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Abstract

Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In
this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-
specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then
these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting
susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading
principal components of the empirical genotype matrix to cluster individuals into ‘‘ancestry groups’’ and then look for
evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved
when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-
collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups.
When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated
with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-
collected data sets. Our method can be used to detect associations between genetic variants and disease that have been
obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on
other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to
researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions.
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Introduction

Genome-wide association studies have had a marked impact on

our understanding of the contribution of common variants to

common disease [1,2]. The prevalence of common diseases often

varies across ethnic groups [3], and hence it is perhaps not too

surprising to observe systematic differences in marker effect sizes

for GWAS in more closely related populations [4–6]. A

fundamental difficulty in testing whether such differences arise

owing to chance, study design and execution, or true population-

specific effects, is that the sample collection label is typically

confounded with the interaction effect.

To circumvent these problems, we have developed a robust

statistical test for gene-ancestry interactions that makes use of

observed and measured relatedness between closely-related

populations. The method re-assigns individuals to new ancestry

groups by clustering in the space defined by the leading principal

components of the empirical genotype matrix [7–10] and then

tests for differences in disease association signal between these new

ancestry groups. We then compare this evidence with analogous

tests for disease association performed with the original collection

labels. When populations are closely related, we expect overlap

between the collections in the principal component space such that

the allocation of samples to ancestry groups differs from that of the

original collection labels. If heterogeneity is observed and is due to

genetic background (or a variable correlated with genetic

background), the effect size and signal of heterogeneity should

increase when individuals are re-grouped by relatedness, whereas

for collection artefacts the effect size and signal of heterogeneity

should decrease. Signals of genetic heterogeneity observed by

chance can be filtered out in a replication stage by repeated testing

in multiple independent sample sets, even if these lack the

necessary information for ancestry assignment.
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Since intra-study effect heterogeneity can obscure true associ-

ations between polymorphisms and disease, a potential benefit of

our approach is the un-masking of true associations that are

specific to ancestral groups or stronger in one group than another.

Although intra-study gene-gene interactions or gene-pathway

interactions have previously been analysed [11,12] no study has

previously addressed GWAS gene-ancestry interactions.

Results

Overview of the gene-ancestry interaction method
The method is summarised in Figure 1 and details are provided

in the Materials and methods section. In brief, the analysis pipeline

consists of an initial step where two or more GWAS have been

identified on the same disease or trait of interest across closely

related populations. SNPs are then identified which appear to

show an interaction on ancestry; by first clustering the combined

set of individuals into ancestry groups and then statistically testing

for evidence of an ancestry group interaction term of association

with the trait. SNPs identified as putative interaction markers are

then tested for strength of association for an interaction on the

original cohort groups. For true ancestry-interactions the effect

size should increase when clustering on ancestry rather than

cohort label. Markers are then filtered to take forward only those

showing largest difference. Markers for which the statistical

evidence of an interaction is overwhelming, or ones showing

milder evidence but with additional functional or biological

relevance linking the marker to the trait, are taken forward to a

Replication stage. In the replication stage it is valid to only

genotype the marker(s) of interest in individuals sampled from the

original population groups. In this situation you are not abel to

assign such replication individuals to ancestry groups, but the

population label can be used as a noise proxy without bias, but

with some loss in power. Below, we present our results for a

GWAS of colorectal cancer.

Application of the method to a GWAS of colorectal
cancer susceptibility

Discovery Stage. The discovery stage involves steps 1 to 5 in

Figure 1. To illustrate the method and test its effectiveness, we

initially analysed data from 13,690 individuals obtained from two

parallel colorectal cancer (CRC) GWAS studies performed in

England and Scotland. The data has previously been analysed and

reported using conventional GWAS methods without consider-

ation of ancestry specific effects [13–16]. In the original study

there were two ‘‘Phases’’ of data collection. In Phase 1 an initial

genome-wide scan in 3,831 individuals - 1,849 from England and

1,982 from Scotland - genotyped using the Illumina Hap550 or

equivalent array, followed by a more focussed Phase 2 whereby

40,892 SNPs showing the best evidence of association in Phase 1

were genotyped in an independent set of 9,859 individuals,

comprising 5,744 from England and 4,115 from Scotland. Since

both Phases 1 and 2 of the data were available to us from the

outset, we used both of these for the discovery stage of our analysis.

