation,

preventing cloud formation, which allows higher levels

of insolation to further warm and dry out the land sur-

face (Fischer et al. 2007; Seneviratne et al. 2006).

Vautard et al. (2007) found a link between European

summer heat waves (based on daily maximum temper-

atures) and wintertime precipitation deficit in southern

Europe, which may be a useful source of seasonal pre-

dictive skill in that area. Similarly, Quesada et al. (2012)

determined that the number of hot days (number of days

with daily average surface temperature above the 90th

percentile) was related to low winter–spring rainfall

frequency in southern Europe; however, farther north

this relationship was not so robust. This difference be-

tween northern and southern Europe is explained by

Teuling et al. (2009), who analyzed the main external

drivers of evapotranspiration. In northern–central Eu-

rope the evapotranspiration shows a greater correlation

with radiation than more southerly European regions,

which are correlated more with precipitation and there-

fore soil moisture availability. Hence the seasonal pre-

dictive skill obtained from observing a dry winter–spring

is useful in southern Europe, but farther north, where the

mechanisms driving evapotranspiration are different, this

will not be so useful. So it is important to consider the

predictive skill assessed over regions within Europe

where the driving mechanisms are similar. A possible

exception could be the response to different emissions of

anthropogenic aerosols, but this is not studied here.

When considering the impact an extreme event, it is

often daily maximum (Tmax) or daily minimum tem-

peratures (Tmin) that have a large impact on society

than the daily average. Impacts of these extreme tem-

peratures can vary greatly depending on location and

the vulnerability of a particular subject. Many studies

concerned with the effect of extreme temperatures on

human health have focused on the daily extreme tem-

peratures (Tmax and Tmin) rather than daily means

(D’Ippoliti et al. 2010; Fouillet et al. 2006; Pascal et al.

2006; Dı́az et al. 2006). High daytime temperatures can

cause hyperthermia and heat stroke and the body can

also be put under additional heat stress by high night-

time temperatures, preventing those suffering heat-

related illnesses from recovering during the night.

Hence, high nighttime temperatures (High Tmin) can be

just as important when considering health effects as high

daytime temperatures (Tmax) [as shown by Grize et al.

(2005) for heat wave events in Switzerland]. Hamilton

et al. (2012) found skill in predicting the number of daily

extreme temperatures (Tmin and Tmax outside the

10%–90% range of the distribution in a season), par-

ticularly in NorthernHemisphere summer, although this

was lower than the skill in predicting the seasonal mean

especially in the extratropics.

Considering predictions further into the future—for

example, the near-term future (10–20 years ahead)—

Meehl et al. (2009) show that pattern and magnitude of

surface temperature change is similar for different

emissions scenarios. In general, it is not until the latter

half of the twenty-first century that different emission

pathways cause significantly different temperature re-

sponses (Solomon et al. 2007; Hawkins and Sutton 2009).

Hence near-term climate prediction is not expected to be

too affected by scenario uncertainty.

Evidence of decadal prediction skill resulting from

anthropogenic external forcing is shown in Lee et al.

(2006). Initialization of models with observations may

improve skill both by predicting natural internal vari-

ability and by correcting the model’s response to previous

external forcing factors (e.g., Smith et al. 2010). Idealized

studies (e.g., Branstator et al. 2012; Branstator and Teng

2012) suggest that internal variability may be predictable

up to a decade ahead in theNorthAtlantic. In reality there

are many technical problems to overcome, especially the

lack of subsurface ocean observations for initialization

and how to deal with model biases. Nevertheless, several

studies have demonstrated improved skill through ini-

tialization for SST in the North Atlantic (Keenlyside

et al. 2008; Pohlmann et al. 2009; Smith et al. 2010;

Chikamoto et al. 2013; van Oldenborgh et al. 2012).

However, the impact of initialization on predictions of

atmospheric conditions over land is less convincing.

1 JUNE 2013 HANLON ET AL . 3729



In this paper, a methodology is outlined by which we

compute decadal predictions of extreme temperature

indices from hindcasts performed with the Met Office

Decadal Prediction System and assess the accuracy of

these predictions. This assessment is based on two en-

sembles of hindcasts, one initialized with observed

values and one without an assimilation of observations.

The ensembles and observed data are discussed in sec-

tion 2. Section 3 outlines methods and uncertainty esti-

mates. The two predictions are then compared in section

4 to determine whether initializing the model with ob-

servations improves the accuracy of the prediction.

2. Data

a. Observations

The observations used to compare the model against

are taken from the ENSEMBLES project (http://

ensembles-eu.metoffice.com/index.html) observational

database (Eobs), which is a high-resolution (0.58 latitude3
0.58 longitude grid) gridded dataset of observations

(Haylock et al. 2008). It should be noted that Eobs is

a gridded dataset of observations where the observa-

tions from individual stations have been interpolated

onto a regular grid. As a consequence, there will still be

some uncertainty in these observations due to mea-

surement errors, variations in the density of stations, and

interpolation methods. However, as there is a large

number of stations across the area this dataset covers

and we have further regridded this data to the lower

resolution of the DePreSys model, these errors are as-

sumed to be small. To make these data directly com-

parable with that of the model, the Eobs data were first

regridded using area-averaging interpolation to the

horizontal resolution of themodel grid (3.758 longitude3
2.58 latitude), and then the grid points defined as sea in

the DePreSys land mask were set as missing values and

the value for 29 February in leap years was removed.

