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ABSTRACT

Deconvolution imaging conditions offer improved resolu-
tion over standard, crosscorrelation-based imaging condi-
tions.Additionally, these imaging conditions produce a result
more directly related to a reflection coefficient than do cross-
correlation-based imaging conditions. In simple analytical
cases, deconvolution imaging conditions also offer the possi-
bility of eliminating crosstalk �i.e., energy in the image due to
reflected energy arriving at a location at the same time as inci-
dent energy that did not cause the reflected energy� when the
full up- and down-going wavefields are used. This means that
in such cases, surface-related multiples can be eliminated
from the image, or that multiple shots could potentially be
fired simultaneously without degrading the image. However,
this cross-talk-suppression property is not observed in most
situations. We show that this is due to a number of issues: the
correct order of deconvolution must be used, stabilization
causes imperfect deconvolution, finite apertures lead to some
of the signal being lost, and an assumption of horizontal strat-
ification is often not being met. Further, imperfect knowledge
of the incident and reflected field due to such factors as aniso-
tropy, poorly estimated velocity fields, and measurement
noise can also lead to imperfect deconvolution. Thus, decon-
volution imaging conditions should not be counted on to
completely eliminate crosstalk from images.

INTRODUCTION

The purpose of seismic imaging is to locate reflectors in the sub-
urface so that geology can be inferred. Thus, the desirable qualities
f an imaging condition would include: being able to accurately lo-
ate interfaces that are present, imaging no apparent interfaces
here there are none, and ideally providing further information

bout the physical properties of the rock near the interfaces. Decon-
olution imaging conditions �see Claerbout, 1971; Valenciano and

Manuscript received by the Editor 24 September 2009; revised manuscript
1University of Edinburgh, Edinburgh, U. K. E-mail: travis.poole@ed.ac.uk
2Schlumberger Cambridge Research, Cambridge, U. K. E-mail: JRobertss
3WesternGeco London Technology Centre, Gatwick, U. K. E-mail: DMan
2010 Society of Exploration Geophysicists.All rights reserved.
W1
iondi, 2003, and Schleicher et al., 2008� offer improvements in all
f these areas over standard crosscorrelation, imaging conditions
Claerbout, 1971�. They allow interfaces to be better located because
f the improved resolution they offer. They have some ability to re-
uce crosstalk in the images thus reducing the risk of interfaces be-
ng identified where they do not really exist. Finally, the magnitude
f the reflectors in a deconvolution image are more closely related to
he reflection coefficient, making tractable some basic inferences
bout rock properties on either side of the interface. However, al-
hough these properties of deconvolution imaging conditions can be
erived for simple analytical cases and are used to justify the use of
uch imaging conditions, they are not obtained in realistic cases. In
his paper, we explain why this is so, and in particular we show that
he cross-talk eliminating property is only achieved in the case of a
orizontally stratified medium, and that even in such cases numeri-
al issues such as stabilizing approximations and finite ranges of the
ariables can preclude the full advantages seen in the analytical case.
owever, the improved resolution is retained in practice, and the
agnitude in the resulting images is more closely related to a reflec-

ion coefficient than those produced by crosscorrelation imaging.
The next section reviews the basic concepts of propagating the in-

ident and received fields and using them to create an image. We then
resent deconvolution imaging conditions and provide a set of ex-
mples illustrating key points. After this we discuss the factors that
ead to multiples not being properly removed from deconvolution
mages. The final section summarizes our conclusions.

WAVE PROPAGATION AND IMAGING

In seismic imaging, the source field is usually propagated compu-
ationally forward in time, into the subsurface. The reflected field is
ropagated backward in time. The two fields are then combined at
ach potential subsurface reflector or diffractor location, by using an
maging condition. The deconvolution imaging condition, like the
rosscorrelation imaging condition, is based on the imaging concept
ntroduced by Claerbout �1971�: at a reflector, the reflected �usually
p-going� energy will simply be a scaled version of the incident
usually down-going� energy. The scaling factor will be the reflec-

d 11 May 2010; published online 20 October 2010.
w.Curtis@ed.ac.uk.
.com.
wick.westerngeco.slb.com.
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W2 Poole et al.
ion coefficient of the reflector. Or, stated another way, the time be-
ween the arrival of the incident field and the reflected field will de-
rease as the distance from the interface decreases; at the reflector
he two fields arrive simultaneously. Thus, if we deconvolve the re-
ected field from the incident field at a reflector, the result will have
nergy at zero-time lag. At a location away from a reflector, there
ill be a time delay between the arrival of the incident energy and

ny energy reflected from elsewhere. Deconvolving the two fields at
uch a location should not produce significant energy at zero time
ag. This is easy to see in the case of a single incident pulse, and a sin-
le reflected pulse, as shown in Figure 1. In the figure we see that
hen the incident and reflected pulses arrive at the same time, there

s energy in the zero-lag of the deconvolution. However, when the
ulses arrive at different times, the energy in the deconvolution oc-
urs at a lag corresponding to the difference in arrival times. The de-
onvolution becomes more complicated when there are many reflec-
ions, and when the incident field is more complicated than a single
ulse, because the two fields are not merely time-shifted-and-scaled
ersions of one another. Thus, there will be multiple time-lags with
on-zero energy in the deconvolution of the two fields. However, the
rinciple remains the same: when the reflected field contains a scaled
opy of the incident field, arriving at the same time as the incident
eld, there will be energy in the zero-lag of the deconvolution. This
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igure 1. Asimple example of deconvolution. The top frame �a� rep-
esents an incident pulse arriving at an image point in the subsurface.
he two frames below �b,c� represent two possible reflected wave-
elds. The frames to the right �d,e� show the result of deconvolving

ncident field from the reflected fields to their left. The middle frames
b,d� represent what would be seen at the reflector’s position. The in-
ident and reflected pulses arrive at the same time, and the deconvo-
ution of the two fields �d� has all its energy at zero time-lag. The bot-
om frames �c,e� represent what would be observed at a point away
rom a reflector. The incident field arrives first, then continues on to
he reflector, generating a reflected pulse which propagates in the op-
osite direction and arrives at the image point some time later. The
econvolution �e� result has energy at the time-lag corresponding to
he difference in arrival times of the two pulses. Note that in both cas-
s, a discrete delta function is the result. The discrete delta function
an be thought of as a sinc function sampled at all its zeros. Such
ampling occurs when the two signals are an integer number of sam-
le points apart.
an be seen in Figure 2, which shows an example similar to Figure 1,
ut with more complicated incident and reflected fields.

