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Directional balancing for seismic and general wavefield interferometry

Andrew Curtis' and David Halliday®

ABSTRACT

In passive seismic interferometry using naturally occur-
ring, heterogeneous noise sources and in active-source seis-
mic interferometry where sources can usually only be distrib-
uted densely on the exterior of solid bodies, bias can be intro-
duced in Green’s function estimates when amplitudes of en-
ergy have directional variations. We have developed an
algorithm to remove bias in Green’s function estimates con-
structed using seismic interferometry when amplitudes of en-
ergy used have uncontrollable directional variations. The
new algorithm consists of two parts: (1) a method to measure
and adjust the amplitudes of physical, incoming energy using
an array of receivers and (2) a method to predict and remove
nonphysical energy that remains (and can be accentuated) in
interferometrically derived Green’s functions after applying
the method in step 1. To accomplish step 2, we have created
two data-driven methods to predict the nonphysical energy
using direct computation or move-out-based methods, and a
way to suppress such energy using (in this case) helical least-
squares filters. Two-dimensional acoustic scattering exam-
ples confirm the algorithm’s effectiveness.

INTRODUCTION

Seismic interferometry has become an important and popular ap-
proach to synthesize and analyze wavefields. Energy recorded at two
receivers from an array of transient or noise sources spanning a
boundary surface surrounding the receiver pair can be converted by
simple crosscorrelation operations into approximations to the inter-
receiver Green’s function. This Green’s function is the signal that
would have been recorded at one receiver if the other receiver had in-
stead been an impulsive source.

Although Claerbout (1968) proves this method in a 1D medium
for the case of both receivers being at the same location (i.e., using

only a single receiver), Wapenaar (2003, 2004), van Manen et al.
(2005, 2006), and Wapenaar and Fokkema (2006) prove the method
mathematically for 3D acoustic and elastic media, showing that, in
principle, monopolar (e.g., pressure) and dipolar (e.g., particle ve-
locity/displacement) sources are required on the bounding surface.

Van Manen et al. (2005, 2006, 2007) show how the impulsive or
noise-source versions of this theory create a new computational
schema with which synthetic wavefields between receivers can be
modeled flexibly. In an industrial seismic setting, Bakulin and Cal-
vert (2004, 2006) show that in the case of receivers located in a sub-
surface horizontal borehole and sources located on the surface above
the borehole, seismic interferometry can be used to redatum sources
into the borehole, removing many undesirable near-surface-related
effects from the seismic data. Draganov etal. (2007) show that major
body-wave components of Green’s functions could be estimated us-
ing background (passive) noise records in a particularly quiet area.
Curtis et al. (2006), Dong et al. (2006), Halliday et al. (2007, 2008),
and Halliday and Curtis (2008, 2009) illustrate that in a seismic set-
ting, surface waves are particularly well recovered and can be used
as part of a general surface-wave removal algorithm for cases where
surface waves arrive simultaneously with important body-wave in-
formation.

In all of these applications, Green'’s functions are constructed be-
tween a pair of receivers within the medium. One of the receivers is
effectively converted into a virtual (imagined) source, the energy
from which is recorded at the other receiver. The geometry required
for exact seismic interferometry is illustrated in Figure 1. If monopo-
lar and dipolar impulsive sources on the boundary S are fired sequen-
tially, the signals recorded at any pairs of receivers in its interior are
Green’s functions between the boundary and the receiver locations.
Wapenaar (2003, 2004), van Manen et al. (2005, 2006), and Wap-
enaar and Fokkema (2006) show that in the acoustic case the interre-
ceiver Green’s function G(x;,x,) between x, and x, (with source at
X,) is obtained by
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where the frequency dependence of G(x,,x,) is implicit. Here, x, and
X, are the two receiver positions, X is the integration variable that
traces source positions on bounding surface S, p(x) is the density, n
is the unit normal vector to S atany pointXx, j is the square rootof —1,
and there is implicit Einstein summation over i. The Green’s func-
tions in this formula are specifically those for a volume injection rate
source at X; and a received pressure field at x,, and the derivative
Green’s functions correspond to dipolar sources at the boundary S. If
displacement Green’s functions are used, the difference between the
Green’s function and its conjugate (rather than their sum) is obtained
on the left of equation 1.

When applying equation 1, the sources are implemented separate-
ly, as is the case in exploration geophysics where active sources are
used. When passive (i.e., uncontrolled) sources are used, one can
consider that those sources act simultaneously. In this case, time av-
eraging is required to cancel cross-terms appearing as a result of
crosscorrelating different sources (see Snieder [2004] and van
Manen et al. [2006]).

In the following, we consider the exact application of equation 1
for acoustic waves; however, given the relationships in equation 1
and other forms of the interferometric integral, our results can be in-
terpreted in terms of active- and passive-source interferometry
(Wapenaar and Fokkema, 2006). Van Manen et al. (2006) and Wap-
enaar and Fokkema (2006) give equivalents of these formulas for
elastic-wave propagation, and Slob and Wapenaar (2007) and Slob

G(x,x1)

G(x,x2)
Al Gi(X1,X2)

Figure 1. Geometry of various quantities and vectors used for wave-
field interferometry. If impulsive sources at locations x around the
boundary are recorded at two receivers at x; and x,, giving Green’s
functions represented by blue and red lines, respectively, the interre-
ceiver (green) Green’s function can be calculated exactly using
equation 1.

et al. (2007) give equivalents for electromagnetic-wave propaga-
tion. Under a unified formulation of the theory, other types of
Green'’s functions can be retrieved, such as electrokinetic Green’s
functions in poroelastic or piezoelectric media (Wapenaar et al.,
2006). Wapenaar and Fokkema (2006) show by using the Sommer-
field radiation condition (Born and Wolf, 1999) that the source re-
quirements for integrals such as equation 1 can be relaxed such that
only monopole sources are required. Hence, although the examples
in this paper concern acoustic-wave propagation and both monopole
and dipole sources, our method can be applied using equivalent for-
mulae for other wave-propagation regimes and for single source
types.

To obtain the Green’s functions using equation 1, Green’s func-
tions from the boundary must be known; hence, the medium within §
has been illuminated evenly from all directions. In practical situa-
tions with impulsive sources, this implies that energy from all
boundary sources should be normalizable to unit impulses. For ran-
dom noise sources, it implies that the total power radiated by each
source be equal.