Finally, as the DePreSys model calendar is 360 days and

we require winter [December–February (DJF)] and

summer [June–August (JJA)] daily data, the calendar

was converted from 365 to 360 days by removing the 31st

day of any month with 31 days (January, July, and Au-

gust) and inserting 1 and 2 March as the 29th and 30th

days of February.

b. Model

The Met Office built a decadal prediction system

(DePreSys) (Smith et al. 2007, 2010) utilizing the third

climate configuration of the Met Office Unified Model

(HadCM3) (Pope et al. 2000; Gordon et al. 2000). The

atmospheric component of this model has a horizontal

resolution of 3.758 longitude by 2.58 latitude and 19

levels in the vertical up to a height of 40 km. This is

coupled to an ocean component that has a horizontal

resolution of 1.258 longitude by 1.258 latitude and 20

levels in the vertical.

Retrospective forecast experiments (known as hind-

casts) were performed by the UK Met Office Hadley

Centre as a contribution to the EU ENSEMBLES pro-

ject (van der Linden andMitchell 2009) and consist of an

ensemble of nine members. Each member uses a differ-

ent variant of HadCM3 obtained by perturbing poorly

constrained parameters in the model physics schemes.

The parameter perturbations were selected from a set of

128 model variants created by applying different com-

binations of perturbations to 29 parameters that control

subgrid-scale atmospheric and surface processes. The

perturbations are described in more detail in Murphy

et al. (2004) along with an analysis of which parameters

are most related to the uncertainty in global climate

sensitivity. Of these 128 HadCM3 model variants, eight

of them, along with the unperturbed model, are selected

for use in the DePreSys hindcasts. These variants span

a wide range of climate sensitivity, from 2.68 to 7.18C, in
order to sample model uncertainty.

The DePreSys hindcasts were initialized every No-

vember from 1960 to 2005 and run for 10 years. Both the

atmosphere and ocean components of the system were

initialized with values calculated as anomalies from the

observed climatology added onto the model climatol-

ogy, in order to reduce model drift after assimilation

(Smith et al. 2007). The climatological period used to

compute the anomalies is 1958–2001 for the atmosphere

and 1951–2006 for the ocean. The atmospheric anoma-

lies were taken from the 40-yr European Centre for

Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-40; Uppala et al. 2005) and ECMWF

operational analysis, while ocean anomalies were taken

from a Met Office Hadley Centre ocean analysis (Smith

and Murphy 2007) but updated to produce a better fit to

observations. These anomalies were then assimilated

into an integration of each of the perturbed model var-

iants, run from December 1958 to November 2007,

producing initial conditions for each start dates. The

initialized hindcasts are referred to as the perturbed

physics ensemble (PPE) forthwith.

A parallel set of uninitialized hindcasts, referred to as

NoAssim, was performed alongside the PPE hindcasts

to allow a diagnosis of whether the initialization has

improved the forecasts. Each individual member of the

NoAssim ensemble is performed with the same model

variants as the corresponding member of the PPE en-

semble but without assimilation of the observed state of

the atmosphere or ocean from the analyses as performed

for the PPE ensemble.
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3. Methodology

Several indices are computed to characterize the av-

erage and extreme temperatures in Europe, which

measure large-scale heat wave and extreme cold events.

The indices are calculated for each grid point over land

for each model run and the regridded observations.

To define a heat wave or extreme cold event it is often

necessary to look beyond the seasonal mean of these

daily extremes. We define an index that can provide

information on a shorter time scale than the seasonal

mean along with a measure of the intensity of extreme

temperatures. It is the maximum (minimum) 5-day av-

erage and is calculated by taking a rolling 5-day average

throughout the year and finding the maximum (mini-

mum) value. It has the benefit of being less noisy than

the annual maximum (minimum) while still allowing the

extremity of the hottest temperatures of a given year to

be seen, and is almost as detectable as seasonal mean

changes (Hegerl et al. 2004).

a. Indices

The following indices have been computed and an-

alyzed throughout this study:

d winter average minimum temperature (WTmin): the

mean average daily minimum temperature computed

over the winter season January–March,
d winter average maximum temperature (WTmax): the

mean average daily maximum temperature computed

over the winter season January–March,
d summer average minimum temperature (STmin): the

mean average daily minimum temperature computed

over the summer season June–August,
d summer average maximum temperature (STmax): the

mean average daily maximum temperature computed

over the summer season June–August,
d minimum 5-day average Tmin (Min5day-Tmin): the

lowest 5-day mean average daily minimum tempera-

ture that occurred between 1 January and 30December

(using a 360-day calendar),
d minimum 5-day average Tmax (Min5day-Tmax): the

lowest 5-day mean average daily maximum tempera-

ture that occurred between 1 January and 30 Decem-

ber (using a 360-day calendar),
d maximum5-day Tmin (Max5day-Tmin): the highest 5-

day mean average daily minimum temperature that

occurred between 1 January and 30 December (as on

a 360-day calendar), and
d maximum 5-day Tmax (Max5day-Tmax): the highest

5-day mean average daily maximum temperature that

occurred between 1 January and 30 December (as on

a 360-day calendar).

