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Deconvolution imaging conditions and cross-talk suppression

Travis L. Poole', Andrew Curtis’, Johan O. A. Robertsson?, and Dirk-Jan van Manen®

ABSTRACT

Deconvolution imaging conditions offer improved resolu-
tion over standard, crosscorrelation-based imaging condi-
tions. Additionally, these imaging conditions produce a result
more directly related to a reflection coefficient than do cross-
correlation-based imaging conditions. In simple analytical
cases, deconvolution imaging conditions also offer the possi-
bility of eliminating crosstalk (i.e., energy in the image due to
reflected energy arriving at a location at the same time as inci-
dent energy that did not cause the reflected energy) when the
full up- and down-going wavefields are used. This means that
in such cases, surface-related multiples can be eliminated
from the image, or that multiple shots could potentially be
fired simultaneously without degrading the image. However,
this cross-talk-suppression property is not observed in most
situations. We show that this is due to a number of issues: the
correct order of deconvolution must be used, stabilization
causes imperfect deconvolution, finite apertures lead to some
of the signal being lost, and an assumption of horizontal strat-
ification is often not being met. Further, imperfect knowledge
of the incident and reflected field due to such factors as aniso-
tropy, poorly estimated velocity fields, and measurement
noise can also lead to imperfect deconvolution. Thus, decon-
volution imaging conditions should not be counted on to
completely eliminate crosstalk from images.

INTRODUCTION

The purpose of seismic imaging is to locate reflectors in the sub-
surface so that geology can be inferred. Thus, the desirable qualities
of an imaging condition would include: being able to accurately lo-
cate interfaces that are present, imaging no apparent interfaces
where there are none, and ideally providing further information
about the physical properties of the rock near the interfaces. Decon-
volution imaging conditions (see Claerbout, 1971; Valenciano and

Biondi, 2003, and Schleicher et al., 2008) offer improvements in all
of these areas over standard crosscorrelation, imaging conditions
(Claerbout, 1971). They allow interfaces to be better located because
of the improved resolution they offer. They have some ability to re-
duce crosstalk in the images thus reducing the risk of interfaces be-
ing identified where they do not really exist. Finally, the magnitude
of the reflectors in a deconvolution image are more closely related to
the reflection coefficient, making tractable some basic inferences
about rock properties on either side of the interface. However, al-
though these properties of deconvolution imaging conditions can be
derived for simple analytical cases and are used to justify the use of
such imaging conditions, they are not obtained in realistic cases. In
this paper, we explain why this is so, and in particular we show that
the cross-talk eliminating property is only achieved in the case of a
horizontally stratified medium, and that even in such cases numeri-
cal issues such as stabilizing approximations and finite ranges of the
variables can preclude the full advantages seen in the analytical case.
However, the improved resolution is retained in practice, and the
magnitude in the resulting images is more closely related to a reflec-
tion coefficient than those produced by crosscorrelation imaging.

The next section reviews the basic concepts of propagating the in-
cident and received fields and using them to create an image. We then
present deconvolution imaging conditions and provide a set of ex-
amples illustrating key points. After this we discuss the factors that
lead to multiples not being properly removed from deconvolution
images. The final section summarizes our conclusions.

WAVE PROPAGATION AND IMAGING

In seismic imaging, the source field is usually propagated compu-
tationally forward in time, into the subsurface. The reflected field is
propagated backward in time. The two fields are then combined at
each potential subsurface reflector or diffractor location, by using an
imaging condition. The deconvolution imaging condition, like the
crosscorrelation imaging condition, is based on the imaging concept
introduced by Claerbout (1971): at a reflector, the reflected (usually
up-going) energy will simply be a scaled version of the incident
(usually down-going) energy. The scaling factor will be the reflec-
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tion coefficient of the reflector. Or, stated another way, the time be-
tween the arrival of the incident field and the reflected field will de-
crease as the distance from the interface decreases; at the reflector
the two fields arrive simultaneously. Thus, if we deconvolve the re-
flected field from the incident field at a reflector, the result will have
energy at zero-time lag. At a location away from a reflector, there
will be a time delay between the arrival of the incident energy and
any energy reflected from elsewhere. Deconvolving the two fields at
such a location should not produce significant energy at zero time
lag. This is easy to see in the case of a single incident pulse, and a sin-
gle reflected pulse, as shown in Figure 1. In the figure we see that
when the incident and reflected pulses arrive at the same time, there
is energy in the zero-lag of the deconvolution. However, when the
pulses arrive at different times, the energy in the deconvolution oc-
curs at a lag corresponding to the difference in arrival times. The de-
convolution becomes more complicated when there are many reflec-
tions, and when the incident field is more complicated than a single
pulse, because the two fields are not merely time-shifted-and-scaled
versions of one another. Thus, there will be multiple time-lags with
non-zero energy in the deconvolution of the two fields. However, the
principle remains the same: when the reflected field contains a scaled
copy of the incident field, arriving at the same time as the incident
field, there will be energy in the zero-lag of the deconvolution. This
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Figure 1. A simple example of deconvolution. The top frame (a) rep-
resents an incident pulse arriving at an image point in the subsurface.
The two frames below (b,c) represent two possible reflected wave-
fields. The frames to the right (d,e) show the result of deconvolving
incident field from the reflected fields to their left. The middle frames
(b,d) represent what would be seen at the reflector’s position. The in-
cident and reflected pulses arrive at the same time, and the deconvo-
lution of the two fields (d) has all its energy at zero time-lag. The bot-
tom frames (c,e) represent what would be observed at a point away
from a reflector. The incident field arrives first, then continues on to
the reflector, generating a reflected pulse which propagates in the op-
posite direction and arrives at the image point some time later. The
deconvolution (e) result has energy at the time-lag corresponding to
the difference in arrival times of the two pulses. Note that in both cas-
es, a discrete delta function is the result. The discrete delta function
can be thought of as a sinc function sampled at all its zeros. Such
sampling occurs when the two signals are an integer number of sam-
ple points apart.

can be seen in Figure 2, which shows an example similar to Figure 1,
but with more complicated incident and reflected fields.