It is important to note that for most studies we envisage only

having available a single Phase of discovery data; in which case the

below would be modified accordingly.

We characterised genetic ancestry by performing a principal

component analysis (PCA) after filtering out SNPs in regions of

long-range linkage disequilibrium [17] and pruning remaining

markers using a short-range LD filter (see Materials and methods). In

Phase 1, only the first two principal components (PCs) provided a

significant measure of separation between the two groups collected

from England and Scotland (Figure 2) and we used these two

components to group individuals according to their empirical

relatedness using the k-means clustering algorithm [18]. We

assessed a range of k values by computing the Bayesian

Information Criterion (BIC) [19] for each. The optimised BIC

was with k = 2 and we refer to the resulting two clusters as the

English and the Scottish ‘‘ancestry groups’’, in contrast to the

original English and Scottish ‘‘collection groups’’ (Figure 2).

Clustering by ancestry resulted in 18.5% of individuals changing

label - that is, these individuals were originally registered in, say,

the Scottish collection group, but were assigned to the English

ancestry group after clustering, or vice versa (see Table S2).

We then looked for single marker-ancestry interactions genome-

wide by fitting the heterogeneous logistic model of association (that

is, detecting different genetic associations with disease for different

ancestry groups) and comparing the fit of this model to that of the

null model with the same genetic association across all clusters

(although allowing distinct intercept terms for each cluster). Since

the first principal genetic component used to characterise ancestry

was disease-associated, we included this together with gender as

main effect adjustment covariates in both the heterogeneous and

null models. To compare the model fits, we used the BIC which

adjusts the model fit for complexity. We calculated the difference

in BIC statistics between the null-BIC and heterogeneous-BIC

models and used this difference as a test statistic (denoted Tanc, see

Materials and methods).

We also performed an analogous scan for single marker-

collection interactions by using the original collection groups in

place of ancestry, ‘‘Path B’’ in Figure 1, thus computing a new set

of test statistics (denoted Tcoll ). Tcoll statistics are analogous to Tanc

statistics, but computed using models fitted within collection

groups rather than ancestry groups. True heterogeneity on genetic

background should result in an increased signal of interaction

association (that is, TancwTcoll ), whereas collection artefacts will

tend to have TcollwTanc. From this, we highlighted for each SNP

the difference Tanc{Tcoll , referred to as the ‘‘D-statistic’’(see

Materials and methods). We retained markers above the 1% D-

statistic significance threshold (Figure S3), estimated by simulation

under the null hypothesis of no disease association for any

individual (see Materials and methods). After imposing this filter,

4,445 out of 485,757 markers remained, consistent with the

number (4,857) expected by chance.

In our special case we also have discovery data on a second

Phase. We then made use of the Phase 2 data in our discovery

stage by performing the same heterogeneity analysis (steps 1 to 4 in

Figure 1) and looking for signals of heterogeneity consistent with

those observed in Phase 1. We found that 388 of the 4,445 markers

identified for Phase 1 had been genotyped in Phase 2 of the

original study. We followed the same procedure used in Phase 1 by

running smartpca on the combined Phase 2 English and Scottish

collections and observed similar separation of individuals of

English and Scottish collection (Figure S1). In addition we used the

Eigenvectors derived in the PCA of Phase 2 to compute

projections of the components in Phase 1, thus checking that the

components were representative of ancestry rather than a

collection artefact (Figure S2).

We grouped Phase 2 individuals into ancestry clusters using the

k-means clustering algorithm in the space defined by the top two

leading principal components. As for Phase 1 individuals, the

clustering with k~2 yielded the optimal BIC. This resulted in

21% of individuals changing label (Table S3). We then computed

Tanc, Tcoll and D-statistics (as for Phase 1) and selected markers

with D-statistics exceeding the 1% significance threshold (again,

estimated from null simulations). Three markers passed through

this filter. However, we observed consistent directions of effect

Gene-Ancestry Interaction Test in Genome-Wide Data
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across both Phases for only a single marker, rs10455 at the

CYBRD1 locus. At this marker we observed a genetic association

with CRC in individuals from the English ancestry group (Phase 1

OR = 0.852, 95% CI = 0.736–0.986 p = 0.0321, 2-sided; Phase 2

OR = 0.904, 95% CI = 0.834–0.979] p = 0.0066, 1-sided), but no

disease association for those in the Scottish ancestry group.