Although normalization might be possible for actual sources fired
given source signature recordings, nobody has described how to do
this correctly for cases in which the source recording is inaccurate or
incomplete, or for missing boundary sources such as is the norm in
industrial exploration seismology where sources are generally con-
fined to the near surface of the earth (and, hence, do not surround
the receiver pair at depth). Nor has any method been presented to
correct the general case of seismic interferometry using passive— or
background-noise sources where these could each have quite differ-
ent source-time functions and magnitudes, such as is common in
passive-noise seismology (Stehly et al., 2006). Hence, from numeri-
cal experiments, we know that in such cases strong biases will be in-
troduced in the interferometric Green’s functions (van Manen et al.,
2005, 2006; Wapenaar, 2006; Vasconcelos and Snieder, 2008a,
2008b).

One method of correction proposed by Douma and Snieder
(2006) relies on a statistical model of the noise, which is generally
unknown in exploration-geophysical applications. In another meth-
od, Mehta et al. (2007) show that wavefield separation into up- and
downgoing components prior to interferometry and crosscorrelation
of down- and upgoing wavefields could help to suppress spurious
overburden-related effects in the horizontal well-based method of
Bakulin and Calvert (2004, 2006). Douma and Snieder (2006) also
apply the method to seabed data to remove the effects of sea-level
changes. However, neither method creates uniform noise direction-
ality, and neither generalizes in an obviously robust way to 3D heter-
ogeneous media with a less linear source or receiver array.

Van der Neut and Bakulin (2008) propose a method by which the
amplitude radiation pattern of a virtual source can be estimated and
corrected using wavefield separation prior to directional balancing.
Their approach is for a linear array of sensors in the subsurface,
where the array lies inside a homogeneous layer and spans virtual
source and receiver locations. The method simultaneously adjusts
directionality and removes the effect of any overburden on the esti-
mated wavefields in a fashion similar to the method of Mehta et al.
(2007).

Another method is introduced by Wapenaar et al. (2008), who
propose the use of multidimensional deconvolution (MDD) of sepa-
rated passive wavefields. They show that, theoretically, MDD will
solve the problem of irregular source strength and irregular ampli-
tude. However, this requires data that can be processed to separate
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the wavefield into various components required for MDD — in par-
ticular, it requires that free-surface multiples be removable from the
data. Wapenaar et al. (2008) achieve this by assuming that each
source is transient, rather than continuous as might be the case for
passive noise data, and they remove multiples by time-windowing
recorded data.

In this paper, we present a method that corrects for directional bias
in interferometric estimates where the sources on the boundary sur-
face S have variable source strength. This method requires no
knowledge of the background source distribution nor its time depen-
dence; hence, it is ideal for cases where passive-seismic interferom-
etry is applied but is equally applicable to situations using active
sources. If the wavefield at either of the pair of receivers can be de-
composed directionally at one of the receiver locations (e.g., by us-
ing a local receiver array), a virtual source with near-uniform direc-
tionality can be constructed using an algorithm that we call direc-
tional balancing. This algorithm is applicable to full wavefields (i.e.,
no other wavefield separation or multiple removal is required prior
to its use), and it works implicitly with multidimensional arrays and
(because it requires only local directional decomposition around one
receiver) in heterogeneous media.

However, the method we use to correct directionality does not re-
move nonphysical arrivals introduced during directionally biased
interferometry in heterogeneous media. Thus, we propose a second
method that predicts and removes such nonphysical arrivals after di-
rectional balancing. The resulting corrected Green’s function esti-
mates show much-reduced effects of nonuniform source-strength
distribution in the presence of directional bias. These estimates are
therefore more appropriate for a conventional seismic-processing
flow, especially where both traveltime and amplitude data are re-
quired. This is especially important where passive-seismic interfer-
ometry is used to supplement active-source data, in which case it is
desirable that the passive estimates closely resemble the character of
the active-source data.

We begin by detailing the directional-balancing algorithm and ap-
ply it to examples of increasing complexity, illustrating the emer-
gence of nonphysical arrivals as the medium’s complexity increases.
We explain from where these arrivals originate and propose two new
methods to identify them from physically propagating waves. Final-
ly, we use least-squares filters to remove the nonphysical arrivals
from the directionally balanced data.

DIRECTIONAL BALANCING

We want to estimate a directionally unbiased (isotropic) Green’s
function between a virtual source at X; and a receiver at X,. At both,
there are physical receivers, where X, is also surrounded by a local
array of receivers x,..

To estimate correction factors to account for directional bias in the
interferometric estimate, we first consider only the virtual source lo-
cationx, and the surrounding local array of receivers x,.. Using inter-
ferometry, we calculate all biased Green’s functions G’(x.,x,l) (in
this paper, we apply equation 1; in practice, one may consider any in-
terferometric integral). The functions G'( xl,xri) contain information
about the local radiation pattern of the virtual source. Later, we show
that if the medium is heterogeneous, the estimates contain nonphysi-
cal arrivals; hence, we assume that physical arrivals dominate the es-
timates in the immediate near field at early times (the following re-
sults show that this assumption is valid). We determine a local earth
property model at and around the receiver array and synthetically

model wave propagation locally around the virtual source (i.e., we
model only the initial radiation pattern within the array, so a simple
model may be sufficient). Then, we calculate synthetic Green’s func-
tions G(x l’xr,-)’ which are isotropic and diffraction limited (see be-
low).

We want to find a scaling factor in some domain D that adjusts the
source directionality of the biased interferometric estimates to have
the same source directionality as the modeled data. As such, the
method relies on having a good estimate of the earth properties (for
synthetic modeling) immediately at and around the virtual-source
array.

As a concrete example of the method, we consider the case
where D is the frequency-wavenumber (f—k) domain and cast the
problem of finding the optimal directional balancing scaling factors
CoPY(x, ’kn) to correct the directional bias as a minimization problem:

)
(2)

Copl(xl’kr.) = mln(||G(X17kr) - C(lekr) : G,(Xlakr.)
i arg C i i i

where ||...|| denotes any desired norm and the dot product on the right
represents element-by-element multiplication because we are in the
wave-vector rather than spatial domain (i.e., convolution in the spa-
tial domain).

In the examples following, using noiseless synthetic data, we
solve equation 2 by dividing each component of G by the same com-
ponent of G’ to obtain the corresponding component of C°"'. Howev-
er, for noisy data or if any near-zero components of G’ occur, an ex-
plicit minimization must be performed. Note that the f—k transform
is taken across the local receiver array and not across the virtual-
source coordinates; hence, the coordinates change from X, to k,’_ but
not from x, to k,. Because the array is 2D in space, a 3D Fourier
transform is required.

