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Source-receiver wave field interferometry
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School of GeoSciences, The University of Edinburgh, Grant Institute, Kings Buildings, Edinburgh EH9 3JW, United Kingdom

�Received 30 June 2009; published 13 April 2010�

Correlation or convolution of recordings of diffuse fields at a pair of locations have been shown to result in
estimates of the Green’s function between the two locations. Variously referred to as wave field or seismic
interferometry in different fields of research, Green’s functions can thus be constructed between either pairs of
receivers or pairs of energy sources. Proofs of these results rely on representation theorems. We show how to
derive three acoustic and elastic representation theorems that unify existing correlational and convolutional
approaches. We thus derive three forms of interferometry that provide Green’s functions on source-to-receiver
paths, using only energy that has propagated from surrounding sources or to surrounding receivers. The three
forms correspond to three possible canonical geometries. We thus allow interferometric theory and methods to
be applied to commonly used source-receiver configurations.

DOI: 10.1103/PhysRevE.81.046601 PACS number�s�: 43.20.�g

I. INTRODUCTION

The field of wave field interferometry has grown dramati-
cally in recent years. Developed most recently within the
physics, acoustics, and geophysics communities �in the latter
it is usually referred to as seismic interferometry�, it has lead
to schemas for Green’s-function retrieval using background
noise sources �1–5� and active or impulsive sources �6–8�,
for computational modeling of synthetic waveforms �9–11�,
and for noise removal �12–17�.

The above interferometric advances were all made using a
form of interferometry that uses cross-correlation, convolu-
tion, or deconvolution to convert recordings at a pair of re-
ceivers into derived data that would have been recorded had
one of the two receivers been a source. We refer to this
method as inter-receiver interferometry and think of the de-
rived data as a wave field from a “virtual” �imagined� source
at the location of one of the receivers and recorded by the
other. By applying reciprocity to the results of van Manen et
al. �9,10�, Curtis et al. �12� also showed that Green’s func-
tions between pairs of source locations can be obtained by
inter-source interferometry. Thus one constructs data as
though one of a pair of sources had in fact been a receiver
that recorded the signal from the other source. That study
obtained seismograms �recordings of wave energy� from one
earthquake energy source recorded on a virtual receiver
�seismometer� constructed from, and at the location of, an-
other earthquake source deep in the earth’s subsurface.

Lobkis and Weaver �2� used modal theory to explain how
Green’s function are retrieved for diffuse noise fields. Wap-
enaar �18�, van Manen et al. �9,10�, and Wapenaar and
Fokemma �19� used correlational forms of reciprocity theo-
rems to show how inter-receiver Green’s functions could be
constructed by cross-correlating recorded fields. Slob et al.
�7� and Wapenaar �20� showed that convolution could be
applied to similar effect.

This paper presents a method to construct unified repre-
sentation theorems that combine the correlational and convo-

lutional forms used previously. The theorems are more gen-
eral than their predecessors, allowing us to derive a third
form of interferometry: source-receiver interferometry.
Whereas the above studies convert receivers to virtual
sources or sources to virtual receivers, the method converts
real sources to virtual sources or real receivers to virtual
receivers. Equivalently, it can be thought of as converting a
real-source real-receiver pair to a virtual-receiver virtual-
source pair, respectively. This is important as it allows vari-
ous interferometric theories and methods to be applied to
�more conventional� source-receiver configurations, which
has not previously been possible. Applications include syn-
thesizing data from new source-receiver paths in an existing
experiment or survey, assessing the character of passive
background noise fields, constructing an interferometric
theory of source-receiver scattering, or facilitating data pro-
cessing algorithms.

In this paper we derive both acoustic and elastic theory.
Extension to a variety of other energy-propagation regimes
including electromagnetic, electrokinetic, and diffusive
propagation in attenuative, poroelastic or piezoelastic media
seems relatively straightforward using a unified approach
similar to Wapenaar et al. �21� and Snieder et al. �22�.

II. UNIFIED REPRESENTATION THEOREM

We derive acoustic theory in the main text. An elastic
version of the derivation below is given in Appendix A. Our
starting points are the acoustic reciprocity theorems of both
the convolution and correlation types. Each of these relates
wave fields in two different states �e.g., due to two different
energy source locations� and are given by �9,18,19�

�
V

�pAqB − qApB�dV = �
S

�pAvi,B − vi,ApB�nidS �1�

and

�
V�

�pA
�qC + qA

� pC�dV� = �
S�

�pA
�vi�,C + vi�,A

� pC�ni�dS�,

�2�*Present address: Schlumberger Cambridge Research, High
Cross, Cambridge CB3 0EL, United Kingdom.
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respectively, where pA is the acoustic pressure in state A, qA
is a source distribution in state A in terms of volume
injection-rate density, vi,A is the ith component of particle
velocity in state A, and � denotes complex conjugation. We
have assumed there are no sources of the unidirectional
point-force type �which would require extra volume integral
terms�, and these �and all following� expressions are formu-
lated in the frequency domain and frequency dependence is
implicit throughout. Surface S bounding volume V need not
be the same as surface S� bounding volume V�.