The process becomes further complicated when we attempt to
ompute the fields at the reflector positions �i.e., at depth� because
e normally end up back-propagating reflected energy past the loca-

ion where it was generated. As the incident field interacts with each
uccessive reflector it produces a series of reflections. Hence, if we
nly consider the reflected field, energy will suddenly “appear” as
ach reflector is reached by the incident field. So, once a part of the
easured reflected field has been back-propagated into the back-

round model to the location at which it was “added” to the up-going
eld, it should, in principle, be removed from the reflected field be-
ore that field is back-propagated further. However, since back-prop-
gation of the field and the imaging are usually done in separate
teps, this removal of energy is not normally done, nor is it likely to
e feasible in realistic cases. Thus, nonphysical energy is syntheti-
ally back-propagated past the reflector that generated it. This non-
hysical energy can “arrive” at a location at the same time as the inci-
ent energy, even though there is no reflector at the location where
his occurs, leading to artifacts in the image.

A related problem exists for the forward-propagated incident
eld. In reality, the energy in the incident field is reduced at each re-
ector, because it is converted into the reflected field.Again, though,

his reduction of the incident field at reflector locations is usually not
aken into account when forward-propagating the incident field.Ad-
itionally, if there are multiple sources of incident �again, usually
own-going� energy, it is possible for reflected energy caused by one
f the sources to arrive at the same time as the incident energy from
nother source, potentially causing the appearance of a reflector
here there is none.
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igure 2. A more complicated example than shown in Figure 1.
gain, �a� shows an incident field, now containing two pulses. �b and
� Two possible reflected fields. Both of these reflected fields are
hifted versions of that shown in �d�, which shows three scaled and
hifted versions of the incident field summed to create a single re-
ected field �the three components are shown in lighter lines, shifted
pward for clarity, and the sum is shown in the darker line�. �e and f�
he result of deconvolution of the two reflected fields to their left.
hough the deconvolution is not a single delta function anymore, en-
rgy occurs in the zero lag only when a scaled version of the incident
eld arrives at the same time as the incident field.
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Deconvolution imaging and cross talk W3
These problems with the incident and reflected fields are exam-
les of so-called “crosstalk” and cause significant problems for both
econvolution and crosscorrelation imaging conditions. Put con-
isely, crosstalk occurs at locations in the image where reflected en-
rgy arrives at the same time as incident energy that did not cause the
eflected energy. This can occur when some of the energy is non-
hysical �and thus only “arrives” at the image point because we have
ot removed it from the field at the point of reflection�, or when fields
rom two �or more� different sources interact.

In simple cases, deconvolution imaging conditions, which will be
ormally introduced in the next section, are able to overcome this
rosstalk, as will be shown in the examples section. In more compli-
ated cases, this property is not attained, and the complicating fac-
ors that cause this to be so are examined in the discussion section.
nderstanding the cross-talk reducing capabilities of deconvolution

maging conditions, and the limits thereof, becomes more important
s these imaging conditions become more commonly used. It is es-
ecially important when more complicated down-going fields are
sed, such as when down-going multiples are treated as secondary
nsonification �Muijs et al., 2007a�, or if multiple sources fire simul-
aneously �e.g., Hampson et al., 2008�.

DECONVOLUTION IMAGING CONDITIONS

The 1D deconvolution imaging condition is based on equation 1
Claerbout, 1971�:

I1D� �x,y,z��
1

2�
�
�

U�x,y,z,��
D�x,y,z,��

d�, �1�

here x is the in-line spatial coordinate, y is the cross-line spatial co-
rdinate, z is depth �positive downward�, � is the angular frequency,
is the reflected field �denoted as such because it is usually the up-

oing field�, and D is the incident field �“D” for down-going�. De-
onvolution in the time domain is equivalent to division in the fre-
uency domain, hence the quotient U /D. Integrating over frequency
ives the zero-time-lag value that would be obtained if we trans-
ormed back to the time domain. This can be seen in equation 2 by
xamining the definition of the inverse Fourier transform given by

h�t��FT�1�H�����
1

2�
�
��

�

H���e�i�td� . �2�

he corresponding forward Fourier transform in equation 3 is given
y

H����FT�h�t��� �
��

�

h�t�ei�tdt . �3�

quation 1 is not the form of the 1D deconvolution imaging condi-
ion that is usually implemented �e.g., Muijs et al., 2007�. To avoid
ivision by zero, the top and bottom of the quotient are multiplied by
he conjugate of D, which makes the denominator purely real and
on-negative. Then, a small real value, �, can be added to ensure the
enominator is not zero. Summation over frequency replaces inte-
ration because the data are obtained at a discrete set of frequency
alues. The resulting image can also be summed over all shots, to
ive a higher signal to noise ratio as seen in equation 4:
1d�x,y,z��
1

2�
�
xsrc

���
�

U�x,y,z,�;xsrc�D*�x,y,z,�;xsrc�
D�x,y,z,�;xsrc�D*�x,y,z,�;xsrc���

��� .

�4�

ere, xsrc, is the horizontal position of the source. Note that this is an
xample of the well-known damped least squares solution �Leven-
erg, 1944�.

The standard crosscorrelation imaging condition is based on this
ame equation, but goes one step further. The denominator is now
urely real and non-negative, so it does not affect the phase of the
uotient, and hence it can be approximated by 1 without greatly
hanging the spatial locations at which zero-lag energy is large
Claerbout, 1971� as seen in equation 5:

cross-cor�x,y,z�

�
1

2�
�
xsrc

��
�

U�x,y,z,�;xsrc�D*�x,y,z,�;xsrc���� . �5�

he 1D deconvolution imaging condition deconvolves two time sig-
als, tacitly assumed to be just scaled and time-shifted versions of
ne another. This is accurate for a 1D problem, but in cases of 2D or
D propagation, higher order deconvolution is required. The 2D and
D deconvolution imaging conditions �Valenciano and Biondi,
003� corresponding to equation 4 are given by:

I2D�x,y,z�

� �
kxsrc

��
�

U�x,y,z,�;kxsrc�D*�x,y,z,�;kxsrc�
D�x,y,z,�;kxsrc�D*�x,y,z,�;kxsrc���

��

2� �
�

�kxsrc

2�
, and �6�

3D�x,y,z�

�A �
kysrc

�
kxsrc

���
�

U�x,y,z,�;kxsrc,kysrc�D*�x,y,z,�;kxsrc,kysrc�
D�x,y,z,�;kxsrc,kysrc�D*�x,y,z,�;kxsrc,kysrc����,

�7�

here kx src is Fourier transform pair of xsrc, likewise for ysrc and ky src,
nd A����kxsrc�kysrc /8� 3 in equations 6 and 7. We will examine
he motivation for, and benefits of these higher-order deconvolution
maging conditions in the next section.