The scaling factor Co(x l’kn) that minimizes the right side of
equation 2 then allows us to correct for directional bias in the inter-
ferometrically estimated Green’s functions G’ (xl,x,,) by convolving
Corwith G’. However, because this operation corrects for biased di-
rectionality in energy propagating across the array around the virtual
source location, it can also be used to correct G’ (X,’,XQ) (i.e., the
wave components propagating between the virtual source array X,
and any otherreceiver x,). This is achieved as follows.

Transforming G’(x,’_,xz) to G'( k,l,x2) (or to any other D and using
the same array of receivers at locations X, as above) results in a local
decomposition of the Green’s functions G’(x,’,xz) into planar com-
ponents of the wavefield propagating from around the virtual source
location x; to location X,. Importantly, the decomposition is made
with respect to the same plane-wave basis vectors used to determine
Certbecause the same local array is used. Therefore, because the de-
composition in G’(k,,,xz) is local to location x;, it also approximate-
ly represents directional components of the virtual source at x; in
G'(X,X,).

The same real boundary sources (at locations x in equation 1) are
used to construct all of the above sets of Green’s functions marked
G’ (i.e., all other than the synthetic Green’s functions G). Hence, if
the virtual sources in G’(x,,_,xz) are directionally biased across the ar-
ray, then they will have been equally biased in G'(x,,X,). Any such
bias is approximately corrected by C°'. Therefore, C°P* can also be
applied to G’(k,’_,xz) as
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GI,(kri,Xz,(,U) = COpt(Xl ,k,i,w) . G, (kri,X2,(1)), (3)

where G”(k,’,xz,w) are the corrected Green'’s function in the f—k do-
main. Transforming back to the original domain and interpolating to
location x, gives G"(X;,X,); this is a less directionally biased esti-
mate of G(X,X»).

‘We must interpolate to X, only because the modeling method that
we use (see below) cannot model a coinciding source and receiver
(there is a singularity at zero offset); other modeling approaches may
not require this additional interpolation step. Also, we have chosen
to implement the algorithm in a frequency-dependent manner be-
cause different frequencies of wave propagation are sensitive to dif-
ferent Fresnel zones in the medium.

To construct the ideal radiation pattern G(XI,X,i), we deliberately
use the diffraction-limited modeling method of van Manen et al.
(2005, 2006, 2007). These authors show that when applying seismic
interferometry to noise or active source data in the very near-field of
the virtual source point, the Green’s function cannot be constructed
exactly; the difference to the exact Green’s function is attributed to
the diffraction-limited nature of seismic interferometry and time re-
versal. This difference is related to the work of de Rosny and Fink
(2002), who discuss the role of the diffraction limit in time-reversed
imaging. Consequently, experiments show that using a nondiffrac-
tion-limited modeling method gives incorrect results in the direc-
tional-balancing algorithm because, in equation 2, the diffraction-
limited G would be compared to a nondiffraction-limited G’. How-
ever, by using the interferometric modeling method of van Manen et
al. (2005, 2006), we ensure that our modeled radiation pattern in G is
consistent with the limitations of the interferometric estimates G’
themselves in the very near field.

In the directional-balancing algorithm, we assume that the ideal
source radiation is isotropic. Of course, any other desired source ra-
diation pattern could be modeled in G(XI,X,i) and approximated by
the algorithm in equations 2 and 3. We also choose the Fourier do-
main for D because it is commonly used for processing. However,
other domains might be chosen if preferred. The radon domain in

L ****m*********
1501
**t
**
had
- hod
100 X
x
¥
50 ¥
M
*
—_ *x
E o 3
NS *
*
*
-50f %
%
’,*,; VYYVVVVVVVVVVVVVVVVVVVVVVVVVVVVY
-100f L
'A'**
e
—150F
%,
i i ***M____M L |
—-200 -100 0 100 200

Figure 2. Source (stars) and receiver (triangles) geometry for the ho-
mogeneous example. Every second boundary source and array re-
ceiver is plotted for clarity. The size of the source symbol varies with
source strength, i.e., strongest source at [200,0] m and weakest at

[ —200,0] m. Receiver array shown in Figure 3.

particular might provide equally good results when balancing direc-
tional amplitudes.

Equation 2 can be viewed as a multidimensional spatial deconvo-
lution operation, where the estimated source-radiation field G’ is de-
convolved from the desired source-radiation field G in order to esti-
mate C°". However, this should not be confused with the method of
interferometry by multidimensional deconvolution (MDD) of Wap-
enaar et al. (2008). In that specific approach to interferometry, Wap-
enaar et al. find a set of relations that should hold between wavefields
recorded with and without a free surface present. They convert real
datarecorded at the earth’s free surface into the corresponding wave-
fields without the free surface (by removing free-surface multiples)
and solve the set of relations to find the desired Green’s functions
with the free surface present. However, their method requires that
the data without the free surface be constructed correctly, and re-
moving multiples by time windowing (as they perform) requires that
sources be temporally limited.

We instead construct a set of relations between the recorded, bi-
ased wavefield and a desired, modeled wavefield (equation 2). We
solve these relations for the desired Green’s functions that match
those characteristics of the modeled field. In the following exam-
ples, we show that if the latter wavefield is only modeled in the very
near-field of the virtual source, then application of C* as in equation
3 ensures that the radiation characteristics of the virtual source
match those of the modeled source (in the examples below, this en-
sures that the virtual source radiation pattern is isotropic). Our meth-
od therefore does not require multiple removal, nor does it require
that sources be temporally limited.

Application of directional balancing

To illustrate the directional-balancing algorithm, we use a series
of synthetic acoustic models. We first use a homogeneous acoustic
example to step through the application of the algorithm and to illus-
trate that it can correct for a nonuniform boundary-source-amplitude
distribution. We then consider more complex examples.

Model parameters

We use a 2D geometry (Figure 2), consisting of a circular bound-
ary of sources (radius 200 m, sources separated by 4 m) with a 20
X 20 array of receivers (4 m separation) around the virtual source lo-
cation. The boundary is centered on [0,0] m, and the array is cen-
tered on [ 0,70] m. At the center of the array, we place an additional
receiver at the virtual source location, i.e., the location where we
want to apply our corrections (Figure 3). We have chosen this size of
virtual source array because we found that a 20 X 20 square array of
receivers gives good result. The array geometry has not been opti-
mized in any way. We choose a line of 31 receivers, ranging from
[ —150,—80] m to [150,—80] m with a separation of 10 m, on
which we want to record energy from the virtual source. The wave
propagation velocity of the medium is 750 m/s, and a Ricker wave-
let with center frequency of 30 Hz allows the source separation of
4 m to be well sampled (unaliased).