Although, statistically, the evidence for heterogeneity and an

English ancestry-specific disease association was mild and, indeed,

we would expect exactly one marker to pass through the filters by

chance, we proceeded with replication given the functional context

of rs10455. rs10455 is located within the last exon of an iron-

regulated gene, cytochrome B reductase 1, that is expressed in the

intestine and plays a key role in dietary iron absorption (Genome

Browser refSeq NM 001127383).

Replication stage. To ascertain independent evidence for

the rs10455 association, we undertook a targeted replication stage

in which we sought additional CRC case-control cohorts from

equivalent (English and/or Scottish) populations. We identified a

small Phase 3 multi-ethnic cohort (that is, mixture of English and

Scottish collected individuals) of 631 cases and 731 controls. We

did not have access to genome-wide genotype data and hence

ancestry clustering could not be performed. However, as stated

above, in the Replication step this is not prohibitive as the

population label can be used as a noisy proxy for ancestry without

biasing the result, albeit for a loss in power (see Text S1 and Tables

S5 and S6).

Testing Phase 3 for variation in association signal for rs10455,

using logistic regression, showed additional mild, but consistent

evidence of a protective effect in England-collected individuals

(OR = 0.886, 95% CI = 0.749–1.05, one-sided p = 0.083) and no

evidence of association in the Scotland-collected Phase 3

individuals (OR = 1.09, 95% CI = 0.95–1.26, one-sided

p = 0.899). Our power calculations (Table S5) suggested that the

evidence of association in individuals of English ancestry was

actually slightly stronger than expected under the evidence from

Phases 1 and 2 of a 20% switch rate when ancestry was assigned

and a true odds ratio of 0.9 (as estimated for rs10455 from the

Phase 2 data).

Given the support for rs10455 in Phase 3, we undertook a

further analysis and sought additional replication in a larger

independent cohort of 7,395 cases and 4,202 controls collected in

England (‘Phase 4’, Table S1). We supplemented Phase 4 with a

further 5,193 Wellcome Trust Case Control Consortium 2

(WTCCC2) control samples known to be predominantly of

English ancestry (2,692 from the 1958 British Birth Cohort and

2,501 from the UK National Blood Service, see Table S1 and Text

S2). This sample size provided 99% power to detect the rs10455

association at the P = 0.05 level (assuming a 20% switch rate and

the same OR). Given that we tested only a single marker, we need

no multiple correction adjustment to the p-value for this Phase.

We performed logistic regression analysis and confirmed associ-

ation between CRC and rs10455 (OR = 0.933, 95% CI = 0.891–

0.978, one-sided p = 0.00191).

Taken together, our analyses provide consistent evidence that

variation at rs10455 (chr2:172,119,519 bases, NCBI Build 36), at

the CYBRD1 locus, associates with CRC risk in individuals of

Figure 1. Summary of the Methodology. Flow diagram showing methodological steps for testing for interactions when there are two
comparable sources of heterogeneity. There are two paths (A and B) in the work flow, one for each source. In our case path A corresponds to ancestry
and path B corresponds to collection. If there is only a single collection, path A can be followed with steps 1A, 2A, 3A, 5, and 6 (i.e. without
computation of D-Statistics). Tanc is the heterogeneity test statistic computed with the ancestry clustering and Tcoll is the heterogeneity test statistic
computed with the collection clustering as defined in the methods.
doi:10.1371/journal.pone.0048687.g001

Gene-Ancestry Interaction Test in Genome-Wide Data
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English ancestry, but not, at detectable levels, in those of Scottish

ancestry (Figure 3 and Table S4). In a meta-analysis of the English

samples from all Phases with adjustment for gender, we observed

OR = 0.918 (95% CI 0.884–0.953) with one-side p~3:9|10{6.

This is likely to be an underestimate of the true signal due the

availability of English collection groups rather than ancestry

groups in Phases 3 and 4.

The role of CYBRD1 in iron absorption is of particular interest

given that many studies have investigated the link between dietary

iron intake and the risk of colorectal cancer. Although the

relationship is not fully understood, increased dietary iron intake

correlates with increased risk of colorectal tumours in several

populations [20–23]. CYBRD1 appears to bind quercetin which

has been posited as a chemopreventive agent for colorectal cancer

[24]. CYBRD1 SNP rs884409 (r2~0:06, D9 = 1.0 with rs10455)

has also been associated with serum ferritin levels [25] and

CYBRD1 is over-expressed in colorectal cancers [26]. Although

rs10455 was originally genotyped as a tagSNP, it lies within the

last exon of CYBRD1. This exon contains an alternative translation

termination signal and rs10455 lies downstream of this signal, such

that in one transcript it is a missense change, Ser266Asp. This

change is predicted to be non-damaging by SIFT and Polyphen.