The process becomes further complicated when we attempt to
compute the fields at the reflector positions (i.e., at depth) because
we normally end up back-propagating reflected energy past the loca-
tion where it was generated. As the incident field interacts with each
successive reflector it produces a series of reflections. Hence, if we
only consider the reflected field, energy will suddenly “appear” as
each reflector is reached by the incident field. So, once a part of the
measured reflected field has been back-propagated into the back-
ground model to the location at which it was “added” to the up-going
field, it should, in principle, be removed from the reflected field be-
fore that field is back-propagated further. However, since back-prop-
agation of the field and the imaging are usually done in separate
steps, this removal of energy is not normally done, nor is it likely to
be feasible in realistic cases. Thus, nonphysical energy is syntheti-
cally back-propagated past the reflector that generated it. This non-
physical energy can “arrive” at a location at the same time as the inci-
dent energy, even though there is no reflector at the location where
this occurs, leading to artifacts in the image.

A related problem exists for the forward-propagated incident
field. In reality, the energy in the incident field is reduced at each re-
flector, because itis converted into the reflected field. Again, though,
this reduction of the incident field at reflector locations is usually not
taken into account when forward-propagating the incident field. Ad-
ditionally, if there are multiple sources of incident (again, usually
down-going) energy, it is possible for reflected energy caused by one
of the sources to arrive at the same time as the incident energy from
another source, potentially causing the appearance of a reflector
where there is none.
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Figure 2. A more complicated example than shown in Figure 1.
Again, (a) shows an incident field, now containing two pulses. (b and
¢) Two possible reflected fields. Both of these reflected fields are
shifted versions of that shown in (d), which shows three scaled and
shifted versions of the incident field summed to create a single re-
flected field (the three components are shown in lighter lines, shifted
upward for clarity, and the sum is shown in the darker line). (e and f)
The result of deconvolution of the two reflected fields to their left.
Though the deconvolution is not a single delta function anymore, en-
ergy occurs in the zero lag only when a scaled version of the incident
field arrives at the same time as the incident field.
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These problems with the incident and reflected fields are exam-
ples of so-called “crosstalk” and cause significant problems for both
deconvolution and crosscorrelation imaging conditions. Put con-
cisely, crosstalk occurs at locations in the image where reflected en-
ergy arrives at the same time as incident energy that did not cause the
reflected energy. This can occur when some of the energy is non-
physical (and thus only “arrives™ at the image point because we have
notremoved it from the field at the point of reflection), or when fields
from two (or more) different sources interact.

In simple cases, deconvolution imaging conditions, which will be
formally introduced in the next section, are able to overcome this
crosstalk, as will be shown in the examples section. In more compli-
cated cases, this property is not attained, and the complicating fac-
tors that cause this to be so are examined in the discussion section.
Understanding the cross-talk reducing capabilities of deconvolution
imaging conditions, and the limits thereof, becomes more important
as these imaging conditions become more commonly used. It is es-
pecially important when more complicated down-going fields are
used, such as when down-going multiples are treated as secondary
ensonification (Muijs et al., 2007a), or if multiple sources fire simul-
taneously (e.g., Hampson et al., 2008).

DECONVOLUTION IMAGING CONDITIONS

The 1D deconvolution imaging condition is based on equation 1
(Claerbout, 1971):

1 f U(x,y,z,a))d W

I (x,y,2) = — w,
1p(%:32) 27 ) D(x,y,z,0)

w

where x is the in-line spatial coordinate, y is the cross-line spatial co-
ordinate, z is depth (positive downward), w is the angular frequency,
U is the reflected field (denoted as such because it is usually the up-
going field), and D is the incident field (“D” for down-going). De-
convolution in the time domain is equivalent to division in the fre-
quency domain, hence the quotient U/ D. Integrating over frequency
gives the zero-time-lag value that would be obtained if we trans-
formed back to the time domain. This can be seen in equation 2 by
examining the definition of the inverse Fourier transform given by

o0

h(t) = FT"'[H(w)] = i f H(w)e “dw. (2)

—

The corresponding forward Fourier transform in equation 3 is given
by

[}

H(w) = FT[h(1)] = fh(t)ei“”dt. (3)

—

Equation 1 is not the form of the 1D deconvolution imaging condi-
tion that is usually implemented (e.g., Muijs et al., 2007). To avoid
division by zero, the top and bottom of the quotient are multiplied by
the conjugate of D, which makes the denominator purely real and
non-negative. Then, a small real value, €, can be added to ensure the
denominator is not zero. Summation over frequency replaces inte-
gration because the data are obtained at a discrete set of frequency
values. The resulting image can also be summed over all shots, to
give a higher signal to noise ratio as seen in equation 4:

1
I (x,y.2) = EE

src

( U(x,,2,05%,0) D™ (X,,2,05%,) )
X ; Aw|.
o D(x,y,2,0:x,,)D*(x,y,2,0:x,.) + &

(4)

Here, x,,., is the horizontal position of the source. Note that this is an
example of the well-known damped least squares solution (Leven-
berg, 1944).

The standard crosscorrelation imaging condition is based on this
same equation, but goes one step further. The denominator is now
purely real and non-negative, so it does not affect the phase of the
quotient, and hence it can be approximated by 1 without greatly
changing the spatial locations at which zero-lag energy is large
(Claerbout, 1971) as seen in equation 5:

Icross—cor(x’y ’Z)

1
= by (E U(x,y,z,w;xS,C)D*(x,y,z,w;xsrc)Aw). (5)
ﬂ-xsrc o

The 1D deconvolution imaging condition deconvolves two time sig-
nals, tacitly assumed to be just scaled and time-shifted versions of
one another. This is accurate for a 1D problem, but in cases of 2D or
3D propagation, higher order deconvolution is required. The 2D and
3D deconvolution imaging conditions (Valenciano and Biondi,
2003) corresponding to equation 4 are given by:

IZD(X,)’,Z)

_ 2 U(-x»y’zsw;kxsrc)D*(x’y’z’w;kxsrc) A_w
a w D(x’yssz;kmrc)D*(-x’y’z’w;kxsrc) + > 277

k

XSrc

Akxvrc
>< —_

b d 6
Py (6)

I3D(X,y,Z)

=AY X

kyrek

ysre txsrc

X (E U(x’yvz’w;kxsrc’kyxrc)D*(xsy’z’w;kxsrc’kysrc) )
D(x’y’z’w;kxsrc’kysrc)D*(x’y’z’w;kxsrc’kysrc) + € '

(7)

where k, . is Fourier transform pair of x,,., likewise for y,,. and k, .,
and A = AwAk,, Ak,,,./ 87 in equations 6 and 7. We will examine
the motivation for, and benefits of these higher-order deconvolution
imaging conditions in the next section.