We define a nonuniform source strength by the function T, where
T is the strength of the source and j denotes the boundary location.
Initially, we use a cosine function with a minimum value of one and a
maximum value of two to define this variation in source strength
(Figure 2).
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Estimating and applying correction factors

Seismic interferometry estimates superpose a causal and an
acausal Green’s function. In the following examples, we consider
the acausal part (the part at negative times) of the interferometric es-
timate. Then we time reverse it (i.e., reverse the direction of the time
axis) and plot the results at positive times. We do not show both
acausal and causal parts because doing so would require the deriva-
tion and application of different scaling factors.

For the first example, we use a simple homogeneous medium. We
model the desired source radiation pattern G(x; ,X,’_) using interfero-
metric modeling (van Manen et al., 2005, 2006, 2007). This allows
us to model a diffraction-limited Green’s function, which (as dis-
cussed above) is what we expect in an interferometric estimate.
Snapshots of this radiation pattern are shown in Figure 4a. We then
determine the nonuniform radiation pattern of the interferometric
Green’s functions by calculating G'(x,,X, ) using equation 1 and tak-
ing only negative times. Snapshots of this (biased) radiation pattern
(time reversed and, hence, at positive times) are shown in Figure 4b.

To estimate the scaling factor (CP'(x; ’k’,-))’ we first taper the radi-
ation patterns in space. We use arelatively harsh spatial taper (spatial
cosine tapers are applied to 90% of the array) because it provides
good results in this case. A 3D Fourier transform is applied to the ta-
pered source-radiation patterns, i.e., we transform the data to the
f—kk, domain, so G(XI,X,[) and G’(x,,x,’,) become G(x, ’k',) and
G’ (Xl,k,,_), respectively. To determine a scaling factor, we divide the
absolute values of G(x,.k, ) by the absolute values of G'(x;,k, ). Us-
ing the absolute values ensures that the scaling factor is real valued.
However, if phase and amplitude are to be corrected in another appli-
cation, then a complex-valued scaling factor can be used. A small
factor may be added to the denominator to stabilize the division; we
use a water-level method and set the minimum level to 5% of the
maximum value of the denominator (Clayton and Wiggins, 1976).

In the following, we apply the scaling factor by tapering the biased
interferometric estimates G’(k,i,xz) in space (using the same taper as
for the radiation patterns), transforming the biased estimates into the
f—kk, domain, multiplying by the scale factor (equation 31), and
applying the 3D inverse Fourier transform. This gives the corrected
estimates in the 7—x-y domain, where ¢ is time and where the x- and
y-axes form a standard orthogonal spatial coordinate frame. Because
we have corrected Green’s functions across an ar-
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To highlight the differences, we normalize the entire, biased, esti-
mated gather in Figure 5a and the exact gather in Figure Sc to a maxi-
mum of one and plot the difference between these normalized gath-
ers (zoomed plots shown in Figure 6a). We also take the difference
between the corrected gather in Figure 5b and the exact gather and
plot this in Figure 6b; no scaling is applied to the latter plot because
the correction factor has already accounted for the amplitude imbal-
ance. This lack of scaling illustrates the effectiveness of our method
in this configuration. Note that both plots in Figure 6 are shown at
twice the scale of those in Figure 5. Clearly, the proposed algorithm
corrects for most of the amplitude imbalance introduced by the non-
uniform source strength.

Finally, to illustrate the fit in more detail, in Figure 7 we plot a sin-
gle trace from Figure 5a along with a single trace from Figure 5b (us-
ing the trace at x equal to 50 m). In Figure 7a, we use the same gather
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Figure 3. Details of the geometry of the receiver array.

ray but our desired virtual source location is at the a) t=0.005s t=0.015s t=0.025s t=0.035s
center of the array, we interpolate between the 40,15? e |
four central array receivers to obtain the final,un- . 20 20 20
biased estimate of G(x1,X»). \f: 0 L] 0 . 0

Figure 5a shows the set of biased interferomet- -20 -20 -20 -20
ric Green’s function estimates between the cen- —40 —40 —40 —40 1 :
tral array receiver (the virtual source position) —40-20 0 20 40 ~40-20 0 20 40  —40-20 0 20 40 —40-20 0 20 40
and all receivers on tl.le receiver hne.ln the geom- b) t20.005s {2 0.015 s 1= 0.025s t<0.035s
etry plot in Figure 3, i.e., we determine G'(x,,X;) 40 40 = A0
using equation 1. The corrected Green’s func- 20 20 'J 20h
tions G"(x,,X,) are shown for comparison in Fig- E o . 0 E 0
ure 5b, with the desired (directly modeled, unbi- > 20 20 ‘ 20
ased) result Pl(?tted in Figure 5c. It is difficult to 40 40 N
see any variation between these plotsl On]y a -40-20 0 20 40 —-40-20 0 20 40 -40-20 0 20 4 -40-20 0 20 40

x(m) x(m) x(m) x(m)

small portion of the boundary around the top and
bottom of the boundary source array contributes
to these estimates (Snieder, 2004), so the ampli-
tude variation in Figure S5a is not particularly
large.

Figure 4. (a) Snapshots of the uniform radiation pattern across the virtual source array. (b)
Equivalent snapshots for the nonuniform radiation pattern across the virtual source array
in the homogeneous medium (see Figure 2). The center of the array is at the origin of the
coordinate system.



SA6 Curtis and Halliday

a) )

Time (s)

Figure 5. Results for the homogeneous medium. (a) Biased interferometric estimate, (b)
corrected interferometric estimate, and (c) exact Green’s functions. The virtual source is
in the center of the receiver array shown in Figure 3, and the response is recorded at the

line array at the bottom of Figure 3.
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Figure 6. (a) Zoomed plot of the mismatch between gathers in Figure
5aand c after normalizing each gather to a peak amplitude of one. (b)
Zoomed plot of the mismatch between gathers in Figure 5b and ¢ (no
normalization applied).
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Figure 7. (a) Single trace from Figure 5a (solid line), with a single
trace from Figure 5c (dashed line) for areceiver at x = 50 m. Gather
normalization has been applied. (b) Same as for (a) but using traces
from Figure 5b and c.

normalization as in Figure 6a; the misfit can be
seen clearly. No additional scaling is applied in
Figure 7b, and we can note the improved fit.

In the examples we consider, if no amplitude
correction is required (i.e., if the scaling function
is equal to one), then tapers and stabilization fac-
tors will affect the result. In fact, correct ampli-
tudes may be incorrectly scaled and numerical
noise may be introduced by the tapers and stabili-
zation factors. We avoid this case by ensuring that
our desired radiation pattern is scaled such that it
is always smaller than the biased estimates; there-
fore, the scale factor is never equal to one.