The seasonal mean indices are found by taking the

mean average over all daily values in the summer–winter

months. The maximum and minimum 5-day averages

are calculated by taking each day of the year and finding

the mean of a 5-day period surrounding that day (2 days

on either side) and calculating the maximum and mini-

mum values of that 5-day average for each year. It is

expected that the maximum value will occur during

a summermonth and theminimumduring the winter but

that is not necessarily the case, so we do not restrict this

calculation to particular seasons.

These extreme temperature indices are computed

for both the PPE and NoAssim decadal runs and are

bias corrected compared to the 30-yr antecedent ob-

servational climatology as described below. Then

a mean square skill score as described in Murphy

(1988) and discussed in Goddard et al. (2013) is used

to assess the skill at individual lead times and at 5- and

10-yr lead time averages. In the case of individual lead

times the indices computed for summers at different

positions throughout the run are assessed separately

to show how skill varies with lead time during a 10-yr

run. Then 5- and 10-yr averages of each index are

computed from each run as a prediction of the average

for the next 5–10 years and compared to the corre-

sponding 5- and 10-yr averages from the observations,

to assess how skillful these semidecadal–decadal

predictions are. Because of the period of the obser-

vations and the model runs, the skill is assessed for the

runs starting from 1980 to 2000 inclusive, for which we

have both a 30-yr prior observational climatology and

concurrent observations with which to compare all

lead times.

b. Regions

After the index is calculated a regional average over

land grid points is performed, as we are concerned with

the predictability of large-scale heat wave events, similar

in magnitude to the 2003 European event. The area of

interest for this study is Europe (358–658N, 108E–408W).

Along with this region we also compute averages for two

subregions, the British Isles (508–608N, 108E–28W,

hereafter termed ‘‘UK’’ but this does still include Ire-

land) and the Mediterranean (358–508N, 108E–408W).

We also performed this analysis for a central Europe

(428–558N, 28E–208W) region; however, the results for

this regionwere very similar to that of the Europe region

so they are not shown here. In addition to these regions,

the northern Europe region was also considered (508–
658N, 108E–408W), and the results for this region are

shown in the supplementary material (available at the

Journals Online website: http://dx.doi.org/10.1175/

JCLI-D-12-00512.s1).
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c. Correlation of DePreSys with observations

In general, heat wave indices predicted by the model

will contain biases relative to the observations, and these

must be corrected to obtain a forecast. Since bias cor-

rection could potentially affect the forecast skill, we first

assess the Pearson correlation coefficient for the sum-

mer average values of Tmax and Tmin (STmin, STmax)

before any bias correction. For this we compare the

DePreSys PPE and NoAssim ensembles to Eobs ob-

servations over the years 1960–2000. The significance of

these correlation coefficients was determined by calcu-

lating a lower threshold for the correlation coefficient

that captures the 95th percentile of the null hypothesis

of no linear relationship. This threshold was calculated

to be 0.312 using the two-tailed Student’s t test where the

number of degrees of freedom is assumed to be equal to

the number of yearsminus 2 and is displayed on the plots

by a gray shaded region. This neglects autocorrelation

due to internal variability, which is small over land re-

gions. The uncertainty within the ensemble was esti-

mated by bootstrapping with replacement to obtain

a number of realizations of the ensemble mean (Efron

and Tibshirani 1993, chapter 6). Each of these re-

alizations was used to calculate the correlation co-

efficient of that realization with observed values. This

produced a range of possible values of this correlation

coefficient. The 10%–90% interval of this range was

taken as the uncertainty on the correlation due to en-

semble spread and is shown as vertical bars through each

point.

d. Bias correction

The bias correction method applied is in line with the

guidelines set by the World Climate Research Program

(WCRP) for anomaly initialized model results [for de-

tails, see WCRP (2011)]. Since the model was initialized

with an anomaly compared to climatology, as opposed

to being initialized with observed values, the forecasts

are less likely to drift. As such, the correction applied is

only required to adjust the forecasts back to observed

climatology, without accounting for drift, and is calcu-

lated as in Eq. (1):

model5model2model climatology

1 observed climatology. (1)

The bias in temperature extremes is not the same as

the bias in the seasonal mean as a result of processes

influencing the frequency of extremes that are different

to those affecting the mean. The reason for this is that in

models, these processes (usually small-scale parameterized

processes or local feedbacks that are influential on ex-

tremes) are not always as well captured as those that

govern more large-scale processes that determine mean

climate. Bias correcting daily data and then averaging

to find a seasonal average leads to a good correction for

the seasonal mean data. For an extreme index (e.g.,

Max5day-Tmax and Max5day-Tmin) this is not ap-

propriate as the indices we compute are measures of

extremes that can occur on different calendar days.