Discussion

We have described a new method to detect interaction effects of

specific genotypes on genetic background. It can be used to detect

associations between genetic variants and disease that have been

masked by population genetic heterogeneity. Our method can be

extended easily to look for interactions on other covariates such as

treatment or measured environmental exposures. We envisage our

method being of particular interest to researchers with existing

GWAS data sets, as the ancestry exposure variable can be easily

defined and thus tested for interactions. Here we discuss particular

issues that may arise in applying the method (Figure 1) to other

study designs (for details of each step in the methodology see the

Materials and Methods section).

Single Collection
If only a single collection is available, the method can be applied

by clustering on ancestry and investigating evidence by inspection

of large Tanc statistics and determining significance via null

simulation; following only ‘‘Path A’’ of Figure 1 and steps 1, 2, 3,

5, 6. This will be at the expense of loss of power provided by the

D-statistic filter.

Non-overlapping Collections
In cases where there is near-complete confounding of collection

and ancestry, our method can still be used to detect evidence of

heterogeneity, but lacks the ability to distinguish whether the

source is artifactual or the result of a disease risk factor correlating

with ancestry. In such cases, evidence of heterogeneity would be

assessed as for the Single Collection case using Tanc statistics

(‘‘Path A’’ of Figure 1 excluding step 4). Null simulations could be

used to estimate thresholds for the T-statistics. If there are multiple

independent collections from the same populations then artifacts

can be ruled out by evidence of consistent results, and

conventional meta-analysis approaches for heterogeneous effects

could also be applied [27], although our approach should have

increased power over this if the collections contain samples of

mixed ancestry.

Figure 2. First PC versus Second PC in Phase 1. Individuals in Phase 1 plotted in the space defined by the first two PCs computed from the
genotype matrix. Individuals are coloured by their collection group and case-control status indicated by the plotting symbol. There is considerable
overlap between the collection groups.
doi:10.1371/journal.pone.0048687.g002

Gene-Ancestry Interaction Test in Genome-Wide Data
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In selecting candidates for targeted replication, we suggest that

both statistical evidence and functional context are considered. In

our case, the statistical evidence for rs10455 was consistent but

mild and indeed the marker may have been missed by a

conventional GWAS analysis even within an English ancestry

group. However, true interactions acting through say environ-

mental effects covarying with ancestry may well lead to identified

markers more closely related to disease mechanisms and hence

located in or nearby genes with function previously implicated in

disease processes, as was the case for CYBRD1 here. For targeted

replication where the ancestry (or original exposure) cannot be

used directly, power calculations can be performed to show what

level of evidence would be expected given a range of plausible

switch/error rates, thereby guiding the sample sizes expected to be

necessary. Details of power calculations are provided in the

supplementary methods and implementation is included in the

available R code.

It is important to note that statistical evidence of interaction of a

polymorphism with an exposure need not reflect a direct biological

interaction. Such evidence is also consistent for an interaction with

an unobserved environmental exposure correlated with ancestry.

For example, diet might correlate more strongly with ancestry

than with residential location. Markers showing evidence of

collection, but not ancestry, heterogeneity might also be of interest

and could reflect any differences in the way the data was

ascertained. This might result from technical artefacts or other

sources of heterogeneity, such as those introduced by different

ascertainment criteria.

Heterogeneity in ethnic origins or sample collection is usually

regarded as a problem in GWAS owing to the type I and II errors

that it can introduce into the analysis. We have shown, however,

that heterogeneity between related populations can be used to a

researchers’s advantage when there is interaction between

genotype and ethnicity, or a factor that co-varies with ethnicity.

For such variants, our method potentially provides a way of

identifying disease SNPs with relatively small effects that can be

assessed further in appropriate validation sample sets without

GWAS data or in other ways, such as functional evaluation. Such

considerations apply to our putative colorectal cancer SNP

rs10455 which demonstrated the potential of our technique for

identifying interactions and hence predisposition genes.

Our clustering step makes discrete allocations of samples to

clusters. It would be interesting to take into account the

uncertainty in cluster membership within the association model,

perhaps using a probabilistic clustering model, see for example

[28]. This would be an interesting extension of the method we

present and may further improve power to detect interactions.