By replacing one of the states A, B, or C by a Green’s
state we can derive the respective convolution-type and
correlation-type representation theorems. We are free to
choose any Green’s state for either reciprocity theorem, and
since Eqs. �1� and �2� are independent the Green’s states in
each of these equations need not be the same. We have,
however, chosen to use one common state �A� in both equa-
tions to simplify derivations below.

We choose the following for state B in the convolution-
type reciprocity theorem:

qB�x� = ��x − x2�, pB�x� = G�x,x2� ,

vi,B�x� =
− 1

j��
�iG�x,x2� , �3�

and the following for state C in the correlation-type reciproc-
ity theorem:

qC�x�� = ��x� − x�, pC�x�� = G�x�,x�,

vi�,C�x�� =
− 1

j��
�i�G�x�,x� . �4�

Here G�x ,y� is the Green’s function representing the pres-
sure at x due to a volume injection-rate density source at

location y, � is the angular frequency, � is the density at the
source location �density is assumed to be constant from here
on�, the partial derivative �i is taken with respect to the ith
coordinate at the source location, and j=�−1. Using vi�x�
= �−1 / j����ip�x� and choosing the states in Eqs. �3� and �4�
allows Eqs. �1� and �2� to be rewritten as representation theo-
rems:

p�x2� = �
V

G�x,x2�q�x�dV

+
− 1

j��
�

S

�p�x�ni�iG�x,x2� − ni�ip�x�G�x,x2��dS

�5�

and

p��x� = − �
V�

G�x�,x�q��x��dV�

+
− 1

j��
�

S�
�p��x��ni��i�G�x�,x�

− ni��i�p
��x��G�x�,x��dS�, �6�

where the prime denotes that the integrals in Eq. �6� are over
different domains compared to those in Eq. �5�, and subscript
A has been dropped from p and q since states B and C are
now fully defined.

To combine the two Equations we substitute Eq. �6� into
Eq. �5� and use source-receiver reciprocity �G�x ,x2�
=G�x2 ,x�� to obtain

p�x2� = �
V

G�x,x2�q�x�dV −
− 1

j��
�

S
	
�

V�
G��x�,x�q�x��dV��ni�iG�x2,x� − ni�i
�

V�
G��x�,x�q�x��dV��G�x2,x�

+ 
 − 1

j��
�

S�
�p�x��ni��i�G

��x�,x� − ni��i�p�x��G��x�,x��dS��ni�iG�x2,x�

− ni�i
 − 1

j��
�

S�
�p�x��ni��i�G

��x�,x� − ni��i�p�x��G��x�,x��dS��G�x2,x��dS . �7�

This is a representation theorem that relates the pressure at x2
due to a source distribution defined by q�x� to the pressure
on the boundary S using Green’s functions between points x�
on the boundary S�, points x on the boundary S, and point x2.

III. SOURCE-RECEIVER INTERFEROMETRY

We can show that this representation theorem is more
general than existing theorems by deriving a form of inter-

ferometric integral that describes for the first time the con-
struction of a real-source to real-receiver wave field. We now
define the remaining source term to be q�x�=��x−x1� and
hence the pressure to be p�x�=G�x ,x1�, the location x2 to be
inside both boundaries S and S�, and the location x1 to be
outside the boundary S and inside the boundary S� �Fig.
1�a��. Since x1 is outside of S, the integral over volume V in
Eq. �7� is exactly zero, and integrals over volume V� result in
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Green’s functions from source location x1. The equation then
becomes

G�x2,x1� = −
− 1

j��
�

S

�G��x1,x�ni�iG�x2,x�

− ni�iG
��x1,x�G�x2,x��dS

−
− 1

j��
�

S
	
 − 1

j��
�

S�
�G�x�,x1�ni��i�G

��x�,x�

− ni��i�G�x�,x1�G��x�,x��dS��ni�iG�x2,x�

− ni�i
 − 1

j��
�

S�
�G�x�,x1�ni��i�G

��x�,x�

− ni��i�G�x�,x1�G��x�,x��dS��G�x2,x��dS .