Applying a different bias correction for each calendar day

individually does not solve this problem because daily

biases cannot be diagnosed accurately enough. It would

also inject more variability in the computed index. We

find that bias correcting the index, rather than the raw

daily data, successfully removes almost all of the mean

bias between the observed index and the modeled index

and is therefore the appropriate bias correction method

for this purpose. This is more important for the extreme

indices than seasonal averages. We apply the same

method across both indices. The effect of different bias

corrections is illustrated in Fig. 1, where the time series of

the Max5day-Tmax and Max5day-Tmin are computed

with uncorrected data, data with a daily mean bias re-

moved from each daily value before the index is calcu-

lated, and, finally, the data, corrected with a 30-yr prior

climatology after the index, is computed.

Themodel climatology of the index for bias correction

is taken from transient runs of the same model and the

observed climatology is computed from the Eobs data-

set. The climatology here is defined as the 30-yr mean of

the index prior to the start of the run (i.e., the 1980 run is

FIG. 1. Time series of (top) Max5day-Tmax and (bottom)

Max5day-Tmin averaged over Europe from the DePreSys (PPE)

ensemble compared to Eobs observations (thick solid black lines).

Each line shows the annual index calculated for each year of the

10-yr runs, started every year. As such the time series overlap, so

the lines are shaded progressively lighter for runs with later start

dates. The three time series shown are computed with the un-

corrected data (dashed lines), with the bias correction performed

after the index calculation (solid lines), and with bias correction

applied to the daily Tmax and Tmin data (dotted lines).
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corrected with climatologies averaged over 1950–79).

The benefits of using a prior climatology are that the

data are not preconditioned on observations that oc-

curred during the in-sample time period, allowing this

correction to be applied systematically to runs that ex-

tend into the future.

The DePreSys decadal forecasts are created using

a perturbed physics ensemble, so each member of this

ensemble must be considered as a different model. To

account for this, the mean bias between the modeled

index and the observed index is removed for each

member of the ensemble separately. The correction

applied remains constant across different lead times.

e. Calculation of MSSS

When considering how useful or significant a forecast

is it needs to be compared against alternative in-

formation which could be used to make a prediction. To

compare the accuracy of predictions made with two

different methods we use the mean square skill score

(MSSS) (see Murphy 1988). It compares the mean

square errors between each forecast with the observa-

tions. This skill score was used to estimate how accu-

rately the DePreSys hindcasts (PPE) recreate the

corresponding observed values of the regional average

indices, compared to Eobs observational climatology. It

is also used to test if the uninitialized runs (NoAssim)

are any more skillful than the initialized PPE runs. The

method of using the mean square skill score to assess

decadal predictions has been evaluated by Goddard

et al. (2013), who has also laid out best practice guidance

for use with this method:

MSE(f , x)5
1

n
�( fi2 xi)

2 and (2)

MSSS( f , y, x)5 12
MSE(f , x)

MSE(y, x)
5 12

2
64
1

n
�(fi2 xi)

2

1

n
�(yi 2 xi)

2

3
75 ,

(3)

where MSE is the mean square error, fi is the ith fore-

cast, xi is the ith observed value, y is the reference fore-

cast, and n is the number of forecasts (here the forecasts

are the 10-yr runs started each year). The forecasts here

refer to the regional average of the indices described

above. We perform the regional average before the skill

is assessed because the skill in these indices (especially

the more extreme indices) can vary greatly over the

larger regions and as a consequence the average of

a noisy spatial pattern of skill is less meaningful than the

skill of the regional average.

A skillful prediction is considered to be a forecast that

is closer to the observed value than our observed cli-

matology (here the average of the previous 30 years

before the start of the run). A prior climatology is

deemed to be a reasonable benchmark in this case as

extreme temperature indices can randomly fluctuate

year to year as they are affected by weather variability.

This benchmark also has the advantage that it could be

used as an alternativemethod of prediction as it does not

require any knowledge of the future. Comparing to an

in-sample climatology does not have this advantage

because one needs to know the value of the index for the

entire period tested, so it could not be used as a method

of prediction. Hence the 30-yr prior climatology is used

as the reference forecast y.

This is repeated using the NoAssim forecast as the

reference forecast [as in Eq. (4)] and the results used to

determine whether PPE is more skillful than NoAssim

(termed noa in the equations). The reason for comput-

ing the difference in skill with this method, as opposed to

repeating the computation in Eq. (A1) for NoAssim, is

to remove the dependence on the skill of the comparison

to observed climatology. Instead, the mean squared er-

rors for the two sets of modeled results are compared

directly. The difference in skill between the two en-

sembles shows how much more skill the ensemble that

assimilates observations has over the unassimilated runs

that had no initial knowledge of the observed state of the

climate:

ppe/noa Skill Difference5 12
MSE(ppe, x)

MSE(noa, x)

5 12

2
64
1

n
�(ppei 2 xi)

2

1

n
�(noai 2 xi)

2

3
75. (4)

TheMSSSs [Eqs. (3) and (4)] are also calculated for 5-

and 10-yr averages of the annual indices. The purpose of

this was to determine whether long-term averages show

more skill than predictions of individual years.

f. Estimation of error on the MSSS

The MSSS is computed from the ensemble average of

the regional average of a given index at each lead time

for a particular year. Uncertainties arise from the lim-

ited ensemble size of nine members. An estimate of this

sampling uncertainty is made using bootstrapping with

replacement (Efron and Tibshirani 1993, chapter 6). For

each realization, ninemembers of the ensemble are drawn

with replacement, from the entire nine-member
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ensemble. Then the same computations are done on the

sample as performed for the ensemble average. A

thousand samples are generated and the 10%–90%

range from these provides the error on MSSS. Al-

though this error estimate is biased low, being cautious

we use it. If the score and its error are above zero then

the forecast (whether the forecast from the PPE en-

semble or the NoAssim ensemble) has more skill in

predicting the index than the 30-yr prior observed cli-

matology.