It should be noted at this point that adding the small term � to the
enominator is not the only way to stabilize the division. Schleicher
t al. �2008� examine and compare a number of different methods for
tabilizing the denominator, including one introduced by Guitton et
l. �2007�. As much of our discussion will involve simple analytical
ituations where we can apply the basic form shown in equation 1,
he differences between these various methods will be ignored for
he moment. It is sufficient for our purposes to say that various ap-
roximations to equation 1 exist, all of which deal with the numeri-
al stability issue, but all of which also introduce some degree of er-
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W4 Poole et al.
or. We direct those readers interested in differences between the var-
ous methods to Schleicher et al. �2007�, in which the types of errors
ntroduced by each method are examined in detail.

In the next section we will examine properties of the deconvolu-
ion imaging conditions by looking at simple cases in which analyti-
al solutions can be obtained. Particular attention will be paid to the
ross-talk suppressing property of the deconvolution imaging condi-
ions, because this trait would be extremely useful if it could be
chieved in realistic situations. Muijs et al. �2007a� touch on this
hen they make use of the 2D deconvolution imaging condition in

heir DIPMR methodology, which uses down-going multiple energy
s secondary ensonification of the subsurface. Their method elimi-
ates multiples in simple synthetic data sets, but not in the more real-
stic PLUTO data set, prompting them to develop a multiple-sup-
ression method to accompany the 2D deconvolution imaging con-
ition �Muijs et al., 2007b�. Furthermore, if deconvolution imaging
onditions could suppress crosstalk in realistic cases, multiple shots
ould potentially be fired simultaneously without leading to artifacts
n the image. This could lead to increased survey efficiency, as the to-
al time required to shoot a desired number of shots could be re-
uced.

EXAMPLES

To examine the deconvolution imaging conditions and the condi-
ions under which they suppress multiples, we will start with a very
imple case and work up to more complicated situations. The sim-
lest case to consider is the 1D imaging condition in equation 1 ap-
lied to 1D wave propagation in a medium with constant wave
peed, c. The solution to the wave equation in this case is h�t�z /c�
or a disturbance propagating in the positive z direction, and h�t

z /c� for a disturbance propagating in the negative z direction,
ere h is an arbitrary function of t that defines the source pulse

hape.
We imagine two pulses travelling in the positive z direction and
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igure 3. The incident field as a function of time and depth. The top
race represents the measured/known incident field at the receiver
epth.All traces below this are the result of propagating the field for-
ard in time to lower depths.
eparated by a time delay, t0. We can imagine these two pulses as be-
ng due to two different sources — due to a single complex source or
s a primary and a multiple reflected from some reflector outside our
rea of consideration; the cause of the second pulse is not important
or the illustration, so long as a second pulse is present. Because the
ave equation is linear, we can describe the total disturbance as the

um of the two individual disturbances. Thus, the total field traveling
n the positive direction can be expressed as seen in equation 8:

pincident�z,t��p1�t�z/c��p2�t� t0�z/c� . �8�

e model a reflector at z�zref, with reflection coefficient R, by in-
luding a second pair of reflected disturbances traveling in the nega-
ive z direction in equation 9:

preflected�z,t��Rpr1�z,t��Rpr2�z,t�, �9�

here

pr1�z,t��	 0 t�zref /c
p1�t�z/c�2zref /c� t�zref /c



pr2�z,t��	 0 t�zref /c� t0

p2�t� t0�z/c�2zref /c� t�zref /c� t0

 .

�10�

owever, because we do not know where the reflector is when we
ack-propagate the reflected field, we do not know where to apply
he zero conditions in equation 10. Thus, the expression that we actu-
lly use for the reflected field when applying our imaging condition
ill be

preflected�z,t��Rp1�t�z/c�2zref /c�

�Rp2�t� t0�z/c�2zref /c� �11�

or all values of t. Note that though zref appears in the right hand side
f equation 11, the data to which we would normally have access
ould be the left-hand-side, which is a function only of z, and t. In
ther words, our data would depend on zref but we would not know its
alue a priori.

The situation is illustrated in Figures 3 and 4. Figure 3 shows the
ncident field, as a function of time at a number of different depths.
he field at measurement depth, where the field is actually known, is
hown at the top of the figure. Each trace below this is a time-shifted
ersion of the measured field, illustrating how we propagate the inci-
ent field forward in time as it travels to other depths. Figure 4 shows
he reflected field.Again, the top trace is the measured field, and low-
r traces are time-shifted versions of this. However, in this case, they
re shifted backward in time as we propagate the field to depth. We
oint out that the reflected field is propagated to all depths, despite
he fact that it does not really exist for depths deeper than the �as yet
nknown� reflector location.

Equations 8 and 11 contain sufficient information to apply the de-
onvolution imaging condition. First, in equations 12 and 13, we
ransform the incident and reflected fields to the frequency domain
sing equation 3:

pincident�z,���e�i�
z
c P1����e�i�� z

c
�t0�P2���, �12�

nd
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Deconvolution imaging and cross talk W5
preflected�z,���ei�
z�2zref

c RP1���

�ei�� z�2zref

c
�t0�RP2���, �13�

here P1��� is the Fourier transform of p1�t�, and likewise for P2. In
quation 14, dividing the reflected field by the incident field in the
requency domain is equivalent to deconvolution in the time do-
ain, and gives

I1d�z,���
Preflected�z,��
Pincident�z,��

�Rei�2� z�zref

c
� . �14�

n equation 15, transforming back to the time domain gives

I1D�z,t�� �R	 �t�2
z�zref

c
� . �15�

ote that although there were two disturbances involved in the inci-
ent and reflected fields, there is only a single delta function in the
econvolution. Hence, if we take the zero-time-lag of this result, we
et zero everywhere except at z�zref, which is the location of the re-
ector. This zero-lag also contains information about the reflection
oefficient, R, through simple multiplication.