It should be noted at this point that adding the small term € to the
denominator is not the only way to stabilize the division. Schleicher
etal. (2008) examine and compare a number of different methods for
stabilizing the denominator, including one introduced by Guitton et
al. (2007). As much of our discussion will involve simple analytical
situations where we can apply the basic form shown in equation 1,
the differences between these various methods will be ignored for
the moment. It is sufficient for our purposes to say that various ap-
proximations to equation 1 exist, all of which deal with the numeri-
cal stability issue, but all of which also introduce some degree of er-

w
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ror. We direct those readers interested in differences between the var-
ious methods to Schleicher et al. (2007), in which the types of errors
introduced by each method are examined in detail.

In the next section we will examine properties of the deconvolu-
tion imaging conditions by looking at simple cases in which analyti-
cal solutions can be obtained. Particular attention will be paid to the
cross-talk suppressing property of the deconvolution imaging condi-
tions, because this trait would be extremely useful if it could be
achieved in realistic situations. Muijs et al. (2007a) touch on this
when they make use of the 2D deconvolution imaging condition in
their DIPMR methodology, which uses down-going multiple energy
as secondary ensonification of the subsurface. Their method elimi-
nates multiples in simple synthetic data sets, but not in the more real-
istic PLUTO data set, prompting them to develop a multiple-sup-
pression method to accompany the 2D deconvolution imaging con-
dition (Muijs et al., 2007b). Furthermore, if deconvolution imaging
conditions could suppress crosstalk in realistic cases, multiple shots
could potentially be fired simultaneously without leading to artifacts
in the image. This could lead to increased survey efficiency, as the to-
tal time required to shoot a desired number of shots could be re-
duced.

EXAMPLES

To examine the deconvolution imaging conditions and the condi-
tions under which they suppress multiples, we will start with a very
simple case and work up to more complicated situations. The sim-
plest case to consider is the 1D imaging condition in equation 1 ap-
plied to 1D wave propagation in a medium with constant wave
speed, ¢. The solution to the wave equation in this case is (¢t — z/c)
for a disturbance propagating in the positive z direction, and h(z
+ z/¢) for a disturbance propagating in the negative z direction,
were h is an arbitrary function of ¢ that defines the source pulse
shape.

We imagine two pulses travelling in the positive z direction and

-50
o—A—*
J\
S S
(7 A
50 v —"x
L=
TS S
s 4
Vs A
=5
(&) Ay Y
N 100 i ——x
=
YT &
="
S 5
e
150 Ur—"r.
s 05
1
Vy{y7\ %
T
VVVI\
200 05
250 . . . . .
-50 0 50 100 150 200 250

Figure 3. The incident field as a function of time and depth. The top
trace represents the measured/known incident field at the receiver
depth. All traces below this are the result of propagating the field for-
ward in time to lower depths.

separated by a time delay, 7,. We can imagine these two pulses as be-
ing due to two different sources — due to a single complex source or
as a primary and a multiple reflected from some reflector outside our
area of consideration; the cause of the second pulse is not important
for the illustration, so long as a second pulse is present. Because the
wave equation is linear, we can describe the total disturbance as the
sum of the two individual disturbances. Thus, the total field traveling
in the positive direction can be expressed as seen in equation 8:

pincident(z’t) = pl(t - Z/C) + pZ(t — Iy~ Z/C)- (8)

We model a reflector at z = z,,, with reflection coefficient R, by in-
cluding a second pair of reflected disturbances traveling in the nega-
tive z direction in equation 9:

preﬁflected(z’t) = Rprl(z’t) + Rprz(ZJ), (9)
where
0 1<Z,.fC
prl(th) = !
pilt+zlc = 2z,4c  t=z,,lc
0 1<z,7c+t
prz(Z,t) _ ref’ 0

palt — tg+ z/c = 2z,c t=2z,0c + 1

(10)

However, because we do not know where the reflector is when we
back-propagate the reflected field, we do not know where to apply
the zero conditions in equation 10. Thus, the expression that we actu-
ally use for the reflected field when applying our imaging condition
will be

preflected(zvt) szl(t +z/c — 2Zref/c)
+ Rpo(t =t + z/c = 2z,,4/c)  (11)

for all values of 7. Note that though z,,, appears in the right hand side
of equation 11, the data to which we would normally have access
would be the left-hand-side, which is a function only of z, and . In
other words, our data would depend on z,,,but we would not know its
value a priori.

The situation is illustrated in Figures 3 and 4. Figure 3 shows the
incident field, as a function of time at a number of different depths.
The field at measurement depth, where the field is actually known, is
shown at the top of the figure. Each trace below this is a time-shifted
version of the measured field, illustrating how we propagate the inci-
dent field forward in time as it travels to other depths. Figure 4 shows
the reflected field. Again, the top trace is the measured field, and low-
er traces are time-shifted versions of this. However, in this case, they
are shifted backward in time as we propagate the field to depth. We
point out that the reflected field is propagated to all depths, despite
the fact that it does not really exist for depths deeper than the (as yet
unknown) reflector location.

Equations 8 and 11 contain sufficient information to apply the de-
convolution imaging condition. First, in equations 12 and 13, we
transform the incident and reflected fields to the frequency domain
using equation 3:

Pincidon ) = ¢ P (@) + e~ @(ET0) Py(w), (12)

and
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. zfzzre[
preflected(zaw) =Y ¢ RPl(a))

. Z72Zref
+e“"( ¢ +’0>RP2(w), (13)

where P,(w) is the Fourier transform of p,(#), and likewise for P,. In
equation 14, dividing the reflected field by the incident field in the
frequency domain is equivalent to deconvolution in the time do-
main, and gives

P 7,0 N

reflected( ) _ Re“"z(_Cq). (14)
Pincident(z’ w)
In equation 15, transforming back to the time domain gives

Lp(zt) + = R5<t - 21_—“) (15)
C

Ild(z’w) =

Note that although there were two disturbances involved in the inci-
dent and reflected fields, there is only a single delta function in the
deconvolution. Hence, if we take the zero-time-lag of this result, we
get zero everywhere exceptatz = z,,4, which is the location of the re-
flector. This zero-lag also contains information about the reflection
coefficient, R, through simple multiplication.