�8�

The first integral on the right-hand side can be recognized as
a cross-correlational form of seismic interferometry. Since x1
is outside and x2 is inside of boundary S, this integral gives
the time reverse of the Green’s function between x1 and x2
�compare Eqs. �19� and �20� in Slob et al. �7��. Since time
reversal is equivalent to complex conjugation in the fre-
quency domain, we can therefore rewrite Eq. �8� as

G�x2,x1� + G��x2,x1� =
1

j��
�

S
	
 − 1

j��
�

S�
�G�x�,x1�ni��i�G

��x�,x� − ni��i�G�x�,x1�G��x�,x��dS��ni�iG�x2,x�

− ni�i
 − 1

j��
�

S�
�G�x�,x1�ni��i�G

��x�,x� − ni��i�G�x�,x1�G��x�,x��dS��G�x2,x��dS . �9�

This is a formula that describes the recovery of a homoge-
neous Green’s function �the Green’s function plus or minus
its time reverse� between a source at x1 and a receiver at x2
using only Green’s functions from x1 to a surrounding
boundary S� of receivers and Green’s functions from a
boundary S of sources that surrounds location x2. The inte-
grals in square brackets describe a first step where the bound-
ary S� is used to determine the Green’s functions between the
source at x1 and each source on the boundary S; hence this
first step turns the source x1 into a virtual receiver. In a
second step, the boundary S is used to determine the Green’s
function between the receiver at x2 and the newly generated
virtual receiver x1. Thus this interferometric integral uses
both surrounding sources and receivers to reconstruct source-
receiver wave fields �Fig. 1�a��. By applying energy sources
at different locations �or simply by applying source-receiver
reciprocity to Eq. �9�� it is possible to construct equivalent
interferometric formulae with sources and receivers ex-
changed in a variety of configurations distributed between
surfaces S� and S and locations x1 and x2 in Fig. 1�a�.

It may seem contradictory that to obtain Eq. �7� we as-
sume the medium to be source-free outside of S, then to
obtain Eq. �8� we define the source field q to be nonzero at
x1. However, in practice this can be resolved by ensuring that
the emission of energy from the source at x1 is separated in
time from emissions from sources on surface S.

To derive a more applicable form of the integral we might
assume that the Sommerfield radiation conditions �23� hold
on one or both bounding surfaces �these conditions are
�jkG=ni�iG with − indicating outgoing waves and + indi-
cating incoming waves at the boundary; these conditions
hold if waves travel perpendicularly to the boundaries�. As-
suming these conditions are approximately met on both
boundaries reduces the integral to

G�x2,x1� + G��x2,x1�



4k2

����2�
S
�

S�
G�x�,x1�G��x�,x�G�x2,x�dS�dS .

�10�

This result is the more precise equivalent of the particular
case presented by Curtis �24� in which the Sommerfield con-
ditions were assumed throughout the derivation. Hence, pro-
vided the Sommerfield radiation conditions are met, source-
to-receiver interferometry can be applied as a double integral
over the frequency domain product of three Green’s func-
tions.

The Sommerfield conditions require that the energy leaves
the surfaces approximately perpendicularly, as would occur,
for example, if each integration surface was a circle with
large radius. This has previously been shown to provide rea-

S

S’

x2

x1

S’

x2

x1

S x2

x1

S’
S

(c)(b)(a)

FIG. 1. �Color online� Canonical geometries. Triangles represent
receivers, stars represent sources. S and S� are closed lines in two
dimensions, surfaces in three dimensions.
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sonable results in practical situations using both correlational
and convolutional forms of interferometry. With two integra-
tion surfaces, one located inside the other, it may be more
difficult for these conditions to be approximated in practice,
and this should be considered whenever applying interferom-
etry in the form presented by Eq. �10� rather than Eq. �9�.

IV. NUMERICAL EXAMPLE

We now illustrate the source-receiver approach using a
simple two-dimensional numerical example. We use a deter-
ministic variation in Foldy’s method �10,25� to compute syn-
thetic acoustic wave fields in a multiply-scattering model.
This method uses the optical theorem to correctly constrain
the values of the scattering amplitudes such that energy is
conserved. In this example we use a constant wave propaga-
tion velocity of 750 m/s, a unit density, and scatterers of
equal strength. Computations are carried out in the frequency
domain, but for visualization the results are plotted in the
time domain. These time series are frequency-band limited
from 0 to 60 Hz using a Ricker wavelet with a center fre-
quency of 30 Hz. The geometry for the example is shown in
Fig. 2. Stars indicate sources, triangles indicate receivers,
and dots indicate scatterers. Note that the solid stars and
triangles indicate boundary sources and receivers and the
empty star and triangle indicate the source and receiver be-
tween which we wish to calculate the wave field. Only every
third boundary position is plotted for clarity. Compare the
source and receiver geometry in Fig. 2 with that in Fig. 1�a�.

