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ABSTRACT

This study models the seismic response of porous rock
containing two fracture sets with different orientations, sizes,
and connectivities. Modeling demonstrates frequency-de-
pendent anisotropy controlled by two characteristic frequen-
cies that are defined by fluid mobility and the length scales of
the fractures. Fracture-related dispersion and attenuation typ-
ically occur over a wider frequency band than is seen in the
case of a single fracture set. When one set of fractures is mod-
eled as being sealed, the azimuthal variation of velocity and
attenuation can be different, with the azimuth of minimum at-
tenuation coinciding with the strike direction of the open
fracture set. The results should support attempts to differenti-
ate between open and closed fractures on the basis of seismic
measurements.

INTRODUCTION

Analysis of field data �Maultzsch et al., 2007a� suggests that con-
ideration of the frequency dependence of seismic anisotropy poten-
ially can give access to fluid-saturation and fracture-scale informa-
ion in fractured reservoirs. Attempts to extract this information
rom the data depend on the availability of suitable theoretical mod-
ls. Unfortunately, current theoretical models have significant limi-
ations.

Frequency dependence of seismic velocity and attenuation often
s associated with the concept of fluid mobility �Batzle et al., 2006�
ecause the wave-induced exchange of fluid between different parts
f the pore space is believed to be a driving mechanism behind fre-
uency dependence. In the anisotropic case, the influence of frac-
ures in this process is studied by Hudson et al. �1996�, Pointer et al.
2000�, van der Kolk et al. �2001�, and Jakobsen �2004�, among oth-
rs. Chapman �2003� establishes the link between this behavior and
he scale length of the fractures, but the model is limited to a single
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et of fractures larger than the grain scale. The need to consider more
omplex fracture distributions within the model is recognized �Bar-
on, 2007�.

I present a technique to extend earlier analysis �Chapman, 2003�
o the case of two sets of fractures with different scale lengths and
rientations. I work to the first order in the fracture number density.
he method is in two parts. First, I define a system of equations that
escribes the flow of fluid between cracks and pores in response to a
assing seismic wave. Second, I use the solution of this system to
ompute the elastic corrections resulting from the presence of such
uid-communicating fractures. The analysis results in a complex-
alued, frequency-dependent anisotropic elastic tensor.

Behavior is dominated by the existence of two characteristic time-
cales, corresponding to the two length scales of the fracture sets.
or the case of an open set and a closed set of fractures, important
ifferences are predicted between the velocity anisotropy and the at-
enuation anisotropy. My goal is that the results of this paper can be
sed to improve inferences about the azimuthal variation of perme-
bility in fractured reservoirs.

THEORY

Let us consider the case of a fracture surrounded by spherical
ores. The fracture is modeled as a circular ellipsoid of small aspect
atio. Stress is applied to the system, and a different pressure is in-
uced in the fracture compared to the pores as a result of a difference
n geometry. This pressure difference is to be relieved by fluid flow.

We base our analysis on the Darcy equation:

dQ�
k

�
dS · �p, �1�

hich relates the fluid mass flux dQ through a surface dS to the pres-
ure gradient �p and fluid mobility parameter k /� , the ratio of per-
eability to fluid viscosity.
Consider the case in which two inclusions are adjacent to each

ther, containing fluid at pressures p1 and p2, respectively. To apply
he Darcy equation, we assume

ctober 2008; published online 14 October 2009.
ail: m.chapman@bgs.ac.uk.
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D98 Chapman
�p ·dS�
p2�p1

�
a2, �2�

n which � has the sense of a separation between the adjacent inter-
ranular voids and a has the sense of a cross section of area through
hich fluid flows. This leads to the flow law between an inclusion

nd its neighbor:

� tm1�
� f

0ka2

�
�p2�p1�, �3�

here m1 is the fluid mass in the first void and � f
0 is the unstressed flu-

d density. Chapman et al. �2002� implicitly write

� �
a2

�
�4�

s the length scale controlling the fluid flow. They further suggest
hat this scale length should be associated with the grain size because
hat is the only assumed length scale in the model.