An additional method of estimating uncertainty is to

compare a random forecast, which should have no sig-

nificant skill apart from coincidence, with climatology.

A random forecast is generated assuming a different

normal distribution for each period (seasonal, 5-yr av-

erage, and 10-yr average), PPE member, and index. The

mean and standard deviation for the normal distribution

is estimated from eachmember of the perturbed-physics

and NoAssim ensembles separately and used to nor-

malize the random forecast. One thousand realizations

are generated and a distribution of MSSSs is computed

from these. The 90th percentile of this distribution is

taken as a cutoff point, below which the MSSS is con-

sidered not significantly better than random noise; this is

shown on the figures as a gray point.

4. Results

It can be seen that the summer average indices

(STmax and STmin) in the modeled regions, Europe,

and the Mediterranean (MED) are significantly corre-

lated with observations at almost all lead times (Fig. 2).

This shows that the changes in the modeled tempera-

tures are recreating the observed changes reasonably

well in those regions. The UK does not show significant

correlations for STmax, suggesting that the changes in

the maximum daily temperatures are not captured well

by the model over the UK, whereas the STmin does

show significant correlations at some lead times, albeit

not consistently. This suggests that UK summer daily

maximum temperatures are not as predictable as those

in other European regions and also not as predictable as

UK summer daily minimum temperatures.

The correlation coefficient does not seem to increase

or decrease as lead time increases, suggesting that model

drift is not having much of an effect on the relationship

between modeled and observed temperatures on this

10-yr time scale. However, the correlation coefficients

do not decrease with lead time, which suggests that the

initialization of the model is not having a noticeable

influence on the correlation, since otherwise the strength

of the correlation would reduce as the model evolves

away from the initial state.

Are these correlations, found for the summer average

indices (STmax and STmin), due to similar trends in the

data? The decadal average STmax and STmin over 1961–

2000, as calculated fromEobs observations, have increased

over the 40-yr period in almost all areas (Fig. 3, top panels),

with larger warming trends in the more southerly regions.

This widespread increase is also seen in the 10-yr averages

from the modeled results for both ensembles (Fig. 3,

middle and bottom panels). There is also a similar north–

south contrast in the modeled trends, as seen in the ob-

served trend, although the magnitude of the trends in the

south is not so large.

It is not reasonable to assess the skill of predictions of

individual grid points because of a low signal-to-noise

FIG. 2. Correlation of the summer average indices (top) STmax

and (bottom) STmin from PPE (solid) and NoAssim (dotted)

compared to observations. These are regionally averaged indices

for Europe (blue), the Mediterranean (red), and the UK (green).

The gray shaded region shows the values of correlation coefficient

that do not show a statistically significant correlation (at the 95%

level). These indices are computed with the uncorrected model

data from runs starting in 1960–99 at each lead time and the cor-

relation with the same indices computed for the corresponding

years from the observational record (Eobs).
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ratio of these indices at small spatial scales, and because

the spatial pattern in the observed trend is not recreated

well by the model across all indices, for example the

Max5day-Tmax and Max5day-Tmin (Fig. 4). Instead,

a regional average of these indices ismade to capture the

trends in indices on a larger spatial scale. Nevertheless,

similarities between the modeled and the observed

spatial patterns of these trends show there is greater

warming in the more southerly regions (i.e., the Medi-

terranean) than in the north, in both observations and

the modeled ensembles. Also, the decadal average trends

of Max5day-Tmax and Max5day-Tmin (Fig. 4, middle

FIG. 3. Trend in decadal average (average over lead times 1–10 yr) of summer average indices (left) STmax and

(right) STmin from (top) Eobs observations over Europe (land only) over 1961–2000 compared to the same period in

the (middle) DePreSys and (bottom) NoAssim. The temporal average is performed over the values at different lead

times that correspond to the same period (1961–2000). To calculate the trend in the indices with time, an ordinary

least squares linear regression of the temperature index against time was performed for each grid point. The colored

boxes in the top left panel define the regions used to calculate the regional averages of the indices. To view modeled

trends as anomalies from the observed trend, see supplementary Fig. 1.
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and bottom panels) show similar features to that of the

decadal average STmax/STmin trends; they are posi-

tive throughout most of Europe but are slightly greater

in magnitude than the summer average indices. There

is also more variation between PPE and NoAssim for

Max5day-Tmax.