Materials and Methods

Ethics Statement
The ethics board was the ‘‘Southampton and South-West

Hampshire Research Ethics Committee (A)MREC/

06\Q1702\99’’. The collection of blood samples and clinico-

pathological information from patients and controls was under-

taken with written informed consent and ethical review board

Figure 3. Summary of Association Evidence at rs10455. Forest plot of estimated effect sizes (with 95% confidence intervals). In Phases 1 and 2,
the effect size is estimated from a logistic regression adjusted for gender within the English (blue) and Scottish (red) ancestry groups. In Phases 3 and
4 the effect size is estimated from a logistic regression adjusted for gender within the replication collection groups. The use of collections reduces
power relative to what would be expected if ancestry groups were available. Finally we performed a meta-analysis combining all the individuals in
Phase 1 and 2 Ancestry groups and Phase 3 and Phase 4 (English only) collection groups together with the additional WTCCC2 controls (coloured
black and grey). The Odds Ratios are estimated from a logistic regression adjusted for gender.
doi:10.1371/journal.pone.0048687.g003
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approval in accordance with the tenets of the Declaration of

Helsinki.

The Colorectal Cancer Cohorts
Table S1 provides detail about each of the CRC cohorts

analysed in this paper. We have four phases of data; the first two

were used for candidate discovery and the second two for

replication.

Data used for Discovery. The discovery set of colorectal

cancer cases and controls was derived from two distinct and

independent collections, one based in Scotland only, and the other

from across the UK, but predominantly from England. For

convenience, we have analysed the Scottish collected Phase 1 in

parallel with the UK collected Phase 1, and done the same for

Phases 2.

Phase 1 samples (a total of 3592) were genotyped at

approximately 550,000 SNPs using the Illumina Hap550 or

Hap300/Hap240S arrays. Based on SNPs with the best evidence

of association (from the original GWAS [15]) in Scotland Phase 1

or UK Phase 1 or both (approximately equal number of SNPs in

each category), 40,892 SNPs were then typed in 9701 Phase 2

samples using a custom Illumina Infinium array.

Conventional GWAS data from these cohorts have been

reported previously [13–16,29–31].

Data used for Replication. Replication phase 3 consists of a

total of 1273 English collected individuals and 1622 Scottish

collected individuals [16]. Only a single marker (rs10455) was

genotyped based on our Phase 1 and Phase 2 analyses for gene-

ancestry interactions and thus collection label was used as a proxy

for ancestry.

Replication phase 4 consists of 7395 CRC cases and 4202
controls collected in solely in England and were genotyped at

rs10455 only. In addition to boost power, we supplemented this

phase with 5193 UK controls sampled as part of the Wellcome

Trust Case-Control Consortium 2 (WTCCC2).

Statistical Methods
The whole methodology is summarised by Figure 1. In this

section each step is described fully.

Step 1: Defining the Ancestry and Collection Exposure

Spaces. We performed a principal component analysis (PCA) to

summarize observed relatedness of individuals. We selected

markers for the PCA by first removing SNPs in regions of long-

range linkage disequilibrium [17] and then by pruning the

remaining markers to exclude markers short range LD (we used

the sliding window method implemented in plink [32] with an r2

threshold of 0.2, a window width of 50 markers and a slide of 5

markers). We used the first two principal components to describe

ancestry (in Phase 1 and 2 of our study) and checked they

described ancestry rather than collection artifacts by projecting the

components computed from Phase 2 samples in the Phase 1

samples. We observed similar separation of Scottish and UK

collected samples as expected; more generally reference popula-

tions can be used to check for collection artifacts. At this stage we

also note whether any of the principal components are significantly

associated with phenotype so they can be included as adjustment

variables in subsequent analyses.

The collection exposure is a one dimensional factor variable. It

is fixed and defined according to design of the study/studies.

Step 2: Clustering Individuals by Ancestry and by

Collection. We clustered individuals (in phase 1 and phase 2)

in the space defined by the first two principal genetic components

using the k-means algorithm [18]. We refer to these clusterings as

ancestry clusterings and used the Bayesian information criterion

(BIC) [19] to select the value of k, with the constraint that k§2.

More generally any partitioning clustering algorithm can be used

to cluster individuals in the space characterising genetic ancestry.