We model inclusions that communicate with more than one neigh-
or by assuming that the flows can be added linearly and by intro-
ucing a coordination number C:

� tmi�
C� f k�

�
�pj�pi� . �5�

his framework can be adapted to model the case of a large fracture
urrounded by smaller pores. We think of the fluid mass flow from
he fracture as an integral over the fracture surface, which may be
ritten formally as

� tmf �� f�
S

dQ�� f�
S

k

�
�dS . �p� . �6�

his integral can be replaced by a sum of a certain number of individ-
al interactions between the fracture and the surrounding pores. We
an further assume homogeneous conditions on the fracture surface,
ritten as

� tmf �
� f

0 kaf
2

��
�p*�f�, �7�

n which p* denotes the pressure in the spherical pores and f denotes
he fluid pressure in the fracture.

Consistency between the single-scale and multiscale theories is
chieved through the formal condition

lim
af→�

af
2

��
�C . �8�

We now solve the system of equations, calculating the pressures
s a function of the applied stress in the frequency domain. Follow-
ng Chapman et al. �2002�, we can write the volume of the fracture as
function of applied normal stress and fluid pressure:

Vf �Vf
0�1�

� n

� c
�

f

� c
�, �9�

n which we write �Eshelby, 1957�
� c�
��r

2�1�v�
, �10�

here r is the aspect ratio of the crack, v is Poisson’s ratio, and � and
are the Lamé parameters of the background medium throughout.

n this equation, � n is the normal stress acting on the crack face. We
ssume a relation between fluid density and pressure:

� f �
� f

0

1�
p

� f

, �11�

here � f is the fluid bulk modulus. This allows us to couple the mass
ow out of the fracture to the derivatives of fluid pressure and ap-
lied stress:

� t mf �
mf

0

� c
��1�Kc�� t f �� t� n�, �12�

here

mf
0�

4

3
�af

3r� f
0, �13�

Kc�
� c

� f
, �14�

nd af is the fracture radius. Then, we define a timescale 	 f:

	 f �
8��1�v��1�Kc�

3�
��

k
�af . �15�

ur equation coupling the fracture pressure to that in the surround-
ng pores is given in the frequency domain by

f �
i
	 f

1� i
	 f

� n

1�Kc
�

p*

1� i
	 f
. �16�

Having developed the equations for the case of a single fracture
urrounded by spherical pores, we proceed to the case in which we
ave multiple fracture sets embedded in a matrix whose porosity
onsists of such spherical pores. To solve this problem in a fully rig-
rous manner, we would have to specify the relative positions of
ach fracture set and compute an extremely complex spatially vary-
ng pore-fluid pressure field in the micropores.

Such considerations do not apply in the low- or high-frequency
imiting cases, studied as a special case by Chapman et al. �2002�.

hen we consider such solutions for very thin cracks, it is striking
hat the resultant fluid pressures in the pores are very similar in both
imits but the fracture-fluid pressures are markedly different. To a
easonable approximation, we may believe the pressure in the frac-
ures falls to that in the pores while the pore pressure remains rough-
y constant. This is understandable because the fractures contain lit-
le fluid but are highly compliant. When a small amount of fluid is
ransferred from the fracture to a pore, the results is a large drop in
he fracture pressure, but there is a much smaller increase in the pore
ressure because of smaller compliance of the pore.
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Multiple mesoscale fractures D99
We therefore ignore the complex spatial variations in pore pres-
ure and consider pressure fields that vary as a function of time but
ot space. With this assumption, we have the system of equations

� tmf
1�

� f
0ka1

2

��
�p*� f1�, �17�

� tmf
2�

� f
0ka2

2

��
�p*� f2�, �18�

nd

� tmf
1�� tmf

2�� tmp�0, �19�

n which equation 19 is a statement of conservation of pore-fluid
ass. The superscript denotes the number of the fracture set to which

he relevant variable refers. We have two different fracture radii, so,
ollowing equation 15, we have two different 	 f values, denoted 	 1

nd 	 2.
We know how to write the fluid mass in a pore as a function of the

pplied stress and pore pressure �Chapman et al., 2002�:

� tmp�
3mp

0

4�
��1�Kp�� tp*�

1�v
1�v

� t� ll	, �20�

Kp�
4�

3� f
. �21�

e can solve this system for the fluid pressure in each element as a
unction of the applied stress.