We now illustrate the application of Eq. �9� to calculate
the source-receiver wave field, G�x2 ,x1�+G��x2 ,x1�. Rather
than showing only the final result, we first show the interme-
diate step of solving the inner integral in square brackets in
Eq. �9� for one boundary source �at x� and the source at x1
�when we describe these as “inner” and “outer” integrals we
are referring to their position in Eq. �9� rather than their
physical position in Fig. 2�. In Fig. 3�a� we show the inner
integrand for the boundary source at �−120, 0� m. This inte-

grand is summed over boundary receiver positions to give
the solution of the inner integral for one source pair �x ,x1�
�Fig. 3�b��. This represents the result of the virtual-receiver
method �12�, where we effectively turn one of the sources at
either x or x1 into a virtual receiver �recording both positive-
and negative-time responses�. This result is repeated for ev-
ery source boundary position x. Finally we use the results of
the inner integral to solve Eq. �9� for the source-receiver
wave field. In Fig. 4�a� we show the integrand of the outer
integral �after evaluation of the inner integral� and in Fig.
4�b� we show the result of summing over all boundary
sources; this is the source-receiver wave field G�x2 ,x1�
+G��x2 ,x1� in the time domain. Note that there is both a
forward-time part and a reverse-time part �since the complex
conjugation in the frequency domain corresponds to time
reversal in the time domain�. For reference the directly mod-
eled �noninterferometric� result found using Foldy’s method
is shown by dots superimposed on Fig. 4�b�. Apart from

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

x (m)

y
(m

)

FIG. 2. Geometry used for the numerical example. Stars indicate
sources, triangles indicate receivers, and dots indicate scatterers.
Solid stars and triangles indicate boundary sources at locations x,
and boundary receivers at locations x�, respectively, and the open
star and triangle indicate the source at x1 and receiver at x2, respec-
tively. Only every third boundary position is plotted for clarity.
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FIG. 3. �a� The inner integrand in Eq. �9� plotted for a single
source pair �x ,x1�. The boundary receiver number corresponds to
the receivers at x�, on the boundary S�. �b� Sum of �a� over bound-
ary receiver number. This represents the solution of the inner inte-
gral for one source pair x-x1.
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FIG. 4. �a� The outer integrand in Eq. �9� after the solution of
the inner integral. The boundary source number corresponds to the
sources, x on the boundary S. �b� Sum of �a� over boundary source
number. This represents the solution of Eq. �9� for the source-
receiver pair �x1 ,x2�. Dots overlying the signal represent the
exactly-computed solution.
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small numerical errors in the implementation these two re-
sults are identical.

V. DISCUSSION

Equation �9� is similar in form to the imaging condition
presented by Oristaglio �26� who uses the Born approxima-
tion to derive a formula that relates direct and scattered
waves to the scattering potential using a double integration
like that in Eq. �9�. He assumed that both surfaces of sources
and receivers lay on a single boundary that surrounded both
locations x1 and x2—requiring two correlational integrals in
his derivation rather than one correlational and one convolu-
tional as above. While his results differ, his approach sug-
gests two further ways in which the representation theorems
and corresponding interferometric integrals can be derived
using a similar method to above.

A second representation theorem and interferometric for-
mula can be obtained using the geometry shown in Fig. 1�b�.
In this case both source location x1 and receiver location x2
lie inside surface S of sources and surface S is itself sur-
rounded by surface S� of receivers. Two correlational reci-
procity theorems must therefore be used for states A, B, and
C in Eqs. �1� and �2� �i.e., Eq. �1� is replaced by a correla-
tional reciprocity relation�. Yet a third set of results can be
derived for the geometry in Fig. 1�c� by starting with two
convolutional reciprocity relations in place of Eqs. �3� and
�4� and following similar steps in the derivation. The result-
ing representation theorems and interferometric relations for
the two cases in Figs. 1�b� and 1�c� are given in Appendix B.

These are not the only geometrical variations that are pos-
sible. For example, S could surround only the receiver at x2
while S� surrounds only the source at x1, again resulting in a
combination of two convolutional reciprocity relations. Nev-
ertheless, the geometries shown in Fig. 1 are canonical in the
sense that they span the three possible types of combinations:
two correlational relations, two convolutional relations, and
one of each.

The relation in Eq. �10� synthesizes the Green’s function
on the x1 to x2 source-receiver path using only Green’s func-
tions from and to surrounding sources and receivers, respec-
tively. It is approximate because only monopolar �e.g., ex-
plosive� sources are included. The exact relationship in Eq.
�9� also requires dipolar �strain rather than displacement�
sources which are often not available in practical experi-
ments. Also, the Green’s-function estimates obtained are dif-
fraction limited in the sense defined by de Rosny and Fink
�27� ; this only affects the accuracy of results if locations x1
and x2 are less than a wavelength apart.