Contrast this with the result that would be obtained using cross-
correlation. Instead of dividing the reflected field by the incident
field in the frequency domain, in equation 16 we multiply the conju-
gate of the incident field by the reflected field, giving

Icross—cor(z’w) = Preﬂecled(z’w)P;Cident(Z’w)
, 22— zzret
= R[P|(0)P(w) + P} (w)Py(w)]e" ™ <

+RIPY@Ptoleel 0]

2z—22,,¢
( : ret+t0>

+ R[P;(0)P(w)]e™ . (16)

where *indicates the complex conjugate.
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Figure 4. The reflected field as a function of time and depth. The top
trace represents the measured/known reflected field at the receiver
depth. All traces below this are the result of propagating the field
backward in time to lower depths. Compare with the incident field
shown in Figure 3.

With crosscorrelation, even ifp; and p, are simple pulses, we ob-
tain three pulses after transformation back to the time domain: the
“true” reflection event, but also two other events due to crosstalk be-
tween p; and p,. Specifically, there is energy in the zero lag at z
= Z,.s as desired, but also energy in the zero lag at z = z,,, = cty/2,
which leads to crosstalk in the image, as can be seen in Figure 5,
which shows the result of using the two imaging conditions in this
case. The deconvolution imaging condition shows one reflector po-
sition (75 m), whereas the crosscorrelation imaging condition
shows three (50 m, 75 m, 100 m). Also note that the imaged reflec-
tors are wider than that in the deconvolution case, illustrating the su-
perior resolution of the deconvolution imaging condition that we ex-
pect after seeing equations 15 and 16.

This simple analytical case shows some advantages of the decon-
volution imaging condition: there is improved resolution (because
deconvolution provides a delta function, when one function is just a
time-shifted and scaled version of the other), and there is a simple re-
lationship between the image magnitude and the reflection coeffi-
cient and multiples are eliminated from the image. However, when
we move to higher-dimensional propagation, geometric spreading
makes imaging more complicated. The 1D deconvolution imaging
condition no longer eliminates crosstalk because the signals at two
different locations are no longer related through a simple time shift
and scaling due to geometric spreading (i.e., a change of receiver po-
sition no longer results in just a time shift, but also a change in ampli-
tude as well, and different parts of the signal may be scaled by differ-
ent amounts). This can be seen by looking at another simple exam-
ple. Consider a point source in a constant-velocity fluid between two
perfectly reflecting surfaces, as shown in Figure 6. The upper surface
(at z = 0) is a pressure-release surface (like the air-sea boundary),
and the lower surface (at z = h) is rigid (like an idealized hard sea-

Deconvolution Cross—correlation

0 0
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N 100F 1 N 100f 1
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140} 1 140t 1
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180 1 180 1
2% 0 05 2%, 0 2

I () I_(z/c)

Figure 5. The imaging results for deconvolution (left) and cross-cor-
relation (right) imaging conditions applied to that data in Figures 3
and 4. Deconvolution imaging produces a single, narrow spike,
while cross-correlation produces three comparatively broad pulses,
even though there was only a single reflector. The extra pulses are
due to crosstalk between the different pulses in the incident and re-
flected fields.
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bed). The wavefields can be modelled using the method of images
(see, e.g., Frisk, 1994), and for simplicity we consider only the two
first down-going waves (from the source and its sea-surface reflec-
tion) and the first two up-going waves (the seabed reflection of the
two down-going waves). With 3D wave propagation, the down-go-
ing field below the source in this case is seen in equations 17-22

1 1
pdown(x’y’z’t) = }’_p(t - V]/C) - r_P(t - 7‘2/0), (17)
1 2

where

— 2 2 2
ry=\ ()C - xsaurce) + (y - ysource) + (Z - Zsource) > and

(18)

[ 2 2 2
=N ()C - xsource) + (y - ysource) + (Z + Zsource) . (19)

The up-going field is

1 1
pup(x’y9z’t) = _p(t - rS/C) - _P(t - V4/C), (20)
r3 ry

where

r3

i
=V (x - xsource)z + (y - ysource)2 + (2h ~ Zsource — Z)z and
(21)
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Figure 6. Geometry of a simple case with spreading: a source in an
isovelocity medium between two perfect reflectors. The true source
is indicated by the asterisk, while the first three image sources are in-
dicated by diamonds. The distances to an arbitrary imaging point are
denoted r1 to r4. The horizontal lines indicate positions of the reflec-
tors.

ry= \‘"(x - xsource)z + (y - ysource)z + (Zh T Zsource ~ Z)z’
(22)

and p(1) is the time signature of the source.

Atz = h, we see that r; = r; and r, = ry, and thus pg,,., = pu,, SO
the signals deconvolve perfectly to give a single delta function as the
result, as we saw in the 1D example. At other depths, however, this is
not the case: the r values are not related by a simple multiplicative
constant, so the signals do not leave a simple delta function after de-
convolution. In particular, where r; = r, or r, = r; there will be sig-
nificant energy in the zero-lag of the deconvolution, leading to
crosstalk in the image, as can be seen in Figure 7.

In such cases, however, higher-dimensional deconvolution imag-
ing conditions can restore some of the multiple-eliminating proper-
ties observed in the 1D case. They do so by decomposing the fields
into plane waves, and thus avoiding the problems associated with
geometric spreading. To do this, the appropriate dimension of de-
convolution must be used: 2D deconvolution for 2D spreading prob-
lems, and 3D deconvolution for 3D spreading problems. We will first
show how the 2D and 3D deconvolution imaging conditions decom-
pose the fields into plane waves, and then examine why doing so
eliminates multiples.

The 2D and 3D deconvolution imaging conditions are based on
the assumption of a horizontally stratified medium. This assumption
makes it possible to decompose the field into plane waves by trans-
forming over the source coordinates rather than x (and y in the 3D
case). The advantage of transforming over source position is that the
result corresponds to a single location (i.e., image point), whereas
transforming over x combines information from all horizontal posi-
tions in the subsurface and thus cannot be linked to a single image
point.4 It should be noted that there are other methods of decompos-
ing the wavefield at a single point into plane waves (see Wu et al.,
2008, and references within), but they are not directly related to the

-50 -

¢
0 Multiple
¥ True reflector
50

< 100

o

[

)

150

200
250
300 - - - - - -
-40 -20 0 20 40 60 80 100
X position

Figure 7. Imaging result using 1D deconvolution with 3D spreading.
The true reflector is correctly located, but in this case multiples are
not suppressed as they were in the 1D problem.