We first define the notation:

Sij
1 �
��

i
	 1ni
1nj

1

�1� i
	 1��1�Kc
1�

�22�

nd

Sij
2 �
��

i
	 2ni
2nj

2

�1� i
	 2��1�Kc
2�

, �23�

n which n is the component of the unit normal vector to the fracture
urface. We also define

F1�
��
1

1� i
	 1
�24�

nd

F2�
��
1

1� i
	 2
. �25�

ith this arrangement, the fluid pressure in the pores may be given
y

p̃*�Hij
3 �
��̃ ij, �26�
n which

ij
3 �
�

�1
0

� c
1
�ni

1nj
1� �1�Kc

1�Sij
1 �
���

�2
0

� c
2
�ni

2nj
2� �1�Kc

2�Sij
2 �
���

3�p
0

4�

1�v

1�v
� i

�1
0

� c
1
�1�Kc

1�F1�
��
�2

0

� c
2
�1�Kc

2�F2�
��
3�p

0

4�
�1�Kp�

�27�
nd  denotes the volume fraction of the pores or fracture set, as de-
ned by the subscript. Likewise, the pressures in the two fracture
ets are found to be

f̃1�Hij
1 �
��̃ ij �28�

nd

f̃2�Hij
2 �
��̃ ij, �29�

here we define

Hij
1 �
��Sij

1 �
��F1�
�Hij
3 �
� �30�

nd

Hij
2 �
��Sij

2 �
��F2�
�Hij
3 �
� . �31�

Chapman �2003� calculates the frequency-dependent effective
lastic tensor using the formula �Eshelby, 1957�

Cijk��ij
0 �k�

0 �Cijk�
m �ij

0 �k�
0 �


n

�n��ij
inc� ij

0 �� ij
inc�ij

0 �,

�32�

elating the effective elastic tensor to that of the background medium
hrough arbitrary elastic fields at infinity superscript zero, which in-
uce elastic fields with the superscript “inc” �for inclusions� inside
ach void. This approach assumes a dilute concentration of inclu-
ions so that the solution for the deformation of a single crack or pore
n an infinite medium in response to stress and strain applied far from
he crack can be used. The procedure adopted in that study �Chap-

an, 2003� was to choose particular values of the applied stress � 0

nd strain �0 with respect to the fracture orientation to isolate the five
ndependent components of the elastic tensor, one by one. In the cur-
ent case, we must extend this technique to handle the case where the
esulting effective elastic tensor can have a much more complex
orm.

Our frequency-dependent effective elastic tensor will have the
orm

Cijk��
��Cijk�
0 �Cijk�

p �
���1Cijk�
f1 �
���2Cijk�

f2 �
�,

�33�

n which the first correction is the isotropic elastic tensor for the
ackground medium, the second correction is the isotropic elastic
ensor associated with the spherical pores, and the last two correc-
ions correspond to the fractures. The fracture corrections are pro-
ortional to the relevant fracture densities. The tensors for the frac-
ure corrections are transversely isotropic �TI�, but they only take the
amiliar simplified form of the TI tensor when they are referred to a
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D100 Chapman
ystem of coordinates in which one of the axes is parallel to the frac-
ure strike; more complex representations generally are expected in
he material coordinate system.

If no fluid exchange were allowed between the cracks and pores,
hen each crack correction Cijk�

fn �
� in equation 33 would only con-
ain information about the geometry of its respective crack set. When
uid exchange is allowed, the crack corrections contain information
bout the geometry of every crack and pore in the system. This de-
endence arises through the pore-fluid pressure field and is implicit
n equations 28 and 29. In what follows, we derive explicit equations
or Cijk�

fn �
� using equations 28 and 29.
We work to the first order in the porosity and fracture densities,

nd we ignore the elastic interactions between the cracks and pores.
he procedure is to apply the appropriate elastic fields at infinity to

solate the various elastic constants in the local coordinate system for
ach crack, rotating the fields into the material frame to calculate the
ppropriate pressures. We then rotate the appropriately constructed
rack corrections back into the material coordinate system and add
he corrections linearly.

We define orientation angles � m and �m such that the mth crack set
as a normal direction:

n�m� �cos � m sin �m,sin � m sin �m,cos �m� . �34�

n terms of these angles, we define a rotation matrix:

Rij
m�� m,�m���cos � m cos �m �sin � m cos � m sin �m

sin � m cos �m cos � m sin � m sin �m

�sin m 0 cos �m
� .

