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¶National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum, Helsinki, Finland

Mutations in the cathepsin D (CTSD) gene underlie the
congenital neuronal ceroid-lipofuscinosis, a fatal neurode-
generative disease occurring in humans and in sheep
(Tyynela et al. 2000; Siintola et al. 2006; Fritchie et al.
2008). The brains of the affected infants and lambs are
extremely atrophic already at birth, showing extensive loss of
neurons and myelin, pronounced gliosis and accumulation of
lipofuscin within the remaining cells (Norman and Wood
1941; Tyynela et al. 2000; Siintola et al. 2006; Fritchie et al.
2008). These are accompanied by signs of developmental
delay (Norman and Wood 1941; Garborg et al. 1987;
Tyynela et al. 2000; Fritchie et al. 2008).

Ctsd knockout ()/)) mice, generated by gene targeting, also
develop a neurological disease, although the course of the
disease is milder than in man or sheep. Nevertheless, the mice
have epilepsy and die prematurely at the age of 25 ± 1 days

(Saftig et al. 1995; Koike et al. 2000). At the terminal age of
24 days, Ctsd)/) mice show neuropathological changes
resembling those in the human patients, including accumula-
tion of storage material in neurons and neurodegeneration,
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Abstract

Cathepsin D (CTSD) deficiencies are fatal neurological dis-

eases that in human infants and in sheep are characterized by

extreme loss of neurons and myelin. To date, similar mor-

phological evidence for myelin disruption in CTSD knockout

mice has not been reported. Here, we show that CTSD defi-

ciency leads to pronounced myelin changes in the murine

brain: myelin-related proteolipid protein and myelin basic

protein were both markedly reduced at postnatal day 24, and

the amount of lipids characteristically high in myelin (e.g.

plasmalogen-derived alkenyl chains and glycosphingolipid-

derived 20- and 24-carbon acyl chains) were significantly

lowered compared with controls. These changes were

accompanied by ultrastructural alterations of myelin, including

significant thinning of myelin sheaths. Furthermore, in CTSD

knockout brains there was a pronounced accumulation of

cholesteryl esters and abnormal levels of proteins related to

cholesterol transport, with an increased content of apolipo-

protein E and a reduced content of ATP-binding cassette

transporter A1. These results provide evidence for dysmyeli-

nation and altered trafficking of cholesterol in brains of CTSD

knockout mice, and warrant further studies on the role of lipid

metabolism in the pathogenesis of CTSD deficiencies.

Keywords: cathepsin D, lipidomics, mouse model, myelin,

proteomics, ultrastructure.
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particularly within the thalamus, hippocampus, and the deep
laminae of the cerebral cortex (Koike et al. 2000; Partanen
et al. 2008). Recent in vivo magnetic resonance imaging
studies indicated that corpus callosum, the largest individual
white matter structure of the mouse brain, was profoundly
atrophic in the Ctsd)/) mice (Haapanen et al. 2007).
Furthermore, disruption of the myelin sheaths within the
thalamus of these mice was revealed by electron microscopy
(EM) (Partanen et al. 2008). Together these data suggest that
pathological alterations occur not only in the brains ofman and
sheep with CTSD deficiency, but also within the white matter
of Ctsd)/) mice. Interestingly, Ctsd)/) mice begin to show
clinical sings (including epilepsy) around 2 weeks of age, and
neuropathological alterations around postnatal day 19 (P19)
(Haapanen et al. 2007). Thus, the clinico-pathological dete-
rioration of these mice coincides with the active period of
synaptogenesis and myelination that take place after the first
postnatal week in the mouse brain (Saher et al. 2005).

The myelination process markedly affects the brain lipid
profile. The levels of alkenyl-acyl species of phosphatidy-
lethanolamines, also called ethanolamine plasmalogens, and
glycosphingolipids with 20- and 24-carbon acyl chains
increase with the degree of myelination (Rao 1977; Jurevics
and Morell 1995). Cholesterol is an important structural
component of myelin (Saher et al. 2005) and myelination is
associated with enhanced synthesis of cholesterol in the CNS
(Jurevics and Morell 1995). After myelination has been
completed, cholesterol synthesis settles to a lower, steady
state level. Besides cholesterol, brain lipids consist of two
other major categories: glycerophospholipids (e.g. phospha-
tidylcholine, phosphatidylethanolamine, phosphatidylserine,
and phosphatidylinositol) and sphingolipids (sphingomyelin
and glycosphingolipids: cerebrosides, sulfatides, globosides,
and gangliosides). Interestingly, Jabs et al. (2008) reported
increased levels of certain gangliosides and bis(monoacyl-
glycero) phosphate in the brain of Ctsd)/) mice, connected in
conjunction with accumulation of lysosomal storage material.