*Of course, if the medium truly were horizontally stratified, we would only need a 1D “image,” indicating reflector positions as a function of depth, and the lack
of a specific x position in the image would be irrelevant. However, transforming over source position still gives an answer for each x-position, even in cases where
our assumption of horizontal stratification is violated, whereas a transformation over x will not. It should be noted that another way of obtaining a plane wave de-
composition at a single point would be to take a local transform at each imaging point, using a subset of the data centered at the image point (i.e., a transform from x
to k, using only the data between x — D and x + D for some value D). The added computational load of an extra transform at each image point would be significant;
however, in situations where computational limits are not a factor, a local transform over x may well be advantageous.
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2D and 3D deconvolution imaging conditions, so we will not discuss
them further here.

How is it that we can get the same result when transforming over
source position, x,,., instead of horizontal position, x? The important
thing to realize is that in a horizontally stratified medium, the field
depends only on the horizontal distance between the source and the
field point, and on the depths of each, but not on the absolute hori-
zontal position of either. Moving the source right while keeping the
field point constant will have the same result as moving the field
point left while keeping the source’s position constant. Thus p(x,x,,.)
can be written p(x — x,,.), where dependence on other variables (i.e.,
v, Z, etc.) has been suppressed for clarity. Let us examine the result of
transforming such a function over x,,. and x, and compare the results.
First, in equation 23, if we transform over x,,. we get:

Fl(kxsrc’x) = Fszr(,ﬂkxxrc[f(x - xsrc)]

o)
f f (x - xsrc)e B ik'“nxsnldxsrc
— o0

= eikxsn,‘xjf(—x')eikxsn,‘x’d_x" (23)

Here we have made use of a change of variable: x’ = x,,. — x. Also,
we have followed the convention of transforming from x to k, using a
Fourier transform with a sign in the exponent opposite to that used to
transform from 7 to w. This is done so that a plane wave with a posi-
tive wavenumber propagates in the positive x direction as ¢ increas-
es. The 27 factor goes with the transform from k, to x. See Frisk
(1994) for further details on this point.
Next, examine the result of transforming over x in equation 24:

F2(kx’xsrc = FTx%kxl—_f(x - xsrc)]

f f(x - xxrc)e N ikxxdx

= ¢~ f fe T ay (24)

Here we have made use of a different change of variable: x" = x
— X, Note that the right-hand sides of equations 23 and 24 are near-
ly the same. Next, define the function:

Fo(k)) = f fa ek dx' (25)

Note that F, is just the Fourier transform of f(x’)f(x’), and that if the
transform of f(x') is Fy(k,), then the transform of f(—x') is
Fy(—k,:), (Oppenheim, et al., 1997). Combining equations 24 and 25
in equation 26, we see that:

Fi(klx) = e " Fo(—k) = e ROl Fy(— k! x,). (26)

Thus evaluating the transform over x,,. at k; gives the same result as

evaluating the transform over x at —k, and applying a phase shift
that depends on those values of x and x,,. that were held constant in
the two different transforms. Since the transform from x to k, decom-
poses the field into plane waves, the transform from x,,. to k, .
R( —k,) does so as well.

Once we have the fields decomposed into their plane-wave com-
ponents, we can use the fact that the plane wave reflection coefficient
is defined as the ratio of the reflected (i.e., up-going) wave to that of
the incident (i.e., down-going) wave. If we take the ratios of the two
fields at each image point, we get nearly this. Note that the phase
shift in equation 26 does not depend on the function being trans-
formed, soitis the same for both fields, and will cancel when they are
divided. The quotient will actually be R( —k,) rather than R(k,), but
because we will sum over all values of k, when we apply our imaging
condition, the result will be the same. The benefit of working in the
plane-wave domain is that geometrical spreading is removed from
the problem.

Once we have the local reflection coefficient, we can use it to con-
struct the reflected field that would be generated by any set of inci-
dent plane waves. This can be done by multiplication in the frequen-
cy-wavenumber domain as seen in equation 27:

Prqflected(kx’f) = R(kx’f)Pincident(kx?f) . (27)

This is actually just a restatement of the definition of the reflection
coefficient, but it provides an expression for the reflected field for an
arbitrary incident field. In particular, we can model the set of down-
going plane waves that would be generated by a point source at the
image location (i.e., at depth). This is important because it can be re-
lated to the image intuitively as follows: using the reflection coeffi-
cient, we can construct the reflected wavefield due to that point
source. Transforming this reflected field back to the time/space do-
main gives the reflected component of the impulse response of the
imaging location (without the up-going “source” field due to our hy-
pothetical point source at depth) as seen in equation 28:

pimpulsefresponse(x’t) = FTE{LX{FT;Jt[R(kx’f)P(kx’f)]}- (28)

Taking the zero-lag (in both space and time) of the impulse response
gives the field that is reflected exactly at the imaging location (non-
zero time lags correspond to energy reflected or scattered from other
locations that then travels back to the image point, and non-zero
space lags corresponds to energy arriving at locations other than the
imaging point). If there is no reflector present at the imaging point,
then there will be no energy in the zero-lag of the impulse response
(again, an impulse response constructed in this way does not contain
any up-going energy due to our hypothetical source), and thus no
multiples in the image.

Summing the quotient of the up- and down-going fields over fre-
quency and wavenumber is nearly the same as taking the zero-lag of
the impulse response of the image point. To reconstruct the impulse
response of the image point analytically, we must multiply the re-
flection coefficient by the down-going field generated by an impul-
sive point source decomposed into plane waves, then transform the
result back to the time/space domain. By just summing over frequen-
cy and wavenumber without first weighting by the plane wave de-
composition of a point source, we obtain an approximation to the ze-
ro-lag of the impulse response. The plane wave decomposition of the
field due to a point source is i/ ke =% (or just i/k, at z = z,,),
where k. = Vk? — k} in the 2D case, and k, = \k*> — k; — k? in the 3D
case, and k is the local wavenumber (see, e.g., Frisk, 1994 for a deri-



w8 Pooleetal.

vation of this). Not including the i/ k. factor means we do not repro-
duce a true impulse response of the image point. Instead, the result
obtained can be interpreted as the field reflected when unit-ampli-
tude plane waves are simultaneously incident from all directions at
once (including imaginary directions, i.e., the evanescent field). This
is a somewhat nonphysical, but mathematically acceptable value to
use for the image point. Importantly, the field due to this sum of plane
waves is impulsive at the imaging point (i.e., all energy arrives at ¢
= 0), even though it does not correspond to the field due to an omni-
directional point source. In our experience including the i/ k. factor
introduces instability problems (because k. is zero when the horizon-
tal wavenumber equals the local wavenumber, i.e., horizontal propa-
gation); thus, in most cases including it leads to more errors than
does simply ignoring it.