Single-scatterer model

We now follow the same procedure as for the
homogeneous case but use the single-scatterer
model in Figure 8. To compute scattered wave-
fields, we use a deterministic variant of Foldy’s
method (Foldy, 1945; Groenenboom and Snieder,
1995; van Manen et al., 2006), where the scatter-
ing amplitude is governed by the optical theorem. We assign the
imaginary part of each scatterer (there is only one in this example,
but multiple scatterers are included below) an equal strength of
—3.9 and use the optical theorem to determine the corresponding
real part of the scattering amplitude (Groenenboom and Snieder,
1995). The optical theorem ensures that both the back-scattered (re-
flected) and forward-scattered (transmitted) waves are modeled with
the correct amplitude (which is not true in the linearized Born ap-
proximation). In Figures 9-11, we reproduce Figures 5-7 for this
case. Similar to the homogeneous case, the amplitudes are well esti-
mated by directional balancing, with only a small residual error.

We can see nonphysical arrivals prior to the first physical arrival in
Figure 11a (priorto 0.1 s); these also exist in the corrected estimates
in Figure 11b. The nonphysical arrivals arise from crosscorrelation
of physical waves; later in this paper, we explain why these nonphys-
ical arrivals appear in our estimates and propose two methods to
identify and remove them.
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Figure 8. Single-scatterer geometry. Symbols are as for Figure 2; dot
indicates the scatterer location.
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Multiple-scatterer model

We now show results of the algorithm using an example with 12
scatterers (Figure 12) in Figures 13 and 14. Here we use a slightly
different receiver array, extending from [ —120,—88] m to [ 120,
—88] m with a receiver separation of 4 m. To accentuate the direc-
tional bias, the boundary source amplitude has a minimum value of
one and a maximum value of four. We use a 1% water level (as op-
posed to the 5% discussed above) because we find that results thus
improve in this case.

The same nonphysical arrivals observed in the previous section
are seen here, but they are more abundant and occur at different
times (prior to and after the arrival of the direct wave). These errors
are also rescaled by the correction factors in the

those in Figure 14b correspond to nonphysical arrivals introduced
by the nonuniform amplitude distribution of the sources. We now
justify this claim in more detail.

Nonphysical (sometimes called spurious) arrivals can appear in
interferometric estimates when interferometry is applied in nonideal
circumstances — for example, by applying interferometry using
only surface sources or other spatially limited source geometries
(Snieder et al., 2006; Wapenaar, 2006; Halliday and Curtis, 2008;
Vasconcelos and Snieder, 2008a, 2008b) or by applying interferom-
etry in the presence of attenuation (Wapenaar et al., 2006; Snieder,
2007; Snieder et al., 2007; Halliday and Curtis, 2009). Nonphysical
arrivals introduced by nonuniform background source strengths can

final result, so we can expect mismatches be- a) b) c)
tween the corrected result and the exact result.
Despite this, we can see similarities between the 0.1+ 0.1+ 0.1+
corrected result and the exact result in Figure 13.
For example, the region around 0.3-0.5 s and 0.2t 0.2 0.2l
0—150 m shows enhanced amplitudes with re-
spect to the original, biased result of interferome-
. . . 0.3 0.3 0.3
try. These are also illustrated in the residual plot &
in Figure 14 (plotted at three times the scale of ©
Figure 13), which shows that improvements have E 04r 0.4 0.4r
been made for the physical arrivals. In this case,
however, the nonphysical arrivals are of far larger 0.5- 0.5~ - 0.5-
magnitude than residuals in the physical arrivals.
By comparing Figure 13c and Figure 14b, we 0.6l 0.6 i 0.6l
see that some events in the residual appear to cor-
respond to physical arrivals in the directly mod- o7l o7l | o7l
eled data. Although our method assumes the latter
events to be nonphysical, we observe that in more -100 100 -100 0 100 -100 0 100
complex mediaitis possible that these events also x(m) x(m)
contnbut.e physical arrivals. In our examples, Figure 9. As for Figure 5 but for the single-scatterer example.
these arrivals are small and do not have a strong
impact on the final results. However, in very com-
plex media, these amplitudes may be larger.
Note that the nonphysical arrivals prior to the first physical arriv- a) b)
als are much stronger in the corrected estimate than in the biased es-
timate because they have been magnified by directional balancing.
. . . . . X 0.1F
The balancing algorithm is designed to correct amplitudes of physi-
cally propagating waves because the correction factors are deter-
mined using only physical waves. Hence, the multiplicative correc- 02}
tion factors are inappropriate for the nonphysical waves. We can ex-
pect that similarly magnified, nonphysical waves arrive after the first )
arrival but with weaker absolute amplitude (these nonphysical arriv- 0.3
als are related to the weaker, higher-order scattering). This explains ©
why the residual in Figure 14b contains so much energy from the E 04l
nonphysical arrivals. We now focus attention on these arrivals and =
show how they can be predicted and suppressed.
0.5f
NONPHYSICAL ARRIVALS 0sl
In the preceding heterogeneous examples, nonphysical arrivals
are introduced in the biased interferometric estimates. We consider
these nonphysical arrivals are most apparent prior to the first physi- 0.7 | 0.7
cal arrival, where we expect no arrivals at all (e.g., compare Figure 2100 0 100 2100 0 100
13a and c prior to 0.2 s). We have suggested that the residuals be- x (m) x (m)

tween the directly modeled results and the corrected results are pre-
dominantly from these nonphysical arrivals, i.e., arrivals such as

Figure 10. As for Figure 6 but for the single-scatterer example.
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Figure 11. As for Figure 7 but for the single-scatterer example.
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Figure 12. Geometry for the multiple-scatterer model. Symbols are
as for Figure 8.
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Figure 13. As for Figure 9 using the multiple-scatterer model.
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be understood in a similar manner to the nonphysical arrivals intro-
duced for surface waves by Halliday and Curtis (2009) and for
acoustic waves by Snieder et al. (2008). We summarize the approach
for acoustic waves here.

The wavefield at each of a pair of receivers is separated into direct
waves and scattered waves before interferometry is applied, result-
ing in four separate contributing terms after interferomety. These are
referred to as 7'1 to 74, representing the contributions of the cross-
correlation of the direct waves with the direct waves (7°1), the direct
waves with the scattered waves (72), the scattered waves with the
direct waves (73), and the scattered waves with the scattered waves
(74). Similar analyses can be found using representation theorems
for perturbed media (Vasconcelos et al., 2009) and for deconvolution
interferometry (Vasconcelos and Snieder, 2008a, 2008b).