In practical experiments it is not often the case that one
can acquire data using sources and receivers located in
closed surfaces such as S and S� in Fig. 1�a�. Snieder �28�
showed that for approximately homogeneous background
media, the integrand of correlational interferometric integrals
such as the integral over receivers on S in Eqs. �9� and �10�
only integrates constructively over parts of S spanned by
open hyperbolic shapes such as those depicted in Fig. 5�a�
�see also �17,29,30��. A similar analysis for convolutional
interferometry shows that the integral over S� is only con-

structive over parts of S� spanned by the central elliptical
region in Fig. 5�b�. Hence, provided the medium is not too
heterogeneous, in practice we can limit the source and re-
ceiver geometry to that shown in Fig. 5�c�. For this geom-
etry, Fig. 6 shows the various sets of Green’s functions used
in Eq. �10� to create an approximation to the Green’s func-
tion between x1 and x2 �taking the mirror image of boundary
S� and all ray paths in Fig. 6 about surface S accounts for the
other section of S� shown in Fig. 5�c��. It is of course also
possible to use source-receiver reciprocity to reverse the role
of sources and receivers in all of the above. In that case, all
sources in Figs. 1, 5, and 6 should be swapped for receivers
and vice versa.

There are several applications for which it might be useful
to turn a real source into a virtual source. First, notice that
the source-receiver record between x1 and x2 is obtained us-
ing only the other source-receiver Green’s functions illus-
trated in Fig. 6. This means that if the latter records are
available, the source-receiver record between x1 and x2 can
be synthesized without having to measure it directly. This
might be useful, for example, if the receiver at x2 had not
been activated when the source at x1 was fired but had been
activated by the time shots on surface S were fired. Thus,
new source-receiver paths can be synthesized and added to
existing surveys or experiments without the need to acquire
further data.

Sx2

x1

S’

Sx2

x1

S’

S’

S
x2

x1

S’

(a) (b) (c)

FIG. 5. �Color online� Regions of stationary phase within the
interferometric integrals corresponding to the geometry shown in
Fig. 1�a�. Key as in Fig. 1. Shaded hyperbolae show stationary
phase regions for correlational interferometry, while ellipses show
the same for convolutional interferometry.

x1

x’

x2

S’ S

x

G(x’,x1)

G(x’,x)
G(x2,x)

FIG. 6. �Color online� Graphical representation of the three
measured sets of Green’s functions used in Eq. �10�. Symbol key as
in Fig. 1.
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It is possible that all of the above theory could be used
with only passive noise energy sources. Wapenaar and
Fokkema �18,19� showed that Green’s functions between any
two receivers could be estimated using extended recordings
of such �uncorrelated� noise by simply carrying out cross-
correlations similar to the inner surface integral in Eq. �9�. If,
for example, we place sources on the outer boundary S� in
Fig. 1�b� and put receivers at all of the other interior loca-
tions marked in that figure, all of the Green’s functions used
in Eq. �B2� in Appendix B �the equivalent form to Eq. �9�,
but for the geometry in Fig. 1�b�� can be estimated and hence
so can the �inter-receiver� Green’s functions between loca-
tions x1 and x2. However, in that case the inter-receiver
Green’s function between x1 and x2 can also be estimated
directly by using inter-receiver interferometry. Hence, there
are now two possible ways to estimate this latter Green’s
function interferometrically.

Notice that it is therefore similarly also possible that dif-
ferent sets of the various Green’s functions involved in Eq.
�9� can be obtained using different types of energy sources.
For example, the Green’s functions between the receiver at
point x2 and receivers on boundary S� in Fig. 1�a� could be
estimated using �active or� passive noise sources �spanning
some third, external surface surrounding surface S� as in Fig.
7. Equation �9� or Eq. �10� could then be used to combine
these with active source data that provided recordings of
Green’s functions between x1 and S� and between points on
S and S� to obtain finally the Green’s function between x1
and x2. Thus we show for the first time how passive and
active wave field data can be combined effectively within a
single interferometric application.

Similarly, note that if the Green’s function between x1 and
x2 had been recorded using an active source at x1, in addition
to all other Green’s functions shown in Fig. 6, then the new
interferometric relations identify redundancy in the acquired
data. Such redundancy is often useful, for example, to assess
the accuracy of data recordings by comparing measured and
synthesized wave fields between x1 and x2.