An alternative interpretation of the output of the imaging condi-
tion can make the neglect of the i/k, factor more intuitive. Rather
than thinking of the output of the imaging condition as the zero-lag
of the impulse response for the image point, we can instead think of it
as the angle-averaged value of the reflection coefficient for that
point. In such a view, the sum over horizontal wavenumbers does not
correspond to a transform back to the space domain for zero spatial
offset, but rather just the summing required for taking an average.
Thus the i/ k. factor is not required (though a division by the number
of horizontal wavenumbers used in the sum would be). An angle-av-
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Figure 8. A comparison of the impulse response for a single reflector
viewed at three depths. The left panel shows the impulse response at
apoint below the reflector. At such locations, the up-going, nonphys-
ical, reflected field will arrive before the down-going incident field,
and thus energy in the impulse response arrives before # = 0. In the
middle panel, the depth is the same as the reflector. There is signifi-
cant energy at the zero time lag. The right panel represents the result
for an image point above the reflector. In this case, the down-going
energy arrives before the up-going reflected energy, so the impulse
response shows energy coming in at positive times. Note that of the
three cases, only the z = & case has significant energy at the zero time
lag.

eraged reflection coefficient is less physically meaningful than the
zero lag of an impulse response, but it is a sufficiently intuitive quan-
tity that we should not be too uncomfortable in making use of it to
form an image. That said, ignoring the i/ k, factor means that we do
not obtain a true impulse response of the imaging location, and if the
full impulse response is desired rather than just the zero-lag, the fac-
tor should be included. However, it should be noted that including or
ignoring the i/ k. factor should not have an effect on multiples (since
the reflection coefficient does not contain multiples), but it can affect
the amplitude of the image and its relation to the true reflector
strength.

This idea of reconstructing the impulse response can be demon-
strated analytically, again making use of the relatively simple case of
a point source in an constant-velocity layer between two perfectly
reflecting interfaces, as shown in Figure 6. We again make use of the
method of images, and use only the first two down-going pulses and
the first two up-going pulses (i.e., the reflection of the two down-go-
ing pulses). In equations 29 and 30, the two fields, in the frequency-
wavenumber domain, between z = Z,,,c. and z = 2h-Z,,,,.. Will be

o o
pd()wn(kx’sz’f) = k—elkz‘*‘ “.mun:e‘ — —elkz‘~r+<‘soun:e" and (29)

[ i loe (Qhz [ ikle—(h+z
qu)(k,wkvazf): ;glk2|4 (2h &wuraf)‘— kfelk:‘& Oh'*'*sour('e)‘

Z Z

(30)

(see Frisk, 1994). In equation 31, the reflection coefficient is given
by the ratio of the reflected (i.e., up-going) field to the incident (i.e.,
down-going), and the deconvolution imaging condition also uses the
quotient of the fields:

k

Z

(z— Zmun:e) — eikz(z + Zsource)

i
pup _ e
Pdown eikz(Zh ~ Zsource 2 _ eikz(Zh * Zsource — 2)
eikzz(eiikzz.murce — eikzz.votlrce) k(20 —22)
—ik.(2h—27
= — - - =e < R
e’k:(Zh - Z)(e - lkzzsnurce — elkzzmurce)
(31)

Note that the right-hand side is the plane-wave reflection coefficient
for arigid reflector at depth /: a phase shift equal to twice the vertical
distance to the reflector. At the reflector depth, 4, the reflection coef-
ficient is 1. If we multiply this reflection coefficient by the plane
wave decomposition of a point source at the imaging depth, i/k,, and
transform back to the time/space domain, we get the impulse re-
sponse of the image point. Examples of this, for three different val-
ues of z are shown in Figure 8. Note that when z = 7. there is sig-
nificant energy in the zero-lag, although at the other values of z
shown, there is not. Also note that although there were two pulses in
the up- and down-going fields, there is only a single arrival in the im-
pulse responses, showing that in this case multiples have been elimi-
nated.

DISCUSSION: WHY DO WE STILL SEE
CROSSTALK IN THE IMAGE?

We see analytically that the higher-order deconvolution imaging
conditions should eliminate multiples from the image when applied
to stratified media of the appropriate dimension of propagation (i.e.,
2D deconvolution imaging in the 2D propagation case, and 3D de-
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convolution imaging condition in the 3D propagation case). Howev-
er, a number of numerical issues and other practical limitations will
usually keep this analytical result from being obtained, even if the
real subsurface were as simple as those described above.

The numerical issues to note are the stabilizing factor, €, used to
avoid division by zero, and the finite values of 7 and x,,. to which we
are limited in any practical case. The stabilizing factor (or other sta-
bilizing techniques, such as those examined by Schleicher et al.,
2008) means that we obtain only an approximate deconvolution of
the two fields. This small difference can lead to imperfect elimina-
tion of crosstalk at locations where up-going multiple energy arrives
at the same time as the down-going direct waves, similar to what is
seen when the 1D deconvolution imaging condition was applied to
2D or 3D propagation cases. We can begin to see why this would
cause problems by looking at a Taylor expansion of the fraction in
equation 4 in terms of &:

UD* UD* UD* e UD*
= — & &
DD*+¢& DD*  (DD*)? (DD*)?

+... 32)

We have suppressed the dependencies of U and D in equation 32, as
our focus is on €. The first term in equation 32 is the true, unstabi-
lized value we seek. The higher order terms involve additional de-
convolutions of the desired term by DD*. When transformed back to
the time domain, they may well have sufficient energy in the zero-lag
to be visible in the image, even when weighted by &. In fact, with
multiplesitis less their magnitude thatis the problem, and more their
coherency in the image.