‘We first define the direct and scattered wavefields between the re-
ceiver locations x; and X, as G°(x,,X,) and G**(x,,X,) and assume
that we want to estimate these wavefields using interferometry.
Terms 7'1 — T4 provide the following contributions to this estimate:

T1 = G”(x;.%5) — G(x.x)), (4)
T2 = G*"(x.%,) + G™'(x}.X,), (5)
T3 = —G*%(x,,x,) + G™*(x,X,), (6)
T4 = —G"™'(x1,%,) — G™(x;,X,). )

The terms G™'(x,,X,) and G"™(x;,x,) represent the nonphysical
parts of terms 72 to T4. For the acoustic case, Snieder et al. (2008)
show that when interferometry is applied exactly (i.e., application of
equation 1 using a nonbiased closed boundary of sources), these
nonphysical terms cancel when all four terms are summed, and the
direct and scattered waves are recovered as desired.

However, if we consider a nonuniform source-strength distribu-
tion, then the amplitudes of the four different terms will vary and the
nonphysical arrivals will not necessarily cancel, explaining why
nonphysical arrivals are observed in interferometric estimates. We
expect that the amplitudes of the physical parts of the estimate [i.e.,
the biased estimates G’°(x,,X,) and G'**(x,,X,)] can be corrected
using our directional-balancing algorithm (provided that the local
earth model at the virtual source is correct) but
that a separate, additional approach may be re-
quired to mitigate for noncancellation of these
nonphysical terms. In the remainder of this arti-
cle, we present two methods with the potential to
predict and isolate the nonphysical terms so they
can be removed from the interferometrically con-
structed Green’s functions.

Wavefield-separation-based method

In a first method, we predict the nonphysical
arrivals by assuming that the wavefield can be
separated into two components (direct and scat-
tered waves) and crosscorrelate only the scattered
waves to find an estimate for 74. Scattered-wave-
x (m) field separation methods are used by several au-
thors to apply and analyze seismic interferometry
(Snieder et al., 2008; Vasconcelos and Snieder,
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2008a, 2008b; Halliday and Curtis, 2009; Vasconcelos et al., 2009).
To test the potential of this method, we model the synthetic wave-
field in two steps: first determining G and then determining G**, al-
lowing us to calculate the four terms above explicitly. In practice,
these would have to be separated in real data using time windowing,
[-k filtering, or some other wavefield-separation scheme. We illus-
trate the two different parts of the wavefield in Figure 15, where we
plot the direct waves between the center point of the virtual source
array and the receiver line and the corresponding scattered waves.

Separating the modeling steps allows us to calculate interferomet-
ric estimates as defined by equations 47, i.e., we carry out the inter-
ferometric estimation process four times, using different input
wavefields at each receiver location. Each of these four estimates us-
ing the nonuniform source strength is shown in Figure 16. Figure 16a
shows the result of interferometry using the direct waves recorded at
the first (virtual source) and second receivers (7'1). Figure 16b
shows the result of interferometry using the direct waves recorded at
the first receiver and the scattered waves recorded at the second re-
ceiver (T2). Figure 16¢ shows the result of interferometry using the
scattered waves recorded at the first receiver and the direct waves re-
corded at the second receiver (73). And Figure 16d shows the result
of interferometry using the scattered waves recorded at the first and
second receivers (74). Summing these four gathers results exactly in
Figure 13a. If the source-strength distribution were uniform, we
would expect the summation of the four gathers to give the exact re-
sult (Figure 13c).

We apply the nonuniform directional balancing to each of these
four results in turn using the same bespoke, or tailored, scaling fac-
tors in each case, and plot the equivalent corrected seismograms in
Figure 17. In this configuration of source, receiver, and scatterer lo-
cations, the dominant contribution to the interferometric estimates
comes from Figure 17a and b; Figure 17c and d predominantly con-
tains nonphysical arrivals. Thus, by applying interferometry using
separated wavefields, we create estimates of the direct waves, scat-
tered waves, and nonphysical arrivals.

In Figure 18, we compare the residual shown in Figure 14b with
the nonphysical arrival in Figure 17d. The residual is similar to the
nonphysical arrivals, justifying our earlier claim that the residual is
dominated by nonphysical arrivals. By estimating the nonphysical
arrivals using wavefield separation, we can estimate the residual that
remains in the directionally balanced interferometric estimate.

Symmetry-based methods

An alternative approach to identify nonphysical arrivals is to use
the moveout of waves across source and receiver arrays. By studying
the nature of the stationary points that contribute to the nonphysical
arrivals, we find that these arrivals are nonreciprocal. That is, al-
though reversing the role of virtual source and receiver (i.e., revers-
ing the order of crosscorrelation) in interferometry does not affect
the synthesis of the physical arrivals because of source-receiver reci-
procity, it does time reverse the nonphysical arrivals. (In Appendix
A, we prove this using representation theorems for perturbed media
[Vasconcelos et al., 2009].) Where appropriate receiver geometries
exist (any geometry that allows us to observe moveout), we can use
this property to construct an additional method to identify nonphysi-
cal arrivals.

We illustrate the difference in moveout between physical and non-
physical waves using a two-scatterer model. To ensure these results

are not confounded with directional effects, we use a uniform
source-strength distribution around the boundary for this example.
We use separated wavefields (as above) and calculate 72, T3, and T4
explicitly. In what follows, various combinations of these terms are
then summed to obtain the exact (scattered) result, and to focus on
nonphysical arrivals. A line of receivers with 2-m separation is used
to synthesize interreceiver Green’s functions (Figure 19). We begin
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Figure 14. As for Figure 10 but using the multiple-scatterer model,
and here plotted at three times the scale of Figure 13.
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Figure 15. (a) Directly modeled direct wavefield between the central
receiver of the virtual source array and the receiver line. (b) The
equivalent directly modeled scattered wavefield.
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by fixing the central receiver as the virtual source and calculate the
Green'’s functions between this virtual source and all other receiver
locations.

In Figure 20a, we plot the sum of terms 72, 73, and T4 for a virtual
source located at the center of the receiver line, with receivers at all
other locations. This results in the exact virtual source-receiver scat-
tered waves (subject to small numerical implementation errors).
Note that we have used displacement rather than pressure Green’s
functions, so we obtain the difference between the Green’s functions
at positive and negative times.