�35�

e first define the set of applied stress tensors:

� ij
1 ����2� 0 0

0 � 0

0 0 �
�, �36�

� ij
2 ��� 0 0

0 � 0

0 0 ��2�
�, �37�

� ij
3 ��2����� 0 0

0 2����� 0

0 0 2�
�, �38�

nd

� ij
4 ��2����� 0 0

0 2� 0

0 0 2�����
� . �39�

ach of these tensors is used as the stress field at infinity � ij
0 in equa-

ion 32. Their forms are chosen to isolate the various components of
he resulting fracture correction tensors easily.

Corresponding to each of these stress tensors, we define a set of
uid pressures according to

fm
p�Hij

mRia
mRjb

m � ab
p . �40�
hese fluid pressures then are used to define the elastic corrections,
ollowing equation 32:

a11
m ��m

0 � �

� c
m ��� fm

1 �� fm
1 	, �41�

a33
m ��m

0 ���2�

� c
m ���2�� fm

2 �� fm
2 	, �42�

a12
m ��m

0 � �

� c
m �2�� fm

3 �� fm
3 	�

1

2
�a11

m �a33
m �, �43�

a13
m ��m

0 ����

� c
m �2��2�� fm

4 �� fm
4 	�

1

2
�a11

m �a33
m �,

�44�

nd

a55
m �m

0 4��1�v�
��2�v�rm

. �45�

e then define the tensors aijk�
m in standard matrix form as

�
a11

m a12
m a13

m 0 0 0

a12
m a11

m a13
m 0 0 0

a13
m a13

m a33
m 0 0 0

0 0 0 a55
m 0 0

0 0 0 0 a55
m 0

0 0 0 0 0 0

� . �46�

We repeat this analysis for the corrections because of the presence
f the pores. We begin by defining the applied stress tensor:

� ij
5 ��3��2� 0 0

0 3��2� 0

0 0 3��2�
� . �47�

hen we define the pore-fluid pressure:

p*�Hij
3 � ij

5 . �48�

n terms of these parameters, we write the elastic corrections:

d���3��4�

12�
�1�v

1�v
� ��

5 �p*��
1

3
p*	 �49�

nd

e�15�
1�v

7�5v
. �50�
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Multiple mesoscale fractures D101
ased on these calculations, we can define the elastic correction ten-
or for the presence of the pores Cijk�

p �
� in standard matrix form as

�
�d�

4

3
e� �d�

2

3
e� �d�

2

3
e� 0 0 0

�d�
2

3
e� �d�

4

3
e� �d�

2

3
e� 0 0 0

�d�
2

3
e� �d�

2

3
e� �d�

4

3
e� 0 0 0

0 0 0 e 0 0

0 0 0 0 e 0

0 0 0 0 0 e

� . �51�

he overall effective, frequency-dependent elastic tensor is given as
sum of the background tensor, the porosity correction, and the two

racture corrections rotated into the material coordinate system:

ijk��
��Cijk�
0 �Cijk�

p �w�� 

m�1

2

Rip
mRjq

m Rkr
mR�s

m apqrs
m . �52�

NUMERICAL RESULTS

We now perform some numerical calculations to illustrate the pre-
ictions of the model. For the background elastic parameters, we
ake ��51 GPa and ��29 GPa to simulate the properties of cal-
ite. The density is 2.71 g /cm3, and porosity is 8%. The saturating
uid is taken to be water. Following the analysis of Chapman �2003�,
e assume that a fracture radius of 1 m is associated with a 	 f value
f 0.1 s.

We consider the case where we have two fracture sets, each with a
racture density of 0.02 and aspect ratio of 0.0001. When the orienta-
ions and sizes of the two sets are the same, we have a result consis-

6150

6100

6050

6000

5950

5900

5850
1 1.5 2.0 2.5 3.0 3.5 4

Log frequency (Hz)

V
el
oc

ity
(m

/s
)

igure 1. P-wave velocity as a function of frequency for 10-cm frac-
ures, and propagation with polar and azimuthal angles of 30°. Ma-
rix properties are for calcite. Porosity is assumed to be 8%. The rock
s considered to be water saturated.
ent with that of Chapman �2003�, where the fracture density is 0.04.
igure 1 shows the predicted P-wave velocity as a function of fre-
uency for propagation 30° from the vertical and fracture strike di-
ections when the fracture radius is 10 cm. Figure 2 shows the effect
f repeating the calculation with one of the fracture radii set to
mm. One of the characteristic timescales is therefore decreased;

he transition frequency becomes higher, and the dispersion occurs
ver a wider frequency band. The low- and high-frequency limits of
elocity remain unchanged.