There are also situations in which recordings from both an
active and a virtual source enable subsequent methods that
are otherwise impossible. An example is the surface wave
removal method of Curtis et al. �12�, Dong et al. �13�, and

Halliday et al. �14�. These methods make use of the fact that
interferometric estimates of Green’s functions between two
points, synthesized using energy from surrounding sources
on a free surface, tend to be dominated by surface waves. If
a real source-receiver record also exists between the same
two points, the interferometric estimate can be adaptively
subtracted from the real record to leave a data set with sur-
face waves removed. This is desirable for example when
using reflection seismology to image the earth’s subsurface
since surface waves recorded at typical industrial frequencies
only contain information about the shallow subsurface,
whereas targets of interest are often relatively deep. In such
cases the surface wave energy usually masks target reflec-
tions, hence its removal is advantageous. This method clearly
requires both virtual and real sources from the same point
�x1� recorded at the same receiver �at x2�. To obtain such
records using either inter-source or inter-receiver interferom-
etry would require the colocation of receivers at every source
point, which is not economical in seismic surveys. Using
source-receiver interferometry, however, the virtual-source
record can be synthesized from the real source using records
that might usefully be recorded in a land seismic survey any-
way. The same may also apply in a marine setting where
free-surface multiples are to be removed from active source
data.

Another application is to create a method to characterize
the effectiveness of seismic interferometry. For a particular
source and receiver geometry on surfaces S and S� we might
wish to assess the extent to which interferometry could be
used to synthesize new records with some existing, theoreti-
cally imperfect geometry of surrounding energy sources. If a
real source and receiver were placed at x1 and x2, respec-
tively, the recorded trace from the real source could be com-
pared to that constructed by interferometry using Eqs. �9�
and �10�. Similarly to above, the only previously existing
way to make a direct comparison would be to colocate a
receiver with the source and use inter-receiver interferometry
to construct the comparison record; however, such compari-
sons would be affected by differences between the radiation
pattern of the source and the spatiotemporal sensitivity of the
receiver. Using the new method we remove any such effects
since the same source is used for both compared records.

From a theoretical point of view, the theory presented
here also provides a sound basis for schemes to correct bi-
ases in wave field interferometry such as those observed us-
ing the above method of comparison. For example, Curtis
and Halliday �31� present a data driven method to correct
such biases using a locally dense array of measurements
around the location x2. The interferometrically constructed
Green’s functions between x2 and each point in the local
array are compared to a desired �e.g., isotropic� source radia-
tion pattern, and correction factors thus derived are used to
correct the Green’s-function estimate between x2 and x1. The
geometries used in that paper are essentially similar to those
in Fig. 1�a� although some of the sources and receivers are
exchanged �surface S� is spanned by sources, and all loca-
tions interior to S� are spanned by receivers�. Hence, initially
Curtis and Halliday correct Green’s functions between x2 and
each point on a local surface S around x2 to some pre-
defined, desired form. However, in that paper the algorithm

Sx2

x1

S’

FIG. 7. �Color online� A geometry for which interferometry us-
ing both active �stars� and passive �flashes� sources is possible.
Other symbols as in Fig. 1.
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used to apply the resulting correction factors was established
heuristically, whereas Eq. �10� herein provides an exact basis
with which to obtain the Green’s function between x2 and x1
given corrected Green’s functions between x2 and each point
on S.

Finally, the theoretical developments presented here have
also been extended to derive an interferometric theory of
scattering on source-receiver paths �Halliday and Curtis �32��
by using the scattering reciprocity theorems of Vasconcelos
et al. �33�. This interferometric scattering theory is shown to
be a generalization of the theory of Oristaglio �26� who de-
rives an inverse Born-scattering formula based on the solu-
tion of two integrals similar to those in Eq. �9�. Halliday and
Curtis �32� showed that the perturbed form of source-
receiver interferometry generalizes Oristaglio’s theory to
nonlinear, multiple-scattering regimes.

The above applications may be representative of current
practice. However, wave field interferometry is a field that is
developing rapidly. Hence, it is likely that the theorems and
relations derived herein will find application in many areas
currently unforeseen.

VI. CONCLUSIONS

We have derived three representation theorems, describ-
ing the wave field at one point due to sources and receivers
on two surrounding boundary surfaces. We use these theo-
rems to derive three interferometric relations that describe
the construction of a wave field between a source and a re-
ceiver using only Green’s functions from and to surrounding
boundaries of sources and receivers. Finally, we have shown
how the method could be applied in practice when either the
geometry or types of sources and receivers may be more
limited than is required by the exact theory.