Contrast this with the result that would be obtained using cross-
orrelation. Instead of dividing the reflected field by the incident
eld in the frequency domain, in equation 16 we multiply the conju-
ate of the incident field by the reflected field, giving

Icross-cor�z,��� Preflected�z,��P
incident
* �z,��

�R�P1
*���P1���� P2

*���P2����ei�
2z�2zref

c

�R�P1
*���P2����ei�� 2z�2zref

c
�t0�

�R�P2
*���P1����ei�� 2z�2zref

c
�t0�, �16�

here * indicates the complex conjugate.
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igure 4. The reflected field as a function of time and depth. The top
race represents the measured/known reflected field at the receiver
epth. All traces below this are the result of propagating the field
ackward in time to lower depths. Compare with the incident field
hown in Figure 3.
With crosscorrelation, even ifp1 and p2 are simple pulses, we ob-
ain three pulses after transformation back to the time domain: the
true” reflection event, but also two other events due to crosstalk be-
ween p1 and p2. Specifically, there is energy in the zero lag at z

zref as desired, but also energy in the zero lag at z�zref �ct0 /2,
hich leads to crosstalk in the image, as can be seen in Figure 5,
hich shows the result of using the two imaging conditions in this

ase. The deconvolution imaging condition shows one reflector po-
ition �75 m�, whereas the crosscorrelation imaging condition
hows three �50 m, 75 m, 100 m�. Also note that the imaged reflec-
ors are wider than that in the deconvolution case, illustrating the su-
erior resolution of the deconvolution imaging condition that we ex-
ect after seeing equations 15 and 16.

This simple analytical case shows some advantages of the decon-
olution imaging condition: there is improved resolution �because
econvolution provides a delta function, when one function is just a
ime-shifted and scaled version of the other�, and there is a simple re-
ationship between the image magnitude and the reflection coeffi-
ient and multiples are eliminated from the image. However, when
e move to higher-dimensional propagation, geometric spreading
akes imaging more complicated. The 1D deconvolution imaging

ondition no longer eliminates crosstalk because the signals at two
ifferent locations are no longer related through a simple time shift
nd scaling due to geometric spreading �i.e., a change of receiver po-
ition no longer results in just a time shift, but also a change in ampli-
ude as well, and different parts of the signal may be scaled by differ-
nt amounts�. This can be seen by looking at another simple exam-
le. Consider a point source in a constant-velocity fluid between two
erfectly reflecting surfaces, as shown in Figure 6. The upper surface
at z�0� is a pressure-release surface �like the air-sea boundary�,
nd the lower surface �at z�h� is rigid �like an idealized hard sea-
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igure 5. The imaging results for deconvolution �left� and cross-cor-
elation �right� imaging conditions applied to that data in Figures 3
nd 4. Deconvolution imaging produces a single, narrow spike,
hile cross-correlation produces three comparatively broad pulses,

ven though there was only a single reflector. The extra pulses are
ue to crosstalk between the different pulses in the incident and re-
ected fields.
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W6 Poole et al.
ed�. The wavefields can be modelled using the method of images
see, e.g., Frisk, 1994�, and for simplicity we consider only the two
rst down-going waves �from the source and its sea-surface reflec-

ion� and the first two up-going waves �the seabed reflection of the
wo down-going waves�. With 3D wave propagation, the down-go-
ng field below the source in this case is seen in equations 17–22

pdown�x,y,z,t��
1

r1
p�t�r1/c��

1

r2
p�t�r2/c�, �17�

here

r1���x�xsource�2� �y�ysource�2� �z�zsource�2, and

�18�

r2���x�xsource�2� �y�ysource�2� �z�zsource�2. �19�

he up-going field is

pup�x,y,z,t��
1

r3
p�t�r3/c��

1

r4
p�t�r4/c�, �20�

here

3

���x�xsource�2� �y�ysource�2� �2h�zsource�z�2 and

�21�

4Of course, if the medium truly were horizontally stratified, we would only
f a specific x position in the image would be irrelevant. However, transformi
ur assumption of horizontal stratification is violated, whereas a transformati
omposition at a single point would be to take a local transform at each imagin
o kx using only the data between x�D and x�D for some value D�. The add
owever, in situations where computational limits are not a factor, a local tran
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igure 6. Geometry of a simple case with spreading: a source in an
sovelocity medium between two perfect reflectors. The true source
s indicated by the asterisk, while the first three image sources are in-
icated by diamonds. The distances to an arbitrary imaging point are
enoted r1 to r4. The horizontal lines indicate positions of the reflec-
ors.
4���x�xsource�2� �y�ysource�2� �2h�zsource�z�2,

�22�

nd p�t� is the time signature of the source.
At z�h, we see that r1�r3 and r2�r4, and thus pdown�pup, so

he signals deconvolve perfectly to give a single delta function as the
esult, as we saw in the 1D example.At other depths, however, this is
ot the case: the r values are not related by a simple multiplicative
onstant, so the signals do not leave a simple delta function after de-
onvolution. In particular, where r1�r4 or r2�r3 there will be sig-
ificant energy in the zero-lag of the deconvolution, leading to
rosstalk in the image, as can be seen in Figure 7.

In such cases, however, higher-dimensional deconvolution imag-
ng conditions can restore some of the multiple-eliminating proper-
ies observed in the 1D case. They do so by decomposing the fields
nto plane waves, and thus avoiding the problems associated with
eometric spreading. To do this, the appropriate dimension of de-
onvolution must be used: 2D deconvolution for 2D spreading prob-
ems, and 3D deconvolution for 3D spreading problems. We will first
how how the 2D and 3D deconvolution imaging conditions decom-
ose the fields into plane waves, and then examine why doing so
liminates multiples.

The 2D and 3D deconvolution imaging conditions are based on
he assumption of a horizontally stratified medium. This assumption

akes it possible to decompose the field into plane waves by trans-
orming over the source coordinates rather than x �and y in the 3D
ase�. The advantage of transforming over source position is that the
esult corresponds to a single location �i.e., image point�, whereas
ransforming over x combines information from all horizontal posi-
ions in the subsurface and thus cannot be linked to a single image
oint.4 It should be noted that there are other methods of decompos-
ng the wavefield at a single point into plane waves �see Wu et al.,
008, and references within�, but they are not directly related to the

1D “image,” indicating reflector positions as a function of depth, and the lack
source position still gives an answer for each x-position, even in cases where
x will not. It should be noted that another way of obtaining a plane wave de-
using a subset of the data centered at the image point �i.e., a transform from x
utational load of an extra transform at each image point would be significant;
ver x may well be advantageous.
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igure 7. Imaging result using 1D deconvolution with 3D spreading.
he true reflector is correctly located, but in this case multiples are
ot suppressed as they were in the 1D problem.
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Deconvolution imaging and cross talk W7
D and 3D deconvolution imaging conditions, so we will not discuss
hem further here.