Another important numerical issue is the finite range of values of #
and x,,. available. When part of one (or both) of the signals “falls off
the edge” of our measurement, they will no longer be simply shifted
versions of one another. This leads to imperfect deconvolution, as
the “missing” portion of the signal is effectively subtracted from the
result. For example, in the 2D propagation case, the Green’s function
for a point source is not time-limited (i.e., it contains energy at all
times greater than the first arrival), so any finite time depiction of this
signal will actually be missing some of the signal. This is illustrated
in Figure 9, which shows imperfect deconvolution in the 2D Green’s
function case, due to a finite time window. This is not a problem for
signals of finite duration, so long as all the energy remains within the
time window. However, both the 2D and 3D cases are affected by the
finite number of shot and receiver positions, because energy will al-
most always propagate beyond the bounds of the receiver and source
arrays. This is particularly true in the 3D case, where shot locations
in the y direction may be limited. Roughly speaking, the energy in
the multiples due to this effect will be proportional to the energy that
has “fallen off the edge” of our finite measurement. Again, however,
the total energy in the multiples is not necessarily the best way to
consider their impact, as even low-amplitude multiples stand out in
an image due to their coherency.

In addition to these numerical problems, many real-world issues
also reduce the multiple-suppressive property of the deconvolution
imaging conditions. Most importantly, when a reflection coefficient
is not sufficient to represent the up-going field, the result is no longer
a true impulse response of the image point. In cases of nonplanar or
nonhorizontal layering, an incident-wave at one horizontal wave-
number need not produce only a reflected wave at the same horizon-
tal wavenumber; thus, the reflection coefficient is not a sufficient
representation of the reflected field. In such cases, transforming back
to the time/space domain does not give the true impulse response of

the image point, and there may be nonphysical energy in the zero-lag
of the result. In addition, when the subsurface is not horizontally
stratified, transforming over source position no longer gives a result
equivalent to transforming over field position. This is because the
absolute positions of the source and field point matter, not just the
difference between the positions, which makes the change of vari-
ables used in equations 21 and 22 impossible. Hence, in cases where
the subsurface is not perfectly stratified, we should not expect 2D or
3D deconvolution to eliminate multiples, even if numerical issues
were not a problem. Other factors, such as attenuation, measurement
errors, errors made when propagating the fields into the subsurface,
etc., also make it more difficult to obtain the multiple-suppressing
property seen in the analytical case, as was observed by Muijs et al.,
2007b.

Another important practical consideration is the possibility that
the source wavelet is not known. Throughout this article, we have
treated the incident field as known/measured, but in many seismic
experiments the direct wave is not measured, and a modeled version
of itis used as the incident field. This will have an impact on the reso-
lution of the deconvolution imaging conditions, as the reflected field
will not be a time-shifted version of the incident field, and the degree
to which this degrades the image will depend on how far off the mod-
eled field is from the truth. If the deconvolution of the modeled
source pulse from a single reflected pulse is suitably well-behaved,
then theoretically the only effect of using the wrong source signature
(provided all arrival times are still correct) would be to convolve the
image with the function that converts the true source pulse to the
modeled pulse. Symbolically,
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Figure 9. An example of the finite time window resulting in imper-
fect deconvolution in the case of 2D wave propagation. The top two
panels show the 2D isovelocity Green’s function as a function of
time for two different ranges from the source. The bottom panel
shows the result of deconvolving the two signals shown (i.e., using
only the times shown in the figures). While the vast majority of ener-
gy 1s concentrated at the correct time-lag (i.e., the difference in the
arrival times), the finite time window leads to spurious energy at oth-
er times, as indicated by the arrows.
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Dyjoger(f) = Dirue(NK(f)
. U(PPyga ) UDDL DK
Dyiodel(NDypoaN  Purue NKND;, (NK*(f)
UADya  UPDL(D 1

- DModel(f)D:/[ode](f) - Dtrue )D:ue(f) K(f) '
(33)

In equation 33, the effect on the image is deconvolution by K(f),
which is the function that relates the true source signature with the
modeled source signature. Thus, provided a well-behaved 1/K(f)
exists, the mismatch shouldn’t affect the multiple-suppressing abili-
ty of the imaging condition. Satisfying the first equation in 33 with a
well-behaved K(f), may be nontrivial, however.

Another possibility is that the fields themselves are not known ac-
curately at depth. This can be caused by a number of factors, such as
an imperfectly-estimated velocity profile, anisotropy, approxima-
tions used in the propagation method, measurement noise, and the
fact that nonphysical energy is not removed from the fields at reflec-
tor positions when propagating the fields. In principle, we can quan-
tify the errors in our image due to errors in the fields by including er-
ror terms in equation 6:

Dyioga(f) = D(f) + AD(f) Untoaa(f) + U(f) + AU(f)
= UModel(f)D;\kAOdel(f)
DModel(f)D:/Iodel(f)
_ UWD*(f) + AU()D*(f) + U()AD*(f) + AU(H)AD*(f)
D(f)D*(f) + D(f)AD*(f) + D*(f)AD(f) + AD(f)AD*(f)

_UND*()  AU()D*() + UF)AD*(f)
D(f)D*(f) D(f)D*(f)
_ LWOD*NIDNAD(f) + D*(HAD(f)] (34)
[D(HD*(NT '

Not knowing what the error terms are, it will not be practical to im-
plement equation 34 directly, but if bounds can be placed on the un-
certainties, then a bound on the error in the image could be estimat-
ed.
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Figure 10. Diagram indicating the parameters used in the synthetic
data example, with azoom-in on the water layer, showing source and
receiver configuration.

It should be pointed out that all of these practical issues are mutu-
ally confounded, making it almost impossible to study their respec-
tive effects in isolation. In any realistic case, a stabilizing approxi-
mation will be required to avoid division by zero, and data will be
provided only over a finite range of times and positions. Outside of
simple analytical cases, these effects will always appear in combina-
tion. If the source wavelet is not known, and the subsurface is not
horizontally stratified, it will only become more difficult to isolate
their individual effects.