APPENDIX A: AN EXAMPLE ELASTIC DERIVATION

We now derive the elastic equivalent of the theorem de-
scribed in the main text. We begin with the representation
theorems of both the convolution type and the correlation
type �10,34�:

ui�x2� = �
V

Gin�x2,x�fn�x�dV

+ �
S

�Gin�x2,x�njcnjkl�kul�x�

− njcnjkl�kGil�x2,x�un�x��dS , �A1�

ui
��x� = �

V�
Gin��x,x��fn�

� �x��dV�

+ �
S�

�Gin��x,x��nj�cn�j�k�l��k�ul�
� �x��

− nj�cn�j�k�l��k�Gil��x,x��un�
� �x���dS�, �A2�

where ui�x2� is the ith component of particle displacement at
x2, Gin�x2 ,x� is the Green’s function representing the ith
component of particle displacement at x2 due to a unidirec-
tional point force in the n direction at x, fn�x� is a force in
the n direction at x, nj is the jth component of the normal
vector on the boundary S, �k denotes a spatial derivative in
the k direction, and cnjkl is the stress tensor. Primed and
unprimed quantities indicate that these relate to the primed
and unprimed boundaries, respectively.

To combine the two equations we substitute Eq. �A2� into
Eq. �A1�:

ui�x2� = �
V

Gin�x2,x�fn�x�dV + �
S
	Gin�x2,x�njcnjkl�k
�

V�
Gln�

� �x,x��fn��x��dV�� − njcnjkl�kGil�x2,x�

�
�
V�

Gnn�
� �x,x��fn��x��dV���dS + �

S
	Gin�x2,x�njcnjkl�k
�

S�
�Gln�

� �x,x��nj�cn�j�k�l��k�ul��x��

− nj�cn�j�k�l��k�Gll�
� �x,x��un��x���dS�� − njcnjkl�kGil�x2,x�
�

S�
�Gnn�

� �x,x��nj�cn�j�k�l��k�ul��x��

− nj�cn�j�k�l��k�Gnl�
� �x,x��un��x���dS���dS . �A3�

This representation theorem relates the particle displacement at x2 to the particle displacement on the boundary S� using
Green’s functions between the boundary S�, the boundary S, and xB.

We can show that this elastodynamic representation theorem is more general than existing theorems by deriving a form of
interferometric integral that describes the construction of a real-source to real-receiver wave field in elastic media. We now
define the remaining source term to be f i�x�=�im��x−x1� and hence the particle displacement to be ui�x�=Gim�x ,x1�, the
location x2 to be inside both boundaries S and S�, and the location x1 to be outside the boundary S and inside the boundary S�
�Fig. 1�a��. Since x1 is outside of S, the integral over volume V in Eq. �A3� is exactly zero, and integrals over volume V� result
in Green’s functions from source location x1. The equation then becomes
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Gim�x2,x1� = �
S

�Gin�x2,x�njcnjkl�kGlm
� �x,x1� − njcnjkl�kGil�x2,x�Gnm

� �x,x1��dS

+ �
S
	Gin�x2,x�njcnjkl�k
�

S�
�Gln�

� �x,x��nj�cn�j�k�l��k�Gl�m�x�,x1� − nj�cn�j�k�l��k�Gll�
� �x,x��Gn�m�x�,x1��dS��

− njcnjkl�kGil�x2,x�
�
S�

�Gnn�
� �x,x��nj�cn�j�k�l��k�Gl�m�x�,x1� − nj�cn�j�k�l��k�Gnl�

� �x,x��Gn�m�x�,x1��dS���dS .

�A4�

As in the main text, the first integral on the right-hand side can be recognized as a cross-correlational form of seismic
interferometry. Since x1 is outside and x2 is inside of boundary S, this integral gives the time-reverse of the Green’s function
between x1 and x2. We replace this integral by the appropriate Green’s function, move it to the left-hand side, and use
source-receiver reciprocity such that Gln�

� �x ,x��=Gn�l
� �x� ,x�, allowing Eq. �A4� to be rewritten as

Gim�x2,x1� − Gim
� �x2,x1�

= �
S
	Gin�x2,x�njcnjkl�k
�

S�
�Gn�l

� �x�,x�nj�cn�j�k�l��k�Gl�m�x�,x1� − nj�cn�j�k�l��k�Gl�l
� �x�,x�Gn�m�x�,x1��dS��

− njcnjkl�kGil�x2,x�
�
S�

�Gn�n
� �x�,x�nj�cn�j�k�l��k�Gl�m�x�,x1� − nj�cn�j�k�l��k�Gl�n

� �x�,x�Gn�m�x�,x1��dS���dS .