To clarify the molecular events related to the myelin
pathology occurring in Ctsd)/) mice, we have here investi-
gated the morphology of myelin, lipid profile and lipid-related
proteins in the brains of these mice using ultrastructural,
immunological, lipidomic and proteomic methods. Our data
reveal major alterations not only in the myelin content but also
in the overall lipid metabolism in the brains of Ctsd)/) mice
compared with controls, suggesting that CTSD is needed for
the maintenance and regulation of normal lipid homeostasis,
particularly cholesterol homeostasis, in the brain.

Materials and methods

Animals
Ctsd)/) mice (Saftig et al. 1995) were maintained on a mixed

C57BL6J strain background in the animal facility of the Helsinki

University, Biomedicum, where food and water were available

ad libitum and light/dark cycle was 12/12 h. The study protocol was

approved by the Ethical Committee of the University of Helsinki.

Antibodies
The following antibodies were used for semi-quantitative western

blotting: Rabbit polyclonal antibodies against murine apolipoprotein

A–I (ApoA–I) (van Haperen et al. 2000), murine ApoE (raised

against purified mouse plasma ApoE protein) and ATP-binding

casette transporter A1 (ABCA1) (Novus Biologicals, Littleton, CO,

USA) were used for western blotting where indicated. For

immunohistochemical staining of paraffin sections, mouse mono-

clonal antibodies against myelin proteolipid protein (PLP; Abcam,

Cambridge, UK) and rabbit polyclonal antibodies against myelin

basic protein (MBP; Dako, Cambridge, UK) were used.

Histological processing and staining of brain samples
For paraffin-embedded samples, brains from 23 ± 1-day-oldCtsd)/)
andCtsdwild-type (+/+) mice (n = 5 for each genotype) were fixed in

4% neutral-buffered formaldehyde and subsequently processed,

embedded in paraffin and cut into 4 or 8 lm thick sections. Four

micrometer thick sections of the paraffin-embedded Ctsd)/) and

control mouse brain were immunohistochemically stained with the

relevant antibodies. Sections were dewaxed in xylene, antigen

retrieval for MBP staining was performed by microwaving the

sections in citric acid buffer, and endogenous peroxidase activity was

blocked by incubating the sections in methanol containing 1.6%

H2O2 at 20�C for 30 min. Sections were blocked and stained for each

antigen using the appropriate Vectastain Elite kit (Vector Laborato-

ries, Peterborough, UK), and immunoreactivity was visualized using

3-amino-9-ethylcarbazole and H2O2. Before mounting, the sections

were counterstained with hematoxylin. Luxol fast blue (LFB)

staining was performed for 8 lm thick sections.

Electron microscopy
Ctsd)/) and wild-type mice at P23/24 were anesthetized using

subcutaneous injection of ketamine (75-100 mg/kg; Orion Pharma,

Espoo, Finland) and killed by perfusion fixation with 0.1 M

phosphate buffer, pH 7.4, containing 4% p-formaldehyde/2.5%

glutaraldehyde. Brains were processed for EM as described

previously (Gillingwater et al. 2006). Morphometric measurements

(including axon diameter and myelin sheath thickness) were made

from digital micrographs using IMAGE J software (version 1.35c,

developed by Wayne Rasband, NIH, USA, http://rsb.info.nih.gov/

ij/) with data collected and analyzed using Microsoft (Redmont,

WA, USA) Excel software and GRAPHPAD PRISM software (GraphPad

Software Inc., San Diego, CA, USA). For each fiber, the g ratio was

calculated as d/D, where d was the axon diameter and D was twice

the myelin sheath thickness (Fraher and O’Sullivan 2000).

Western blot analysis
The cerebral cortices of control and Ctsd)/) and Ctsd+/+ mice were

homogenized in 50 mM Tris, pH 7.0, containing 0.6% sodium

dodecyl sulfate, 1.5 M thiourea, 5 M urea, 3% 3-[(3-Cholamido-

propyl)Dimethyl-Ammonio]-1-Propanesulfonate, and 0.7% dithio-

treitol. The homogenates were centrifuged at 1700 g, for 10 min at

4�C, the supernatants collected, and protein concentrations

determined using the bicinchoninic acid protein kit (Interchim,
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Montluçon, France). Twenty microgram of protein from each

homogenate was subjected to 6–12% sodium dodecyl sulfate–

polyacrylamide gel electrophoresis, as appropriate for the expected

molecular weights, in the presence of b-mercaptoethanol. The gels

were blotted onto Hybond C nitrocellulose filters, blocked with 5%

defatted milk in Tris-buffered saline–0.1% Tween 20 and incubated

with the primary antibodies overnight at 4�C. Immunoreactive bands

were visualized by enhanced chemiluminescence after incubation

with goat anti-rabbit IgG coupled to horseradish peroxidase (Bio-

Rad, Hercules, CA USA). The intensities of the bands were

quantified using TINA 2.1 software (Raytest, Pittsburgh, PA, USA).