The collection clustering is defined by the collection factor

variable and hence no clustering algorithm is required. Individuals

of the same collection are clustered together with the number of

clusters equal to the number of collection groups in the data. In

our example there are two clusters, one containing individuals

collected in Scotland and the other containing individuals

collected predominantly in England.

In our analysis the number of principal components selected for

defining the ancestry clustering was guided by differences observed

between our collections. More generally, and if there is only a

single cohort, this can be done by model-based variable selection

such as the techniques implemented in R package clustvarsel. Other

model-based clustering algorithms might be more appropriate for

defining an ancestry clustering, particularly if the clusters are not

of equal volume and shape as was the case with our example. We

also note that the number of collection clusters need not be the

same as the number of ancestry clusters; for example, there may be

a single collection comprising multiple ancestry groups. Since the

BIC is used for comparing models in our definition of the T- and

D-Statistics (see Materials and methods), the number of clusters is

automatically accounted for by our statistics. If the number of

clusters is the same for both ancestry and collection groupings, it

allows comparisons to be made easily and the switch rate from

collection to ancestry can be determined, but this is not essential

for the method to be effective.

Step 3A: Fitting the Heterogeneous Model of

Association. To detect evidence of heterogeneous associations

we fitted a mixture model for genetic association with phenotype.

If multiple clusterings of the individuals in the space defining

relatedness (or any other known source of heterogeneity) are

considered then a mixture model is defined for each clustering (i.e.

one for the Collection clustering and one for the Ancestry

Clustering). For the general case, we let

N k be the number of clusters of individuals in the exposure/

ancestry space.

N n be the total number of individuals in the study.

N Y be the n vector of phenotypes (binary for disease case-

control studies).

N g be the n vector of genotypes (taking values 0,1,2 or missing).

N X be a matrix containing the exposure/ancestry variables. In

our case for the ancestry exposure, X has dimension n|2 and

contains the first and second principal genetic components for

the individuals. More generally X can contain p variables and

can also define a non-genetic exposure.

N A be a matrix containing main effect adjustment covariates for

all individuals. It has dimension n|s where s is the total

number of adjustment covariates and entries aij denote the

values of the jth covariate for the ith individual. In our

example, A has two columns; one containing the gender

indicator variable and the other the first principal genetic

component (i.e. the first column of X ).

N Z be an indicator matrix containing cluster membership

information. It is of dimension n|k and for each individual i,

the entries zim are binary and satisfy
Pk

m~1 zim~1 and
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zim~
1 if individual i belongs to cluster m

0 otherwise

�

The k cluster model of heterogeneous association is then

defined by the following generalised linear model:

h E(Yi)½ �~
Xs

j~1

ajaijz
Xk

m~1

(b0
mzb1

mgi)zim ð1Þ

The function h(:) is the link function, aj are adjustment

parameters, b0
m are cluster specific intercept terms and b1

m are the

cluster specific genetic effect parameters. When Y is a binary

phenotype, the link function is taken as the logit function and the

model is a logistic regression model. When Y is a quantitative

trait, the link function is typically the identity function and the

model is an ordinary linear regression model.

The cluster specific intercept terms b0
m allow different clusters to

have different background disease rates, while the cluster specific

genetic effect terms b1
m allows the marker being tested to have

different associations to phenotype in different clusters. The model

can be fitted to the data using the iterative re-weighted least

squares algorithm to obtain maximum likelihood parameter

estimates. Using these parameter estimates, we compute the log

likelihood of the data under the fitted model and use this to define

a measure of model fit. Since nested models with more parameters

will always be more likely, we penalise the log likelihood (or more

specifically minus twice the log likelihood) with a term that

increases with the total number of parameters (r) in the model. We

compute the BIC which has penalty rlogn. In this context r

increases by two for each additional cluster (one extra intercept

parameter and one extra genetic effect parameter). In the

subsequent work we use B½ck(X )� to denote the BIC score

computed for the clustering ck(X ) obtained by clustering

individuals into k groups using exposure/ancestry variables X .

Step 3B: Calculating T-statistics (Tanc and Tcoll). To

quantify evidence for the heterogeneous association we define the

T-statistic by taking the difference in BIC statistics computed for

the heterogeneous model and the null model of association thus

accounting for model complexity.

To specify the null model, we note the null hypothesis is one of

no interaction heterogeneity at the genetic marker. If this is true,

there are two possible scenarios;

(i) There is no genetic association with phenotype for any of the

individuals at the marker.