How is it that we can get the same result when transforming over
ource position, xsrc, instead of horizontal position, x? The important
hing to realize is that in a horizontally stratified medium, the field
epends only on the horizontal distance between the source and the
eld point, and on the depths of each, but not on the absolute hori-
ontal position of either. Moving the source right while keeping the
eld point constant will have the same result as moving the field
oint left while keeping the source’s position constant. Thus p�x,xsrc�
an be written p�x�xsrc�, where dependence on other variables �i.e.,
, z, etc.� has been suppressed for clarity. Let us examine the result of
ransforming such a function over xsrc and x, and compare the results.
irst, in equation 23, if we transform over xsrc we get:

F1�kxsrc,x��FTxsrc→kxsrc
�f�x�xsrc��

� �
��

�

f�x�xsrc�e�ikxsrcxsrcdxsrc

�e�ikxsrcx�
��

�

f��x��e�ikxsrcx�dx�. �23�

ere we have made use of a change of variable: x��xsrc�x. Also,
e have followed the convention of transforming from x to kx using a
ourier transform with a sign in the exponent opposite to that used to

ransform from t to �. This is done so that a plane wave with a posi-
ive wavenumber propagates in the positive x direction as t increas-
s. The 2� factor goes with the transform from kx to x. See Frisk
1994� for further details on this point.

Next, examine the result of transforming over x in equation 24:

F2�kx,xsrc��FTx→kx
�f�x�xsrc��

� �
��

�

f�x�xsrc�e�ikxxdx

�e�ikxxsrc�
��

�

f�x��e�ikxx�dx� �24�

ere we have made use of a different change of variable: x��x
xsrc. Note that the right-hand sides of equations 23 and 24 are near-

y the same. Next, define the function:

F0�kx��� �
��

�

f�x��e�ikx�x�dx�. �25�

ote that F0 is just the Fourier transform of f�x��f�x��, and that if the
ransform of f�x�� is F0�kx��, then the transform of f��x�� is

0��kx��, �Oppenheim, et al., 1997�. Combining equations 24 and 25
n equation 26, we see that:

F1�kx�,x��e�ikx�xF0��kx��e�ikx��x�xsrc�F2��kx�,xsrc� . �26�

hus evaluating the transform over x at k� gives the same result as
src x
valuating the transform over x at �kx� and applying a phase shift
hat depends on those values of x and xsrc that were held constant in
he two different transforms. Since the transform from x to kx decom-
oses the field into plane waves, the transform from xsrc to kx src

��kx� does so as well.
Once we have the fields decomposed into their plane-wave com-

onents, we can use the fact that the plane wave reflection coefficient
s defined as the ratio of the reflected �i.e., up-going� wave to that of
he incident �i.e., down-going� wave. If we take the ratios of the two
elds at each image point, we get nearly this. Note that the phase
hift in equation 26 does not depend on the function being trans-
ormed, so it is the same for both fields, and will cancel when they are
ivided. The quotient will actually be R��kx� rather than R�kx�, but
ecause we will sum over all values of kx when we apply our imaging
ondition, the result will be the same. The benefit of working in the
lane-wave domain is that geometrical spreading is removed from
he problem.

Once we have the local reflection coefficient, we can use it to con-
truct the reflected field that would be generated by any set of inci-
ent plane waves. This can be done by multiplication in the frequen-
y-wavenumber domain as seen in equation 27:

Preflected�kx,f��R�kx,f�Pincident�kx,f� . �27�

his is actually just a restatement of the definition of the reflection
oefficient, but it provides an expression for the reflected field for an
rbitrary incident field. In particular, we can model the set of down-
oing plane waves that would be generated by a point source at the
mage location �i.e., at depth�. This is important because it can be re-
ated to the image intuitively as follows: using the reflection coeffi-
ient, we can construct the reflected wavefield due to that point
ource. Transforming this reflected field back to the time/space do-
ain gives the reflected component of the impulse response of the

maging location �without the up-going “source” field due to our hy-
othetical point source at depth� as seen in equation 28:

pimpulse_response�x,t��FTkx→x
�1 
FTf→t

�1 �R�kx,f�P�kx,f��� . �28�

aking the zero-lag �in both space and time� of the impulse response
ives the field that is reflected exactly at the imaging location �non-
ero time lags correspond to energy reflected or scattered from other
ocations that then travels back to the image point, and non-zero
pace lags corresponds to energy arriving at locations other than the
maging point�. If there is no reflector present at the imaging point,
hen there will be no energy in the zero-lag of the impulse response
again, an impulse response constructed in this way does not contain
ny up-going energy due to our hypothetical source�, and thus no
ultiples in the image.
Summing the quotient of the up- and down-going fields over fre-

uency and wavenumber is nearly the same as taking the zero-lag of
he impulse response of the image point. To reconstruct the impulse
esponse of the image point analytically, we must multiply the re-
ection coefficient by the down-going field generated by an impul-
ive point source decomposed into plane waves, then transform the
esult back to the time/space domain. By just summing over frequen-
y and wavenumber without first weighting by the plane wave de-
omposition of a point source, we obtain an approximation to the ze-
o-lag of the impulse response. The plane wave decomposition of the
eld due to a point source is i /kzeikz�z�zsrc� �or just i /kz at z�zsrc�,
here kz��k2�kx

2 in the 2D case, and kz��k2�kx
2�ky

2 in the 3D
ase, and k is the local wavenumber �see, e.g., Frisk, 1994 for a deri-
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W8 Poole et al.
ation of this�. Not including the i /kz factor means we do not repro-
uce a true impulse response of the image point. Instead, the result
btained can be interpreted as the field reflected when unit-ampli-
ude plane waves are simultaneously incident from all directions at
nce �including imaginary directions, i.e., the evanescent field�. This
s a somewhat nonphysical, but mathematically acceptable value to
se for the image point. Importantly, the field due to this sum of plane
aves is impulsive at the imaging point �i.e., all energy arrives at t
0�, even though it does not correspond to the field due to an omni-

irectional point source. In our experience including the i /kz factor
ntroduces instability problems �because kz is zero when the horizon-
al wavenumber equals the local wavenumber, i.e., horizontal propa-
ation�; thus, in most cases including it leads to more errors than
oes simply ignoring it.