This result would be the same if we had reversed the role of virtual
source and receiver. In Figure 20b, we plot only the sum of terms 72
and 73, resulting in noncancellation of the nonphysical term. We il-
lustrate the nonreciprocal nature of the nonphysical term by switch-
ing the role of virtual source and receiver for each interferometric es-
timate. This result is shown in Figure 20c; although the physically
scattered waves (Figure 20a) are unchanged because of reciprocity,
the nonphysical arrivals have been time reversed.

To illustrate how we can further isolate these nonphysical arrivals,
in Figure 21a we plot the sum of Figure 20b and ¢, and in Figure 21b
we plot the difference between Figure 20b and c. In Figure 21a, the
physical arrivals sum constructively; but in Figure 21b, the physical
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Figure 16. Interferometry applied to separated wavefields using a nonuniform source
strength. (a) Direct waves crosscorrelated with direct waves, (b) direct waves crosscorre-
lated with scattered waves, (c) scattered waves crosscorrelated with direct waves, and (d)

scattered waves crosscorrelated with scattered waves.
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Figure 17. As for Figure 16, with directional balancing applied.
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arrivals cancel out, leaving the remaining nonphysical arrivals,
which (apart from phase differences) match those in Figure 21a.

Hence, in addition to the wavefield-separation technique, symme-
try-based methods can be used to create complementary indicators
of which interreceiver arrivals are nonphysical. Presumably in real
data examples, the existence of two methods will help ensure robust-
ness of the identification process. In the rest of this article, we use the
wavefield-separation method.

REMOVING NONPHYSICAL ARRIVALS

Given methods to predict which arrivals are nonphysical, we can
treat such arrivals as noise. This noise is superimposed on the real
signal (the directionally balanced Green’s function estimates), so the
remaining problem is one of signal and noise separation. We now
present results of implementing this noise removal problem.

We use a 2D (x,z) least-squares filter to match the predicted non-
physical arrival in Figure 18b to the result of the correction algo-
rithm (Figure 13b). The direct arrival is dominant, so we remove it
from the problem (i.e., we sum only Figure 17b and d; the result of
the summation is shown in Figure 22a). We use 2D helical filters
(Claerbout, 1998), measuring length 5 in the time direction and
length 3 in the x-direction. These filters are ap-
plied in overlapping windows of 10 traces. Least-
squares filtering results appear in Figure 22b. Fig-
ure 22c shows the same result, but we mute any
arrivals prior to the arrival time of the direct wave
because we know these arrivals cannot be physi-
cal. This allows the result to be compared to the
directly modeled scattered waves shown in Fig-
ure 22d, illustrating that a large part of the non-
physical energy has been removed while the
physical energy remains relatively unaffected.

Note that we have succeeded in suppressing
the dominant nonphysical arrivals, which move
out in the positive direction; yet the nonphysical
arrivals with conflicting dips have not been sup-
pressed. This is likely to be because these unsup-
pressed arrivals are weaker than the arrivals that
have been suppressed, resulting in the least-
squares filtering being dominated by the higher-
amplitude arrivals.

It might be possible for experienced signal pro-
cessors to better filter the nonphysical arrivals
dipping in the positive direction and those dip-
ping in the negative direction. The nonphysical
arrival estimate could be split into positive and
negative velocities, and these could be removed
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individually using least-squares filters — for ex-
ample, using curvelet-domain filtering (Hermann
etal.,2008).

Finally, we combine the different processing
steps. In Figure 23, we show the original Green’s
function estimates using the nonuniform source
strength, the result of the directional balancing al-
gorithm, the result of the adaptive subtraction of
the nonphysical arrivals, and the directly mod-
eled result. We have subtracted the nonphysical
arrival from the entire wavefield (rather than from
the scattered wavefield only, as shown in Figure
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22b). As we move through the views, we see thatthe interferometric
estimates more closely resemble the directly modeled (desired)
Green’s function in Figure 22d.

DISCUSSION

Using acoustic scattering examples, we have illustrated the appli-
cation of a new algorithm to correct for directional bias resulting
from nonuniform source-strength distribution in seismic interferom-
etry. Although these examples illustrate the method, challenges re-
main before the algorithm can be applied to correct for bias in seis-
mic interferometry applied to real data, especially for the improved
recovery of body-wave arrivals.

In our examples, the method is applied to cases where the bound-
ary of sources is totally enclosing and well sampled. In many appli-
cations, this configuration will not exist, the source-strength distri-
bution is not likely to be smooth, and the strength of some sources
will drop to zero, resulting in gaps in the radiation pattern of the vir-
tual source. In heterogeneous media, we would expect scattered
waves to act as secondary sources to fill the gaps in the source bound-
ary; nevertheless, it remains to be seen how stable the algorithm is in
the presence of a limited source boundary. In cases where the method
does remain stable when correcting for directional bias resulting
from gaps in the source boundary, it may be useful when applying in-
terferometry using passive and active sources.

We also use relatively large arrays in our examples. The array used
is not optimized in any way. In practice, it may be possible to find an
optimized array design that provides a sensitivity to many direction-
al components using fewer receivers. The use of a 2D array also
means that the method can only be applied exactly to waves propa-
gating in two dimensions. For example, this configuration could be
used when receivers are placed on the surface of the earth to con-
struct interreceiver surface-wave seismograms. However, the poten-
tial of methods such as this is that they can correct for bias in reflect-
ed wavefields, allowing conventional imaging and inversion algo-
rithms to be applied to the interferometric estimates as if they were
conventional source-receiver records. It seems likely that in 3D me-
dia, 2D arrays at the surface of the earth could allow a slowness
transform to distinguish waves arriving at different angles to the hor-
izontal. Hence, correction factors can be applied to reflections as a
function of 3D directions of arrival.

The modeling step used in the algorithm is very
important. If the model is wrong, then the direc-

tionality correction algorithm will fail. However, a)

because the model is only required for the region -0.4
of the earth immediately at the receiver array, it is -0.3
far easier to constrain than larger earth models. 02

We only model the first few time steps in the area
immediately around the receiver (virtual source)
array, so the modeling step is not particularly time
consuming or computationally expensive.