(ii) There is a homogeneous genetic association with phenotype

across all individuals at the marker.

In both of these instances it could also be there are different

background prevalences of the disease and/or differences in allele

frequency or linkage disequilibrium within different clusters of

individuals (independently of genotype). It is important to allow for

this in the specification of the null model to prevent within cluster

main effects from dominating differences observed in the multi-

cluster interaction model fit. Consequently the null model for the k

cluster alternative is

h(E(Yi))~b1giz
Xs

j~1

ajaijz
Xk

m~1

b0
m

We compute the BIC statistic for the null model and use

B0[ck(X )] to denote this quantity. The k-cluster null model

contains k21 fewer parameters than the k-cluster heterogeneity

model. It allows for different background prevalences of the

disease within different clusters (i.e. the cluster specific intercept

terms) and includes the ‘no association for any individuals’

scenario as a special case (i.e. b1 = 0). The distinction between

scenarios (i) and (ii) can be made via assessment of the null model

fit, however this is not our primary motivation. It is important to

note that since our null model is one of homogeneity with respect

to the genetic effect of a marker, our methods (by design) will not

identify markers which were found to be associated with

phenotype using homogeneous association testing techniques

unless there is a considerable difference in the strength of

associations between different clusters of individuals.

The test statistic (referred to as the T statistic) we use to assess

evidence of heterogeneity is the difference in BIC for the

heterogeneous and null models. If we are assessing the fit of a

heterogeneous model with k clusters, the test statistic is

Tck (X )~B0½ck(X )�{B½ck(X )�

When the BIC is used for model selection, typically the model

yielding the smallest BIC is selected, hence we might consider a

positive BIC difference to be strong evidence of interaction

heterogeneity. However, we use the difference in BIC as a test

statistic and set significance thresholds by estimating its distribu-

tion under the null hypothesis.

In our analysis we refer to the T statistic computed using the

ancestry clustering as Tanc and refer to the T statistic computed

using the collection clustering as Tcoll .

Step 4: Calculating D-statistics. We have developed a

statistical framework to compare two different exposure spaces

(Ancestry and Collection in our work). More generally, we use C
and C� to denote two different clusterings of individuals in

exposure spaces, denoted X and X � respectively. In our case, X
represents ancestry and is defined by the first two principal genetic

components and C(X ) is the clustering of individuals in this space

using two clusters. X � is the binary one-dimensional space

indicating whether or not the individual was collected in England

and C�(X �) is the deterministic clustering imposed by the

following indicator variable X � with entries

x�i ~
1 if individual i collected in England

0 otherwise

�

More generally, the exposure spaces X and X � can be of

different dimension and clusterings C and C� can have different

values of k (in our case X is two dimensional and X � is one

dimensional and both C and C� have k~2 clusters). When k is

the same for C and C�, the degree of overlap between the

clusterings can be quantified by the proportion of individuals that

switch labels in one clustering with respect to the other. If one of

the clusterings reflects the true source of the heterogeneity better

than the other, then the increased error associated with the ‘worse’

clustering will lead to a weaker signal of interaction heterogeneity
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when our procedure is used. We quantify the difference in signal

by computing the difference in test statistics:

D(C,C�)~TC(X ){TC�(X�)

We refer to D(C,C�) as the difference statistic. Positive values of

the test statistic indicate that clustering C reflects the source of the

interaction heterogeneity best, whereas negative values indicate

that clustering C� reflects the source of the interaction heteroge-

neity best. Given that one of the clusterings does reflect the true

source of interaction heterogeneity, the magnitude of the

difference in statistic will depend on the degree of overlap between

the two clusterings and the strength of the associations. Small

positive or negative difference statistics might reflect the fact that

neither of the clusterings reflects the source of heterogeneity and

indicate that evidence of interaction heterogeneity might have

occurred by chance (although if clusterings have a high degree of

overlap, difference statistics with small absolute values are likely to

occur). In our analysis, the D-statistic computed compares the

ancestry clustering with the collection clustering. Thus

D~Tanc{Tcoll

Step 5: Defining Significance Thresholds and Filtering

Markers using evidence of Heterogeneity. There is no

theoretical distribution for the D-Statistic, so we simulated null

data sets (i.e. genotypes not associated with phenotype) to estimate

the properties and quantiles of this distribution. Note that null

distributions can differ between data sets according to the number

of individuals in the data set, the number of clusters, and the

contribution of adjustment variables to the model fit. The null

hypothesis includes two scenarios. Firstly, no genetic association

with phenotype for any individuals, and secondly, a homogeneous

(non-zero) genetic association for all individuals. Since our method

is designed to be used with GWA data, we assume that the vast

majority of markers will fall into the first category. Consequently

we estimate the distribution of test statistics under the null

hypothesis assuming there is no genetic association with phenotype

for any individuals. GWA case-control data sets are ascertained

retrospectively, so we use a retrospective simulation technique i.e.