An alternative interpretation of the output of the imaging condi-
ion can make the neglect of the i /kz factor more intuitive. Rather
han thinking of the output of the imaging condition as the zero-lag
f the impulse response for the image point, we can instead think of it
s the angle-averaged value of the reflection coefficient for that
oint. In such a view, the sum over horizontal wavenumbers does not
orrespond to a transform back to the space domain for zero spatial
ffset, but rather just the summing required for taking an average.
hus the i /kz factor is not required �though a division by the number
f horizontal wavenumbers used in the sum would be�.An angle-av-
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igure 8. Acomparison of the impulse response for a single reflector
iewed at three depths. The left panel shows the impulse response at
point below the reflector.At such locations, the up-going, nonphys-

cal, reflected field will arrive before the down-going incident field,
nd thus energy in the impulse response arrives before t�0. In the
iddle panel, the depth is the same as the reflector. There is signifi-

ant energy at the zero time lag. The right panel represents the result
or an image point above the reflector. In this case, the down-going
nergy arrives before the up-going reflected energy, so the impulse
esponse shows energy coming in at positive times. Note that of the
hree cases, only the z�h case has significant energy at the zero time
ag.
raged reflection coefficient is less physically meaningful than the
ero lag of an impulse response, but it is a sufficiently intuitive quan-
ity that we should not be too uncomfortable in making use of it to
orm an image. That said, ignoring the i /kz factor means that we do
ot obtain a true impulse response of the imaging location, and if the
ull impulse response is desired rather than just the zero-lag, the fac-
or should be included. However, it should be noted that including or
gnoring the i /kz factor should not have an effect on multiples �since
he reflection coefficient does not contain multiples�, but it can affect
he amplitude of the image and its relation to the true reflector
trength.

This idea of reconstructing the impulse response can be demon-
trated analytically, again making use of the relatively simple case of
point source in an constant-velocity layer between two perfectly

eflecting interfaces, as shown in Figure 6. We again make use of the
ethod of images, and use only the first two down-going pulses and

he first two up-going pulses �i.e., the reflection of the two down-go-
ng pulses�. In equations 29 and 30, the two fields, in the frequency-
avenumber domain, between z�zsource and z�2h-zsource will be

pdown�kx,ky,z,f��
i

kz
eikz�z�zsource��

i

kz
eikz�z�zsource�, and �29�

pup�kx,ky,z,f��
i

kz
eikz�z��2h�zsource���

i

kz
eikz�z��2h�zsource��

�30�

see Frisk, 1994�. In equation 31, the reflection coefficient is given
y the ratio of the reflected �i.e., up-going� field to the incident �i.e.,
own-going�, and the deconvolution imaging condition also uses the
uotient of the fields:

pup

pdown
�

eikz�z�zsource��eikz�z�zsource�

eikz�2h�zsource�z��eikz�2h�zsource�z�

�
eikzz�e�ikzzsource�eikzzsource�

eikz�2h�z��e�ikzzsource�eikzzsource�
�e�ikz�2h�2z�.

�31�

ote that the right-hand side is the plane-wave reflection coefficient
or a rigid reflector at depth h: a phase shift equal to twice the vertical
istance to the reflector. At the reflector depth, h, the reflection coef-
cient is 1. If we multiply this reflection coefficient by the plane
ave decomposition of a point source at the imaging depth, i /kz, and

ransform back to the time/space domain, we get the impulse re-
ponse of the image point. Examples of this, for three different val-
es of z are shown in Figure 8. Note that when z�zsource there is sig-
ificant energy in the zero-lag, although at the other values of z
hown, there is not. Also note that although there were two pulses in
he up- and down-going fields, there is only a single arrival in the im-
ulse responses, showing that in this case multiples have been elimi-
ated.

DISCUSSION: WHY DO WE STILL SEE
CROSSTALK IN THE IMAGE?

We see analytically that the higher-order deconvolution imaging
onditions should eliminate multiples from the image when applied
o stratified media of the appropriate dimension of propagation �i.e.,
D deconvolution imaging in the 2D propagation case, and 3D de-
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Deconvolution imaging and cross talk W9
onvolution imaging condition in the 3D propagation case�. Howev-
r, a number of numerical issues and other practical limitations will
sually keep this analytical result from being obtained, even if the
eal subsurface were as simple as those described above.

The numerical issues to note are the stabilizing factor, �, used to
void division by zero, and the finite values of t and xsrc to which we
re limited in any practical case. The stabilizing factor �or other sta-
ilizing techniques, such as those examined by Schleicher et al.,
008� means that we obtain only an approximate deconvolution of
he two fields. This small difference can lead to imperfect elimina-
ion of crosstalk at locations where up-going multiple energy arrives
t the same time as the down-going direct waves, similar to what is
een when the 1D deconvolution imaging condition was applied to
D or 3D propagation cases. We can begin to see why this would
ause problems by looking at a Taylor expansion of the fraction in
quation 4 in terms of �:

UD*

DD*��
�

UD*

DD*
��

UD*

�DD*�2 ��2 UD*

�DD*�3 � . . . �32�

e have suppressed the dependencies of U and D in equation 32, as
ur focus is on �. The first term in equation 32 is the true, unstabi-
ized value we seek. The higher order terms involve additional de-
onvolutions of the desired term by DD*. When transformed back to
he time domain, they may well have sufficient energy in the zero-lag
o be visible in the image, even when weighted by �. In fact, with

ultiples it is less their magnitude that is the problem, and more their
oherency in the image.