Proteomics
The cerebra of two to three mice of both genotypes (Ctsd)/) and

Ctsd+/+ mice) were collected at P24, combined and homogenized

by 10 strokes with a Teflon-glass homogenizer in 320 mM sucrose/

1 mM MgCl2/0.5 mM CaCl2/4 mM HEPES, pH 7.3 (using 4 mL of

buffer per 1 g of tissue). Synaptosomes were isolated from these

homogenates as described previously (Suopanki et al. 2002). The
protein content of the crude synaptosomal fractions was determined

by the bicinchoninic acid method.

Differences in the apparent relative concentration of proteins

between Ctsd)/) and Ctsd+/+ mouse synaptosomes were measured

by mass spectrometry (MS) based isobaric tags for absolute and

relative quantitation (iTRAQ) labeling method (Ross et al. 2004). For
this purpose, equal amounts of synaptosomal proteins (100 lg) were
precipitated with six volumes of cold acetone at )20�C for 2 h and

the pellets were dissolved in triethylammonium bicarbonate buffer

provided with the 4-plex iTRAQ kit (Applied Biosystems, Foster

City, CA, USA). Reduction, alkylation, trypsin digestion, and iTRAQ

labeling were performed according to the manufacturer’s protocol.

After labeling, the peptide samples from Ctsd)/) and +/+ mice were

pooled, desalted using C18 Empore disks (3M; St Paul, MN, USA),

and dried. To fractionate the peptides based on their pI, the peptide

samples were dissolved in immobilized pH gradient (IPG) strip

rehydration solution [4 M urea, 2% (v/v) IPG buffer, pH 3–10] and

loaded on a 13 cm IPG strip (GE Healthcare, Amersham Biosciences,

Uppsala, Sweden) with a pH gradient 3–10. Electrofocusing of

peptides was performed with IPGphor (GE Healthcare, Amersham

Biosciences) until 20 kVh. After focusing, the strip was cut into 12

fractions, peptides were extracted according to Cargile et al. (2004)
and desalted again to remove urea. Liquid chromatography–MS/MS

analyses were performed on a nanoflow LC system (Famos, Switchos

and Ultimate, LC Packings/MDS Sciex, Sunnyvale, CA, USA)

coupled to a QSTAR Pulsar i MS (Applied Biosystems/MDS Sciex,

Toronto, ON, Canada). Peptides were first loaded on a pre-column

(0.3 · 5 mm PepMap C18; LC Packings, Sunnyvale, CA, USA) and

then separated on a 15 cm C18 column (75 lm · 15 cm, Magic

5 lm 100 Å C18; Michrom BioResources Inc., Auburn, CA, USA).

A linear 120 min gradient (from 2% to 34% acetonitrile) was used to

elute peptides. Data acquisition parameters suggested by Applied

Biosystems were used. Protein PILOT software (version 1.0; Applied

Biosystems) was used for protein identification and quantification.

This software compares the relative intensity of proteins present in

Ctsd)/) and control samples based on the intensity of reporter ions

released from each labeled peptide, and automatically calculates the

quantity ratios and p-values for each protein. Database searches were

carried out against Swiss Prot–Trembl, taxonomy mouse.

Analysis of neutral lipids
Snap-frozen dissected frontal lobes from P24 Ctsd)/) and Ctsd+/+
mice were allowed to thaw on ice. They were then homogenized

into 2% NaCl and aliquots were taken for protein determination. The

protein concentrations were determined according to (Lowry et al.
1951). Lipids were extracted according to Bligh and Dyer (1959),

and the samples were adjusted for protein concentration and applied

on HPTLC Silica Gel 60 F524 plates (Merck, Darmstadt, Germany)

by using an automatic TLC sampler 4 (Camag, Berlin, Germany).

Lipids on TLC plates were resolved by using hexane/diethyl ether/

acetic acid (80 : 20 : 1) as solvent. Lipids were visualized by

staining with 3% copper sulfate and 8% phosphoric acid, followed

by heating at 180�C for 5 min. The intensity of the bands was

quantified using TINA 2.1 software (Raytest).