We next consider the case where we again have two fracture sets
ith a radius of 10 cm; this time, the fractures are vertical but the

trike direction is 90° for one set and 130° for the other. Figure 3
hows the azimuthal variation of P-wave velocity and attenuation
or a polar angle of 40° in this case. The two cases are correlated,
ith the azimuth of minimum attenuation corresponding to the azi-
uth of highest velocity. This azimuth lies at 110°, midway between

he strike directions of the two fracture sets.
An interesting case is one in which two sets of fractures exist but

nly one set supports fluid communication with the matrix. The non-
ommunicating set may be sealed for many reasons, including min-
ral filling or the imposition of unequal horizontal stress. This case
an be modeled by allowing the timescale constant for the sealed set
o approach infinity, corresponding to a vanishing permeability for
xchange of fluid for those fractures.

We now seal the fracture set striking at 130°. In this case, both
racture sets result in directional variation of velocity, but only the
pen set produces attenuation and dispersion. Figure 4 shows the az-
muthal variation of P-wave velocity and attenuation. This time, the

inimum attenuation direction is 90°, corresponding to the strike di-
ection of the open fracture set, but the direction of maximum veloc-
ty �around 100°� is a weighted average of the two strike directions.
his suggests that azimuthal permeability on a larger scale, which is
xpected to be influenced more greatly by the communicating frac-
ures, could be related more closely to attenuation anisotropy than to
elocity anisotropy.
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igure 2. P-wave velocity as a function of frequency for two aligned
ractures sets of 10-cm and 5-mm radii for propagation with polar
nd azimuthal angles of 30°. The other properties are the same as
igure 1.
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D102 Chapman
DISCUSSION

This study emphasises that anisotropic dispersion and attenuation
ay be expected theoretically in the seismic frequency band for
ave propagation in fractured reservoirs. The frequency depen-
ence of the anisotropy is controlled by two timescale parameters
hat are sensitive to the fracture scale lengths and fluid mobility.

I expect the results of this study to support current attempts to de-
elop the interpretation of frequency-dependent anisotropy for im-
roved fracture and fluid characterization. In particular, it supports
he contention of Liu et al. �2007� that attenuation anisotropy is in-
uenced strongly by the presence of open fractures and that travel-

ime anisotropy is controlled by a combination of open and closed
ractures. Maultzsch et al. �2007b� present an analysis of multiazi-
uth VSP data that appears to show a link between attenuation an-

sotropy and the strike direction of open fractures.
The implicit reliance of the frequency dependence on fluid mobil-

ty raises the possibility that anisotropic attributes may be sensitive
o fluid viscosity.Although some of the predicted effects may be sub-
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igure 3. Azimuthal variation of �a� velocity and �b� attenuation for a
olar angle of 40° for a medium with two identical fracture sets strik-
ng at 90° and 130°. The azimuth of maximum velocity coincides
ith that of minimum attenuation around 110°.
le and hard to detect without sufficient azimuthal coverage, the con-
rast in viscosity between, for example, oil and water can be strong,
nd this can give rise to significant observable effects. This possibili-
y emphasizes the importance of careful rock-physics modeling
hen we deal with reservoirs with complex fracture patterns.

CONCLUSIONS

My technique allows one to model the effect of two fracture sets of
ifferent sizes, orientations, and connectivities on the anisotropic re-
ponse of porous rock. The results generalize those of earlier work
hat was restricted to a single set of fractures. The current technique
s valid to the first order in the number density of the fractures.

In this case, the behavior is influenced by two characteristic fre-
uencies, or timescale parameters, corresponding to the two length
cales of the fractures. This implies that dispersion and attenuation
an occur over a wider frequency band than is possible in the single-
cale case. When the two fracture sets have different connectivities,
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he attenuation anisotropy and velocity anisotropy can be very dif-
erent. Thus, it may be possible to use such measurements to distin-
uish between open and closed fractures.
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