Another important numerical issue is the finite range of values of t
nd xsrc available. When part of one �or both� of the signals “falls off
he edge” of our measurement, they will no longer be simply shifted
ersions of one another. This leads to imperfect deconvolution, as
he “missing” portion of the signal is effectively subtracted from the
esult. For example, in the 2D propagation case, the Green’s function
or a point source is not time-limited �i.e., it contains energy at all
imes greater than the first arrival�, so any finite time depiction of this
ignal will actually be missing some of the signal. This is illustrated
n Figure 9, which shows imperfect deconvolution in the 2D Green’s
unction case, due to a finite time window. This is not a problem for
ignals of finite duration, so long as all the energy remains within the
ime window. However, both the 2D and 3D cases are affected by the
nite number of shot and receiver positions, because energy will al-
ost always propagate beyond the bounds of the receiver and source

rrays. This is particularly true in the 3D case, where shot locations
n the y direction may be limited. Roughly speaking, the energy in
he multiples due to this effect will be proportional to the energy that
as “fallen off the edge” of our finite measurement. Again, however,
he total energy in the multiples is not necessarily the best way to
onsider their impact, as even low-amplitude multiples stand out in
n image due to their coherency.

In addition to these numerical problems, many real-world issues
lso reduce the multiple-suppressive property of the deconvolution
maging conditions. Most importantly, when a reflection coefficient
s not sufficient to represent the up-going field, the result is no longer
true impulse response of the image point. In cases of nonplanar or
onhorizontal layering, an incident-wave at one horizontal wave-
umber need not produce only a reflected wave at the same horizon-
al wavenumber; thus, the reflection coefficient is not a sufficient
epresentation of the reflected field. In such cases, transforming back
o the time/space domain does not give the true impulse response of
he image point, and there may be nonphysical energy in the zero-lag
f the result. In addition, when the subsurface is not horizontally
tratified, transforming over source position no longer gives a result
quivalent to transforming over field position. This is because the
bsolute positions of the source and field point matter, not just the
ifference between the positions, which makes the change of vari-
bles used in equations 21 and 22 impossible. Hence, in cases where
he subsurface is not perfectly stratified, we should not expect 2D or
D deconvolution to eliminate multiples, even if numerical issues
ere not a problem. Other factors, such as attenuation, measurement

rrors, errors made when propagating the fields into the subsurface,
tc., also make it more difficult to obtain the multiple-suppressing
roperty seen in the analytical case, as was observed by Muijs et al.,
007b.

Another important practical consideration is the possibility that
he source wavelet is not known. Throughout this article, we have
reated the incident field as known/measured, but in many seismic
xperiments the direct wave is not measured, and a modeled version
f it is used as the incident field. This will have an impact on the reso-
ution of the deconvolution imaging conditions, as the reflected field
ill not be a time-shifted version of the incident field, and the degree

o which this degrades the image will depend on how far off the mod-
led field is from the truth. If the deconvolution of the modeled
ource pulse from a single reflected pulse is suitably well-behaved,
hen theoretically the only effect of using the wrong source signature
provided all arrival times are still correct� would be to convolve the
mage with the function that converts the true source pulse to the

odeled pulse. Symbolically,

0 0.2 0.4 0.6 0.8 1

150

100

50

0

G
2D

(r
1,t)

0 0.2 0.4 0.6 0.8 1

150

100

50

0

G
2D

(r
2,t)

0 0.2 0.4 0.6 0.8 1

50

0

−50

Time

D
ec

on
vo

lu
tio

n

igure 9. An example of the finite time window resulting in imper-
ect deconvolution in the case of 2D wave propagation. The top two
anels show the 2D isovelocity Green’s function as a function of
ime for two different ranges from the source. The bottom panel
hows the result of deconvolving the two signals shown �i.e., using
nly the times shown in the figures�. While the vast majority of ener-
y is concentrated at the correct time-lag �i.e., the difference in the
rrival times�, the finite time window leads to spurious energy at oth-
r times, as indicated by the arrows.
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W10 Poole et al.
DModel�f��Dtrue�f�K�f�

⇒
U�f�DModel

* �f�

DModel�f�DModel
* �f�

�
U�f�Dtrue

* �f�K*�f�

Dtrue�f�K�f�Dtrue
* �f�K*�f�

⇒
U�f�DModel

* �f�

DModel�f�DModel
* �f�

�
U�f�Dtrue

* �f�

Dtrue�f�Dtrue
* �f�

1

K�f�
.

�33�

n equation 33, the effect on the image is deconvolution by K� f�,
hich is the function that relates the true source signature with the
odeled source signature. Thus, provided a well-behaved 1 /K� f�

xists, the mismatch shouldn’t affect the multiple-suppressing abili-
y of the imaging condition. Satisfying the first equation in 33 with a
ell-behaved K� f�, may be nontrivial, however.
Another possibility is that the fields themselves are not known ac-

urately at depth. This can be caused by a number of factors, such as
n imperfectly-estimated velocity profile, anisotropy, approxima-
ions used in the propagation method, measurement noise, and the
act that nonphysical energy is not removed from the fields at reflec-
or positions when propagating the fields. In principle, we can quan-
ify the errors in our image due to errors in the fields by including er-
or terms in equation 6:

DModel�f��D�f���D�f�UModel�f��U�f���U�f�

⇒
UModel�f�D

Model
* �f�

DModel�f�D
Model
* �f�

�
U�f�D*�f���U�f�D*�f��U�f��D*�f���U�f��D*�f�
D�f�D*�f��D�f��D*�f��D*�f��D�f���D�f��D*�f�

�
U�f�D*�f�
D�f�D*�f�

�
�U�f�D*�f��U�f��D*�f�

D�f�D*�f�

�
�U�f�D*�f���D�f��D*�f��D*�f��D�f��

�D�f�D*�f��2 . �34�

ot knowing what the error terms are, it will not be practical to im-
lement equation 34 directly, but if bounds can be placed on the un-
ertainties, then a bound on the error in the image could be estimat-
d.
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igure 10. Diagram indicating the parameters used in the synthetic
ata example, with a zoom-in on the water layer, showing source and
eceiver configuration.
It should be pointed out that all of these practical issues are mutu-
lly confounded, making it almost impossible to study their respec-
ive effects in isolation. In any realistic case, a stabilizing approxi-

ation will be required to avoid division by zero, and data will be
rovided only over a finite range of times and positions. Outside of
imple analytical cases, these effects will always appear in combina-
ion. If the source wavelet is not known, and the subsurface is not
orizontally stratified, it will only become more difficult to isolate
heir individual effects.