A comparison of the decadal trends in the initialized

(DePreSys) and the uninitialized (NoAssim) runs

show similar spatial patterns of decadal average

trends in summer average temperatures (see middle

and bottom panels of Figs. 3 and 4).

Figures 5 and 6 show that the trend in the model seems

to follow the observationswell and the spread encompasses

most of the year-to-year variability. TheUK indices are the

exception, as the trend is somewhat overestimated, espe-

cially STmax. The time series shown in Figs. 5 and 6 also

include the decadal average predictions for subsequent

decades, the latest being the 2006–15 decadal average.

FIG. 4. As in Fig. 3, but for the maximum 5-day average index Max5day-Tmax and Max5day-Tmin. To view

modeled trends as anomalies from the observed trend, see supplementary Fig. 2.
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a. Is there skill beyond climatology?

Where the MSSS is above zero this means there is

more skill in the model than in the observed prior cli-

matology; in other words, the modeled forecasts are

closer to the actual observations than the average of the

30 years prior to the start of the runs. Alternatively, if

the MSSS is negative this means that Eobs 30-yr prior

climatology is closer to the observed value than the

forecast and therefore there is negative skill in the

model. It should be remembered that this measure of

skill is purely the ability of one method beyond another

to predict the index. Even if skill is found in predictions

it can still be a poor prediction, so the skill scores should

be considered alongside analysis of the time series,

trends, and spread to ensure the predictions are appro-

priate for use (as shown in Figs. 5 and 6).

To test the statistical significance of the skill scores,

the error bars are calculated using the 10%–90% range

of a bootstrapped estimate of ensemble variability and

are shown by vertical lines through each MSSS value

(for details of the bootstrapping method, see section 3f).

If the error bar crosses zero the result is deemed to not

be significant (90% level), since existence of skill beyond

the benchmark is uncertain for a different combination

of ensemble members (see section 3f for more details).

The MSSS is also tested for significance beyond that of

a random forecast. TheMSSS must be above the shaded

region that represents the 90% range of the MSSS ob-

tained from 1000 realizations of random noise with

equivalent variability to that of the model. So, theMSSS

value and the associated error must be above zero and

above the shaded region (determined by the random

forecasts) for the model to be deemed skillful compared

FIG. 5. Time series showing themean and spread of summer average indices (top) STmax and (bottom) STmin from runs starting in 1981

to 2000, from the PPE (solid colored lines) and NoAssim (dotted colored lines) ensembles after bias correction for (left) 5- and (right)

10-yr lead time averages and compared to Eobs observations (black solid line). The lead times are averaged over 5- and 10-yr periods. The

time series shown are the average over the first five summers of each run in the left panels and the decadal summer average of the entire

10-yr run in the right panels. To ensure that the observed values correspond to the same average of years as shown for themodeled results,

a 5-yr smoothing was applied to the observations for the time series in the 0–4-yr lead time plot and 10-yr smoothing applied to the

observed time series in 0–9-yr lead time plot. The colored shaded region represents 10%–90% range of the ensemble spread. This is shown

for each region: Europe (blue), the Mediterranean (red), and the UK (green). The lilac region shows further decadal forecasts not

included in the skill score analysis.
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to observed climatology and significantly beyond ran-

dom noise, although small overlaps may still indicate

significant results given the variances are approximately

additive.

First, the MSSSs are computed for STmax and STmin

at individual lead times from the PPE ensemble com-

pared to the 30-yr prior Eobs climatology. Forecasts of

STmax and STmin do show some skill beyond the 30-yr

prior climatology, especially for the Europe and Medi-

terranean regions. However, this is not significantly

greater from the skill obtainable from a random forecast

(gray points) for any regions, at any lead times (Fig. 7).

This is because the model cannot adequately recreate

the year-to-year variability of these indices. That is not

to say themodel predictions are worthless, though. It has

already been shown that the 40-yr trend in these indices

is well correlated with observations so the model pre-

dictions are providing some useful information on longer

time scales. However, an average over lead times may be

more skillful while still providing useful information on

how indices could change in the next few decades.

Another feature seen in Fig. 7 is the MSSS increasing

with lead time. This feature arises because the length of

the period analyzed for each lead time stays the same,

so later lead times include analysis over later years, a few

of which were much warmer than average. The impact

of this is an increased trend at later times and hence the

signal-to-noise ratio also increases, providing slightly

more skill over these later periods. It also highlights again

the lack of skill coming from initialization as there is no

reduction in skill with lead time but rather an increase.

To determine if longer-term averages are more

greatly influenced by larger-scale processes (including

ocean dynamics) and forced trends than the annual in-

dices, we look at skill in the 5- and 10-yr averages of

these indices as predicted from each model run. The

MSSS, as applied in the top left panel of Fig. 8, assesses

the amount of skill a model has in predicting the 5-yr and

decadal averages of STmax/STmin beyond the observed

30-yr prior climatology. There is significant skill in 5-yr

and 10-yr average STmax and STmin for the Europe,

Mediterranean, and UK regions (Fig. 8, top-left panel)

but not for the UK 1–5-yr average STmax, which does

not show significant skill beyond the climatological av-

erage.