�A5�

This is an integral that describes the recovery of a homogeneous Green’s function between a source at x1 and a receiver at x2
in elastic media. This is the elastic equivalent of Eq. �9� of the main text. While in the main text we have considered
approximations allowing for simplified forms of the acoustic integrals, we have not shown the same here. However, such
simplification is possible, albeit in a more complicated manner than for the acoustic case, requiring separation of P- and
S-wave source types. For more details on such approximations see Wapenaar and Fokkema �19�. In Appendix B we show how
formulas may be derived for different source and receiver configurations, and by extension of the elastic derivation presented
here, it is also possible to derive similar relationships for the elastic case.

APPENDIX B: REPRESENTATION THEOREMS AND INTERFEROMETRIC INTEGRALS

A second representation theorem and interferometric formula related to those in Oristaglio �26� but for nonscattered fields
can be obtained using the geometry shown in Fig. 1�b�. In this case both source location x1 and receiver location x2 lie inside
surface S of sources, and surface S is itself surrounded by surface S� of receivers. In this case, two correlational reciprocity
theorems are used for states A, B, and C in Eqs. �1� and �2� �i.e., Eq. �1� is replaced by a reciprocity relation�. The same
boundary conditions are used as in Eqs. �3� and �4� resulting in two representation theorems of correlation type �Eq. �3� is
replaced by another correlational form�. Following a similar substitution to above �Eq. �4� into the replaced Eq. �3��, another
representation theorem is obtained

p��x2� = − �
V

G�x,x2�q��x�dV +
− 1

j��
�

S
	− 
�

V�
G�x�,x�q��x��dV��ni�iG�x2,x� + ni�i
�

V�
G�x�,x�q��x��dV��G�x2,x�

+ 
 − 1

j��
�

S�
�p��x��ni��i�G�x�,x� − ni��i�p

��x��G�x�,x��dS��ni�iG�x2,x�

− ni�i
 − 1

j��
�

S�
�p��x��ni��i�G�x�,x� − ni��i�p

��x��G�x�,x��dS��G�x2,x��dS . �B1�

Similarly to the previous derivation, to obtain an interferometric relation we define the remaining source term to be q�x�
=��x−x1� and hence the pressure to be p�x�=G�x ,x1�. The second line of Eq. �B1� is then a convolutional interferometric
integral with both x1 and x2 within the boundary; in this configuration the convolutional integral is exactly zero �19�. Hence,
we obtain
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G�x2,x1� + G��x2,x1� =
− 1

j��
�

S
	
 − 1

j��
�

S�
�G��x�,x1�ni��i�G�x�,x� − ni��i�G

��x�,x1�G�x�,x��dS��ni�iG�x2,x�

− ni�i
 − 1

j��
�

S�
�G��x�,x1�ni��i�G�x�,x� − ni��i�G

��x�,x1�G�x�,x��dS��G�x2,x��dS . �B2�

Equation �B2� gives a second acoustic interferometric relation that allows source-to-receiver Green’s functions to be con-
structed using only Green’s functions from surrounding sources and to surrounding receivers, in the geometry shown in Fig.
1�b�.

A third such result can be derived for the geometry in Fig. 1�c� by starting with two convolutional reciprocity relations in
place of Eqs. �3� and �4�, and following similar steps in the derivation. The resulting representation theorem is

p�x2� = �
V

G�x,x2�q�x�dV +
− 1

j��
�

S
	
�

V�
G�x�,x�q�x��dV��ni�iG�x2,x� − ni�i
�

V�
G�x�,x�q�x��dV��G�x2,x�

+ 
 − 1

j��
�

S�
�p�x��ni��i�G�x�,x� − ni��i�p�x��G�x�,x��dS��ni�iG�x2,x�

− ni�i
 − 1

j��
�

S�
�p�x��ni��i�G�x�,x� − ni��i�p�x��G�x�,x��dS��G�x2,x��dS . �B3�

In reaching Eq. �9� of the main text we assumed that the regions outside of the boundary for the convolution integral were
source free, and this resulted in volume terms being equal to zero. For the case considered in Eq. �B3� we use a similar
assumption, resulting in the terms q�x� and q�x�� being equal to zero and the volume integral disappearing. It then follows that
to obtain the source-receiver interferometric relation we define the pressure to be p�x�=G�x ,x1� giving

G�x2,x1� =
− 1

j��
�

S
	
 − 1

j��
�

S�
�G�x�,x1�ni��i�G�x�,x� − ni��i�G�x�,x1�G�x�,x��dS��ni�iG�x2,x�

− ni�i
 − 1

j��
�

S�
�G�x�,x1�ni��i�G�x�,x� − ni��i�G�x�,x1�G�x�,x��dS��G�x2,x��dS . �B4�

Equation �B4� gives a third acoustic interferometric relation that allows source-to-receiver Green’s functions to be constructed
using only Green’s functions from boundary sources to surrounding receivers, in the geometry shown in Fig. 1�c�.
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