An example of practical issues inhibiting the cross-talk suppress-
ng properties is illustrated in Figures 10 and 11. Figure 10 shows the
eometry for a simple synthetic data example, with 2D propagation
n a horizontally stratified medium. The up- and down-going fields
including the direct wave from the source� were computed for the
wo geometries shown �one with receivers in the water column, one
ith receivers just below the water/bottom interface� using the pro-
ram kxmod from the DELPHI software package produced by the
elphi Consortium. The program models fields for 2D, horizontally

ayered media, doing the necessary calculations in the frequency-
avenumber domain. Surface-related multiples are computed and

ncluded in both fields, and the output is the up- and down-going
elds at the receiver positions �thus freeing us from having to de-
ompose the fields into up- and down-going components, and avoid-
ng any numerical errors we might introduce while doing so�. Thus,
ur starting data consisted of four sets, each consisting of 256
1001 traces: An up-going data set for the water-column receivers,
down-going data set for the water-column receivers, an up-going
ata set for the seafloor receivers, and a down-going data set for the
eafloor receivers. Each of the four data sets contained 256 shot gath-
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igure 11. 2D deconvolution imaging result using the data generated
n the synthetic experiment depicted in Figure 10. The left panel
hows the result when the wavefields are measured just below the
eafloor. The right panel shows the result when the wavefields are
easured in the water column �where multiple energy is much stron-

er�.Arrows indicate multiple energy in the image that we would not
xpect to see based on an analytical consideration of the problem
ith infinite source and receiver ranges.
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Deconvolution imaging and cross talk W11
rs, with each shot gather containing 1001 traces. The distance be-
ween the receivers was 5 m, and the distance between source loca-
ions was 10 m. We used one-way wave equation methods to down-
ard continue the fields into the subsurface, and applied the 2D de-

onvolution imaging condition of equation 6 at each image location.
This is a case in which the 2D deconvolution imagine condition

hould eliminate all multiples �in the analytical case�, but as can be
een in Figure 11, multiples still remain in the image. Multiples are
articularly strong when the wave fields are measured in the water
olumn �where there is significant multiple energy reflected upward
rom the seafloor�, whereas when the fields are measured just below
he seafloor, crosstalk is much less visible in the image. That
rosstalk appears in the image is due to the finite range of source and
eceiver positions, and the stabilizing factor, as described above. The
eason multiples are less apparent in the seabed case is that the seaf-
oor and sea surface are the strongest reflectors in the problem, and
ignificant energy is trapped between these two reflectors. When the
eld is measured just below the seafloor �seabed cables can measure
bove or just below the seabed, see Muijs et al., 2004�, energy that is
eflected upward from the seafloor is not included in the up-going
eld, thus eliminating the major source of multiples in the image.
Figure 12 illustrates some of the effects of the finite source and re-

eiver apertures for the water column measurement case. The top
rame shows the magnitude of the multiple around 200 m depth as a
unction of horizontal position �normalized by the maximum value
t this depth�, while the bottom shows magnitude of the reflector at
50 m depth �again normalized by the maximum value at this
epth�. Note that the amplitude of the multiple is stronger away from
he center of the image, and the magnitude of the reflector is more
onstant across horizontal positions. The reduction in amplitude in
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igure 12. Magnitudes as a function of horizontal position for a mul-
iple �top� and reflector �bottom�. The top frame shows the magni-
ude of the multiple in the image at �200 m depth, normalized to the

aximum value at that depth. The bottom frame shows the magni-
ude of the reflector in the image at 150 m depth. The reduction of
oth at offsets greater than 750 m from the center of the figure is due
o tapering of the fields to avoid edge effects. Note that the magni-
ude of the multiple increases away from the center of the image,
upporting the idea that finite aperture effects can lead to increased
ultiple energy.
oth plots for positions beyond �750 m is due to tapering of the
elds near the boundaries to reduce edge effects. The model used to
enerate the data has no dependence on horizontal position, and the
ame stabilizing constant was used at all spatial positions, so any
hanges in the image with respect to horizontal position must be due
o the effect of the finite apertures. That multiples get stronger nearer
o the boundaries �until tapering effects dominant� supports the idea
hat finite apertures contribute to the problem of incomplete multiple
uppression; away from the middle of the image, the numerical case
ecomes a poorer approximation to the analytical �i.e., infinite aper-
ure� case.

There are, of course, options for addressing some of the issues de-
cribed in this section. The most obvious is to apply existing multiple
limination methods to the data as is done for crosscorrelation-based
maging. There is extensive literature on surface-related multiple
limination and we will not attempt to cover it here. Suffice to say,
hough, that there is nothing to prevent us from applying the same

ethods normally used with crosscorrelation imaging when we in-
tead use deconvolution imaging. If we do so, we will still benefit
rom the higher resolution and closer to true amplitude properties of
econvolution.

An option for reducing the effects of nonphysical energy in the
elds used to compute the image is to use the full two-way wave
quation. Doing so will not entirely eliminate nonphysical energy,
ecause we do not know the locations of reflectors until we have cre-
ted the image. However, the additional accuracy in the estimated
elds should translate into an improved image. Another option is to

ncorporate the imaging result into the subsurface model and per-
orm a second migration of the data, now with approximate knowl-
dge of reflector positions and strengths. This is very similar to the
ethod suggested by Muijs et al. �2007b�. Using a two-way wave

quation-based migration method �such as reverse time migration�
n such a case would likely lead to an improvement in the image.

Another option would be to make use of the fact that most of the
ultiple energy is due to reflections at the seafloor. Unlike the other

eflectors, the seafloor’s location should be well-known before we
ave created the image. Modeling water column peg legs may be
easible, and would allow one to adaptively subtract multiple energy
rom the fields before imaging. This would be similar to existing de-
ultiple methods, such as Verschuur et al. �1992�, but might include

xplicit modeling based on knowledge of the bathymetry.

CONCLUSIONS

Deconvolution imaging conditions offer a number of useful prop-
rties compared to standard crosscorrelation imaging conditions.
econvolution imaging conditions offer superior resolution, reflec-

or amplitudes more directly related to reflection coefficients, and
ultiple-suppression in some simple analytic cases. It is also worth

oting that the 2D and 3D deconvolution imaging conditions offer a
ay to compute an estimate of the full impulse response of a given

ubsurface location, though this is not typically done.
The multiple suppression capability of deconvolution imaging

onditions is limited due to a number of practical issues, including
tabilization requirements, signals extending past finite measure-
ent apertures, and a requirement of horizontal stratification. Thus,

hey should not be counted on to deliver multiple free images. How-
ver, this fact should not preclude the use of deconvolution imaging
onditions; the improved resolution and amplitudes alone justify
heir use.
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