In the steps used to remove the nonphysical ar-
rivals from our corrected estimates, we use a
method that takes advantage of separated direct
and scattered wavefields. In practical applica-
tions, this requires that we separate the direct
wave from the scattered (or reflected) wavefields.
In the presence of dispersion and multiple scatter-
ing, this separation process may not be straight-
forward; however, we expect that in most cases a
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Figure 18. (a) Residual from Figure 14b (b) Nonphysical term (74)
from Figure 17d.
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Figure 19. Geometry of the two-scatterer model. Only every second
source and receiver are shown. Symbols are as for Figure 8.
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Figure 20. (a) Exact scattered surface waves determined using interferometry. Scattered
surface waves, including uncancelled nonphysical terms using (b) a fixed virtual source
and (c) a fixed receiver.
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combination of f—k (or f—x) filtering and time windowing would al-
low for an adequate estimate of the direct wave to be separated from

L

the scattered wavefield.
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Figure 21. (a) Sum of Figure 20b and c; (b) difference of Figure 20b
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Finally, we note that the forward-modeling steps of the directional
balancing algorithm may in fact approximately account for any other

errors that cause the interferometric Green’s function to be inconsis-
tent with an exact, synthetic source radiating from the virtual source

point. This may, for example, correct errors incurred from approxi-
mations involved in using the monopolar version of the exact equa-
tion 1. It is also possible to use different source radiation patterns in
the forward-modeling process. Thus, the directional-balancing algo-
rithm may also allow interferometric estimates to be processed to
represent cases using those different radiation patterns (for example,
the balancing algorithm could steer the virtual source radiation in
certain directions or give the source a particular radiation character,

e.g., that of a dipole rather than monopole source).

CONCLUSIONS

Our directional-balancing algorithm corrects interferometric esti-
mates that are biased because of a nonuniform pattern of virtual
source directionality. In our implementation, we also have used in-
terferometry in the forward-modeling step of the directional balanc-
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Figure 22. (a) Result of the directional balancing algorithm after removing the direct ar-
rivals, (b) result of 2D helical least-squares filtering, (c) result in (b) but with any arrivals
prior to the direct wave muted, and (d) the exact result.
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Figure 23. Complete gathers for (a) the nonuniform Green’s function estimate, (b) the es-
timate in (a) after applying directional balancing, (c) the result of adaptive subtraction of
the nonphysical arrivals, and (d) the directly modeled Green’s functions.

ing algorithm. The modeling results are thus diffraction limited and

can be compared directly to the data-derived in-
terferometric Green’s functions estimates. To il-
lustrate the method, we have used a series of ex-
amples of varying complexity. The directional-
balancing algorithm provides better interfero-
metric estimates of the Green’s functions in that
they are closer to the true source-receiver data
and hence more suitable for seismic data process-
ing and inversion. Although we have considered
acoustic-wave propagation, the algorithm can be
applied to other wave-propagation regimes, in-
cluding elastic- and electromagnetic-wave prop-
agation. The examples shown here only consider
amplitude anomalies; further work will include
analyzing the algorithm’s ability to correct for
discrepancies in phase and amplitude.

The dominant residual after application of the
algorithm consists of arrivals from nonphysical
waves. We cast the remaining problem as one of
signal and noise separation, where we refer to
physical arrivals as signal and nonphysical arriv-
als as noise. We illustrated this signal and noise
separation problem using a simple 2D least-
squares filter. Dominant nonphysical arrivals dip-
ping in the positive x-direction are suppressed,
preserving the physical arrivals with which they
interfere.

Finally, our analysis of nonphysical arrivals
shows that the moveout of the physical arrivals is
different to the moveout of the nonphysical arriv-
als — 1in particular, the former do not satisfy reci-
procity with respect to exchange of sources and
receivers. This difference in moveout is even
more apparent when it is observed over two (spa-
tial) dimensions. Hence, we expect that 3D (x,y,t)
filters should provide better removal of the non-
physical arrivals.
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APPENDIX A

ON THE NONRECIPROCAL NATURE
OF NONPHYSICAL ARRIVALS

In the main text, we illustrate that nonphysical arrivals relating to
correlations of direct and scattered waves are nonreciprocal. When
the source and receiver position are interchanged, the physical arriv-
als remain the same but the nonphysical arrivals are time reversed.

We can explain this observation using representation theorems
for perturbed acoustic media (Vasconcelos et al., 2009). A represen-
tation theorem for lossless scattering in acoustic media can be writ-
ten as

1
Gy(x),%;) = é ; [Gs(Xl,X)aiGg(Xz,X)
Jjop
s
+ (9iGS(xl,x)G;(x2,x)]n,-d2X
1
+ fﬁ—. G(x;.X)W(X)G, (x,.x)d’,
f jop

(A-1)

where W(x) is the scattering potential, Gy(x,,x) is the wavefield in
the background medium, and G4(x,,X,) is the scattered wavefield.
Rearranging, we find

1
G(xy,%;) — jg ; G(Xl,X)W(X)Gz(Xz,X)dsx
V]wP

1
- fjjp[csul,x)a,c;‘(x%x)

+ (9,-GS(X1,X)G:(Xz,x)]n,-dzx. (A-2)

The right-hand side of expression A-2 is very similar to equation 1.
However, here we crosscorrelate direct waves at one receiver with
scattered waves at the other, i.e., this is equivalent to term 72 in the
main text, where the nonphysical part is represented by the volume
integral on the left side of equation A-2.

From Vasconcelos et al. (2009), we can also find a representation
theorem for G:(XI,XZ)S

|-
G:(X19X2) = %._[Gs(XZ,X)aiGO(Xl’X)
jop
s
+ 9,64 (x5.%) Gy (x.%) Jnd’x
1
G o WG 5y
[ jop

(A-3)

and again we rearrange to find a representation theorem that defines
term 73:

1
Gy(x.%)) — jg_ G* (%2, ) W(x)Go(x1,X)d x
J jop

1
= % JTP[G: (x2,X)9,Go(x1,X)
s

+ (9Z~G:(X2,X)G0(X],X)]nidZX. (A-4)

The combination of the volume terms on the left side of equations
A-2 and A-4 is then the nonphysical arrivals such as those we ob-
serve in Figures 9 and 13, i.e.,

—1
Gopt (%15 + Gopal(,%3) = fﬁjw—p[mxl,x)W(x)G;‘(xZ,x)
14

+ G*(X0,X) W(X) Gy(x,,X) ]d°x..
(A-5)

When we exchange source and receiver (as we do in Figure 20), we
find

*

*
anl(Xl’XZ) + anz(xl,X2) = an](XZ’Xl) + anz

(X27Xl) .
(A-6)

Hence, the nonphysical terms are nonreciprocal: the complex conju-
gation on the right of equation A-6 shows that interchanging the
source and receiver locations changes the observed wavefield by
time-reversing the nonphysical waves (leaving the physical waves
unchanged by source-receiver reciprocity). By using the representa-
tion theorems for perturbed media of Vasconcelos et al. (2009), we
have explained our observation in the main text that the nonphysical
part of the scattered-wave estimate is nonreciprocal.
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