When repeating the analysis applied to the seasonal

mean to the maximum 5-day average indices we see signif-

icant skill for the 5-yr and decadal average Max5day-Tmax

FIG. 6. As in Fig. 5, but for maximum 5-day average indices Max5day-Tmax and Max5day-Tmin.
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and Max5day-Tmin (Fig. 8, top-right panel) in Europe

and the Mediterranean but not consistently in the UK.

This is promising as this index requires the model to

capture changes in daily Tmax and Tmin extremes rather

than just the seasonal mean warming.

Similarly for the winter indices, the winter average

WTmax (Fig. 8, bottom-left panel) shows skill for all

regions at all lead times, while winter average WTmin

only shows skill in Europe and the UK, not the Medi-

terranean. Also, the 5-day minimum indices (Fig. 8,

bottom-right panel) are not skillful for Europe and

Mediterranean, with the predictions for the Mediterra-

nean becoming particularly unskillful at later lead time

averages. The only skill in this index is the UK decadal

average and 6–10-yr average Min5day-Tmin and

Min5day-Tmax.

b. Is there skill beyond persistence?

There are methods of prediction other than the

modeled prediction or climatology that could be used

as benchmarks, such as, predictions with other climate

models, statistical models or by simply persisting the

previous years’ or decades’ value. The alternative option

for a baseline tested here is the observation from the

previous 5-yr average or decade. This removes the need

to recreate a trend in the data due to external forcings

that are unlikely to affect the climate on such as short

time scales. Although in this case, there is no measure

of variability of the index from past experience. In this

case, we may find this prediction is closer to the obser-

vation if the following year is similar to the previous,

which could be purely due to chance or because the

index follows a variability cycle or mode that is auto-

correlated. Therefore, it is important to test different

methods of prediction to ensure the best prediction

method for the specific index in question is being em-

ployed, as it will not always be the same across indices.

Figure 9 shows the MSSS for the modeled results

compared to the previous 5-yr/decadal average. This is

done using the same method as employed when the

PPE hindcasts are compared to NoAssim, as detailed

by Eq. (6). However, here the reference forecast is the

average of the 5 years (or 10 years for the decadal av-

erage indices) immediately prior to the start of the run.

As such, this represents the known value of the index

at the start of the simulation, which we persist to obtain

the next values of this index, hereafter termed ‘‘persis-

tence.’’ Where the value of this MSSS is greater than

zero along with its associated error, the model is con-

sidered to be a better prediction than persistence. The

model predictions are more skillful predictions than per-

sistence for the majority of Europe and Mediterranean

FIG. 7. Mean square skill score of summer average indices STmax (up arrow) and STmin

(down arrow) for individual lead times from DePreSys PPE ensemble averaged over several

regions including, Europe (blue), the UK (green), and the Mediterranean (red). This was

calculated with indices that had the bias of the Eobs climatology of that index removed before

calculation. Error bars are calculated using bootstrapping with replacement and the gray point

represents the 90th percentile of the range of MSSS obtainable with realizations of random

noise.
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indices. The exceptions are European STmax (1–5-yr

average only; Fig. 9, top-left panel), European Max5day-

Tmax (1–5-yr average only; Fig. 9, top-right panel),

Mediterranean WTmin (Fig. 9, bottom-left panel), and

Min5day-Tmax and Min5day-Tmin for European–

Mediterranean at lead time averages of 6–9 and 0–9

years (Fig. 9, bottom-right panel). However of these, it

is only the Mediterranean WTmin, Min5day-Tmax,

and Min5day-Tmin indices for which observed persis-

tence (Fig. 9, bottom-left panel) and climatology (Fig. 8,

bottom-left panel) are both more skillful than the PPE

predictions.

The UK region indices show improved skill in the

modeled results compared to persistence for most in-

dices except for the STmax and Max5day-Tmax and

Max5day-Tmin (1–5-yr average only; Fig. 9, top

panels). Interestingly, the modeled winter and mini-

mum 5-day averages are more skillful than persistence

for the UK (Fig. 9, bottom panels). However, this is

not so meaningful for the 1–5-yr lead time average

Max5day-Tmax, Min5day-Tmax and Min5day-Tmin as

these indices are not skillful beyond climatology (Fig. 8,

bottom-right panel).

c. Source of predictive skill

To assess where the skill in the model is originating,

we ask whether it comes from initialization. This is done

by comparing the skill obtained for the indices com-

puted with the initialized (PPE) ensemble with the same

indices computed with the uninitialized (NoAssim)

FIG. 8. MSSS of 5-yr–10-yr averaged indices from DePreSys PPE compared to Eobs 30-yr prior climatology, with

lead time averaged over several regions in Europe, including Europe (blue), the UK (green), and theMediterranean