simulating genotypes conditional on phenotype. The phenotype

remains fixed (at the observed phenotype) for all simulations and

the adjustment variables are also fixed and included in all

interaction and null models. Since we assume there is no

association of genotype with phenotype, under the assumption of

Hardy-Weinberg equilibrium, the simulation of genotypes de-

pends on the MAF. We investigated a range of allele frequencies

from 0.05 to 0.5 by intervals of 0.05 and noted that the

distribution of D-statistics were independent of MAF. Conse-

quently to define a significance threshold for D-statistics we used

the 99th centile of the statistics after pooling the 10|10,000

simulations across all allele frequencies. If only a single clustering is

being tested for heterogeneity (and thus no difference statistics are

calculated), thresholds on T statistics can be computed for each of

the simulations instead.

A 99% one sided threshold for D-statistics is used to select

markers enriched for ancestry heterogeneity rather than collection

heterogeneity (i.e. exposure A relative to exposure B). To define a

threshold to select markers enriched for collection heterogeneity

(exposure B) the 1% centile could be chosen.

To identify candidate (interaction/heterogeneous) phenotype

associated markers we suggest selecting markers whose D-statistics

exceed the significance and then rank on the basis of the T statistic

(in our case the ancestry T statistic Tanc). If multiple phases of data

are available for these markers then these markers can be checked

for consistency across phases.

Step 6: Replication. Replication of candidate markers for

interaction heterogeneity requires analysis of an independently

collected data set, however it is important that the exposure(s) used

to perform the original analysis can be collected (or estimated via

an alternative, potentially surrogate source) and further more, that

individuals in the replication phase lie in the same region of

exposure space as the original data. Replication can also be

undertaken even if the primary (ancestry) exposure and thus

clustering cannot be computed directly provided a variable highly

correlated with the primary exposure can be collected. The power

to detect the interaction will be poorer (depending on the strength

of the correlation between the proxy and the primary exposure)

but power calculations can be undertaken to show the expected

power.

In our example, in the replication phases 3 and 4 ancestry

information was not available but we used geographical collection

location as a proxy for it. We performed power calculations to

show what we might expect to see given the expected error in

using geographical collection location rather than ancestry. Details

of our power calculations are documented in the Text S1 and can

be modified for other data sets and/or exposure spaces.

Supporting Information

Figure S1 PCA Plot. First principal component versus second

principal component in Phase 2: Individuals in Phase 2 plotted in

the space defined by the first two principal components computed

from the genotype matrix. Individuals are coloured by their

collection group and case-control status indicated by the plotting

symbol.

(TIFF)

Figure S2 PCA Projection. Projection of Phase 1 genotypes

onto Eigen vectors (defining the principal components) in Phase 2:

Separation of the English and Scottish collected samples indicate

the components were representative of ancestry rather than a

collection artefact.

(TIFF)

Figure S3 D-statistics. The distribution of the D-Statistics

computed for Phase 1. The 1% significance threshold is indicated

by the red dashed line.

(TIFF)

Table S1 Cohorts details and genotype data collected at each

phase.

(PDF)

Table S2 Composition of the ancestral clusters for phase 1

individuals stratified by collection source and disease status.

(PDF)

Table S3 Composition of the ancestral clusters for phase 2

individuals stratified by collection source and disease status.

(PDF)

Table S4 Summary of Evidence for CRC Association at rs10455

in English Collected/Ancestral Cohorts.

(PDF)

Table S5 Estimated power and p-values to detect an association

at rs10455 in Phase 3 without principal component information as

the switch rate varies.

(PDF)
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Table S6 Estimated power and p-values to detect an association

at rs10455 in Phase 4 without principal component information as

the switch rate varies.

(PDF)

Text S1 Description of Power Calculations for Replication

Phases 3 and 4.

(PDF)

Text S2 Web Resources.

(PDF)
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