An example of practical issues inhibiting the cross-talk suppress-
ing properties is illustrated in Figures 10 and 11. Figure 10 shows the
geometry for a simple synthetic data example, with 2D propagation
in a horizontally stratified medium. The up- and down-going fields
(including the direct wave from the source) were computed for the
two geometries shown (one with receivers in the water column, one
with receivers just below the water/bottom interface) using the pro-
gram kxmod from the DELPHI software package produced by the
Delphi Consortium. The program models fields for 2D, horizontally
layered media, doing the necessary calculations in the frequency-
wavenumber domain. Surface-related multiples are computed and
included in both fields, and the output is the up- and down-going
fields at the receiver positions (thus freeing us from having to de-
compose the fields into up- and down-going components, and avoid-
ing any numerical errors we might introduce while doing so). Thus,
our starting data consisted of four sets, each consisting of 256
X 1001 traces: An up-going data set for the water-column receivers,
a down-going data set for the water-column receivers, an up-going
data set for the seafloor receivers, and a down-going data set for the
seafloor receivers. Each of the four data sets contained 256 shot gath-
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Figure 11. 2D deconvolution imaging result using the data generated
in the synthetic experiment depicted in Figure 10. The left panel
shows the result when the wavefields are measured just below the
seafloor. The right panel shows the result when the wavefields are
measured in the water column (where multiple energy is much stron-
ger). Arrows indicate multiple energy in the image that we would not
expect to see based on an analytical consideration of the problem
with infinite source and receiver ranges.
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ers, with each shot gather containing 1001 traces. The distance be-
tween the receivers was 5 m, and the distance between source loca-
tions was 10 m. We used one-way wave equation methods to down-
ward continue the fields into the subsurface, and applied the 2D de-
convolution imaging condition of equation 6 at each image location.
This is a case in which the 2D deconvolution imagine condition
should eliminate all multiples (in the analytical case), but as can be
seen in Figure 11, multiples still remain in the image. Multiples are
particularly strong when the wave fields are measured in the water
column (where there is significant multiple energy reflected upward
from the seafloor), whereas when the fields are measured just below
the seafloor, crosstalk is much less visible in the image. That
crosstalk appears in the image is due to the finite range of source and
receiver positions, and the stabilizing factor, as described above. The
reason multiples are less apparent in the seabed case is that the seaf-
loor and sea surface are the strongest reflectors in the problem, and
significant energy is trapped between these two reflectors. When the
field is measured just below the seafloor (seabed cables can measure
above or just below the seabed, see Muijs et al., 2004), energy that is
reflected upward from the seafloor is not included in the up-going
field, thus eliminating the major source of multiples in the image.
Figure 12 illustrates some of the effects of the finite source and re-
ceiver apertures for the water column measurement case. The top
frame shows the magnitude of the multiple around 200 m depth as a
function of horizontal position (normalized by the maximum value
at this depth), while the bottom shows magnitude of the reflector at
150 m depth (again normalized by the maximum value at this
depth). Note that the amplitude of the multiple is stronger away from
the center of the image, and the magnitude of the reflector is more
constant across horizontal positions. The reduction in amplitude in
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Figure 12. Magnitudes as a function of horizontal position for a mul-
tiple (top) and reflector (bottom). The top frame shows the magni-
tude of the multiple in the image at ~200 m depth, normalized to the
maximum value at that depth. The bottom frame shows the magni-
tude of the reflector in the image at 150 m depth. The reduction of
both at offsets greater than 750 m from the center of the figure is due
to tapering of the fields to avoid edge effects. Note that the magni-
tude of the multiple increases away from the center of the image,
supporting the idea that finite aperture effects can lead to increased
multiple energy.

both plots for positions beyond ~750 m is due to tapering of the
fields near the boundaries to reduce edge effects. The model used to
generate the data has no dependence on horizontal position, and the
same stabilizing constant was used at all spatial positions, so any
changes in the image with respect to horizontal position must be due
to the effect of the finite apertures. That multiples get stronger nearer
to the boundaries (until tapering effects dominant) supports the idea
that finite apertures contribute to the problem of incomplete multiple
suppression; away from the middle of the image, the numerical case
becomes a poorer approximation to the analytical (i.e., infinite aper-
ture) case.

There are, of course, options for addressing some of the issues de-
scribed in this section. The most obvious is to apply existing multiple
elimination methods to the data as is done for crosscorrelation-based
imaging. There is extensive literature on surface-related multiple
elimination and we will not attempt to cover it here. Suffice to say,
though, that there is nothing to prevent us from applying the same
methods normally used with crosscorrelation imaging when we in-
stead use deconvolution imaging. If we do so, we will still benefit
from the higher resolution and closer to true amplitude properties of
deconvolution.

An option for reducing the effects of nonphysical energy in the
fields used to compute the image is to use the full two-way wave
equation. Doing so will not entirely eliminate nonphysical energy,
because we do not know the locations of reflectors until we have cre-
ated the image. However, the additional accuracy in the estimated
fields should translate into an improved image. Another option is to
incorporate the imaging result into the subsurface model and per-
form a second migration of the data, now with approximate knowl-
edge of reflector positions and strengths. This is very similar to the
method suggested by Muijs et al. (2007b). Using a two-way wave
equation-based migration method (such as reverse time migration)
in such a case would likely lead to an improvement in the image.

Another option would be to make use of the fact that most of the
multiple energy is due to reflections at the seafloor. Unlike the other
reflectors, the seafloor’s location should be well-known before we
have created the image. Modeling water column peg legs may be
feasible, and would allow one to adaptively subtract multiple energy
from the fields before imaging. This would be similar to existing de-
multiple methods, such as Verschuur et al. (1992), but might include
explicit modeling based on knowledge of the bathymetry.

CONCLUSIONS

Deconvolution imaging conditions offer a number of useful prop-
erties compared to standard crosscorrelation imaging conditions.
Deconvolution imaging conditions offer superior resolution, reflec-
tor amplitudes more directly related to reflection coefficients, and
multiple-suppression in some simple analytic cases. It is also worth
noting that the 2D and 3D deconvolution imaging conditions offer a
way to compute an estimate of the full impulse response of a given
subsurface location, though this is not typically done.

The multiple suppression capability of deconvolution imaging
conditions is limited due to a number of practical issues, including
stabilization requirements, signals extending past finite measure-
ment apertures, and a requirement of horizontal stratification. Thus,
they should not be counted on to deliver multiple free images. How-
ever, this fact should not preclude the use of deconvolution imaging
conditions; the improved resolution and amplitudes alone justify
their use.
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