(red). The up arrows correspond to the indices computed from daily maximum temperatures (Tmax) and the down

arrows are the indices computed with daily minimum temperatures (Tmin). The indices shown are: (top left) STmax

and STmin and (top right) Max5day-Tmax andMax5day-Tmin; and (bottom left) WTmax andWTmin, and (bottom

right) Min5day-Tmax and Min5day-Tmin. Error bars are calculated using bootstrapping with replacement and the

gray point represents the 90th percentile of the range of MSSS obtainable with realizations of random noise. For

further explanation of the uncertainty estimation, see section 3f. Where skill score is below 2100, showing the

forecast is particularly unskilled compared to climatology, a times sign is placed at the bottom of the plot.
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model. Figure 10 shows there is no consistent and sig-

nificant difference in skill between PPE and NoAssim

across indices but there is the odd case. These results

suggest there may be some benefit to the skill of the fore-

casts of the decadal average European STmax/STmin,

decadal average Mediterranean STmin, and decadal aver-

age Mediterranean WTmin. However, for the maximum

and minimum 5-day average indices (Fig. 10, right panels)

there is no improvement of skill in forecasting these indices

from the initialization.Where it has been determined that

there is no skill coming from the initialization, the al-

ternative source of skill is due to the model forcing,

which is allowing the model to recreate the observed

trend in temperatures over time irrespective of initiali-

zation.

5. Conclusions

This study outlines and applies a framework for use

when evaluating the skill of predictions of seasonal

mean and extreme temperature indices. It has the ben-

efit of being applicable to any index as the computation

is performed after the index is calculated. It has been

important to bias correct the index before the skill is

tested and this correction needs to be applied after the

index is calculated, not before, as the bias in an index for

extremes can vary substantially from that of the mean.

Another benefit of this method is that it can be used to

compare the skill in different models.

We compare an observationally initialized per-

turbed physics GCM to its uninitialized counterpart,

observed climatology, and also to a statistical model in

the form of persistence. We find significant and robust

skill that exceeds persistence and climatology for many

of the temperature extremes studied—in particular, the

5-yr/decadal average seasonal means and the 5-yr/decadal

average maximum 5-day mean in Europe and Mediter-

ranean.

It would seem that DePreSys performs better than

alternative prediction methods for a number of the

indices studied. However, as it is not consistently bet-

ter across all indices and regions, when a model pro-

duces a skillful prediction for an index in a given region

we cannot assume that it will also be as skillful for

FIG. 9. As in Fig. 8, but withDePreSys PPE compared to persistence (the observed value of the previous 5-yr–decadal

average of the index) rather than climatology.
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other regions or other indices. Hence it is useful to test

the skill for each index and region individually in order

to determine the best method of prediction for each

case.

The predictions appear most skillful for the seasonal

average indices (summer and winter) and the extreme

summer indices (Max5day-Tmax and Max5day-Tmin)

and are due to external forcing. The extreme winter

temperatures (Min5day-Tmin and Min5day-Tmax)

show the lowest predictive skill. This is the case for

the European and Mediterranean regions, for which

the signal-to-noise ratio of the trend compared to vari-

ability is stronger than that of the UK, which shows

poorer skill (except for some indices based on Tmin).

The reason for lower skill in theUK could be due to skill

varying with location or a low signal-to-noise ratio as

this region has amuch smaller spatial area than the other

regions. In addition to these regions the northern Europe

region was also considered (508–658N, 108E–408W, which

includes the UK). This region displays similar skill to that

of the European region (see Figs. 3–5 in the supplement),

and hence it is more likely that the lower skill in theUK is

due to the variability being greater on this smaller spatial

scale.

The skill in the summer average temperatures is due

to the model forcing recreating the trend in seasonal

averages due to external forcings well. There is poorer

but still significant skill seen in the maximum 5-day av-

erage temperatures as the processes governing maxi-

mum temperatures are harder to model and tend to be

nonlinear, so much so that the way extreme tempera-

tures propagate can be heavily dependent on the land

and atmospheric conditions present.

For the indices assessed here we find little impact on

skill due to the initialization beyond the first year, con-

sistent with a complimentary study by Eade et al. (2012).

However, there is the odd case where theremay be some

skill in the decadal average prediction coming for the

initialization, specifically the European summer average

STmax–STmin, decadal average EuropeanWTmin, and

decadal average summer and winter average Mediter-

ranean STmin andWTmin. These hints of predictability

are consistent with other recent studies (Matei et al.

2012; D. Matei 2012, personal communication).

FIG. 10. As in Fig. 8, but with DePreSys PPE compared to NoAssim rather than climatology. Comparison to the skill

generated by random noise is excluded from this plot as it is already shown by the gray shading in Fig. 8.
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APPENDIX

Skill Score Calculation

We rearrange Eqs. (2) and (3) by taking the forecast

f 5 ppe, the value obtained from the ensemble mean of

annual index from the perturbed physics ensemble, and

the reference forecast y 5 mi is the 30-yr prior clima-

tology for each run i. By using a dynamic 30-yr prior

climatology [y5 mi, a multivalued external climatology,

as described inMurphy (1988)], the rearrangement gives

Eq. (A1), where rfx is the correlation coefficient between

the forecast ( f) and the observations (x), sf is the stan-

dard deviation of the forecast ( f), sx is the standard

deviation of the observations (x), f is the mean of the

forecast, and x is the mean of the observations:
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Similarly the equation used to calculate MSSS of PPE compared to the NoAssim forecast, shown in Eq. (4), is

rearranged to give Eq. (A2):
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