Analysis of polar lipids and fatty acyl and alkenyl chain
composition
Snap-frozen samples of cerebral cortices (rostral and caudal parts) of

the Ctsd)/) and +/+ mice were extracted according to Folch et al.
(Folch et al. 1957). The total phospholipid and cholesterol content

in the brain lipid extracts was studied by spectrophotometric

methods (Bartlett and Lewis 1970, Gamble et al. 1978). The acyl

and alkenyl chain composition of brain total lipids was determined

by GLC (Kakela et al. 2005). Aliquots of the total lipid extracts

were spiked with a cocktail of 18 phospholipid and sphingolipid

standards, and analyzed by liquid chromatography–MS (Kakela

et al. 2003; Hermansson et al. 2005). The lipid molecular species

were identified and quantified as detailed previously (Hermansson

et al. 2005; Haimi et al. 2006). The acyl-acyl and alkenyl-acyl pairs

in each phospholipid species were studied by acyl chain specific

daughter scans and analysis of product ions produced upon

fragmentation (Kainu et al. 2008).

Statistics
The differences in the relative amounts of the phospholipid

molecular species, amounts of neutral lipids and signal intensities

in the semi-quantitative western blots in Ctsd)/) and +/+ mouse

brains were studied by Student’s t-test. Multivariate principal

component (PC) analysis was applied to compare the fatty acyl

and alkenyl chain composition of the brain samples (Kvalheim and

Karstang 1987). Prior to the analysis, the molar percentages of the

acyl and alkenyl chains were logarithmically transformed to prevent

the abundant components with large variance from dominating the

analysis. The samples positioned in multidimensional space were

plotted in two new coordinates (PC1 and PC2) calculated to describe

the largest and second largest variance of the data among the

samples. The computations were performed by using SIRIUS program

package (Pattern Recognition Systems, Bergen, Norway).

Results

Histochemistry and immunohistochemistry
Cathepsin D deficiencies in human infants and newborn
lambs are characterized by extreme loss of myelin. In
Ctsd)/) mouse brains, however, myelin loss is not readily
evident without specific stainings against myelin lipids or
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proteins. To examine the myelinated structures in Ctsd)/)
and Ctsd+/+ (control) mouse brains, we stained paraffin-
embedded brain slices with the classical LFB method and
with antibodies against two major myelin proteins, the MBP
and PLP (Fig. 1). There were no gross differences in the LFB
and MBP staining between Ctsd)/) mice and controls at the
terminal stage of the disease, P24 (not shown). In contrast,
PLP staining was markedly reduced in the affected mice, this
being particularly apparent in the striatum (not shown),
corpus callosum, and hippocampus (Fig. 1a). In the thalamus
of the Ctsd)/) mice, the PLP staining appeared in abnormal
clusters instead of the finely punctate fibers typically seen in
the control mice (Fig. 1a). In a compact white matter
structure, the anterior commisura, where the stainings are
easy to compare, PLP and LFB staining intensity was clearly

reduced in Ctsd)/) mice compared with controls, while
MBP staining appeared nearly normal in the affected mice
(Fig. 1b).

Electron microscopy
As PLP and LFB stainings revealed myelin-specific changes
in the Ctsd)/) mice, we used EM to qualitatively and
quantitatively examine axon and myelin morphology in the
corpus callosum of these mice. Qualitatively, micrographs
from the corpus callosum of control mice showed intact
axons and myelin sheaths (Fig. 2a). By contrast, micrographs
from Ctsd)/) mice showed reduced numbers of axon
profiles, widespread axonal degeneration (evidenced by
disrupted axon membranes and organelles) and modifications
in myelin integrity and thickness (Fig. 2b). In particular,

(a)

(b)

Fig. 1 Histochemical and immunohisto-

chemical staining of paraffin-embedded

mouse brains. (a) Immunohistological

staining of paraffin-embedded mouse

brains with antibodies against proteolipid

protein (PLP). In control mouse brains, the

PLP staining is abundant and strong in the

myelin-rich structures of corpus callosum

(cc) and hippocampus (hc). In contrast to

this, there is significantly less PLP staining

in the cc and hc of cathepsin D knockout

(Ctsd)/)) mice. In the thalamus (thal) of

Ctsd)/) mice, PLP staining is localized in

clusters rather than in the fine fibrous

structures seen in control mice. All stainings

are representative examples of a series of

experiments performed in Ctsd)/) (n = 4)

and control mice (n = 4) at the age of

24 days. Scale bars, 150 lm. (b) Staining

of the anterior commisura (ac) with anti-

bodies against myelin proteins and Luxol

fast blue (LFB). Both PLP and LFB stain-

ings were reduced in the ac of Ctsd)/)
mice compared with controls. Staining for

myelin basic protein (MBP) revealed no

major differences between the ac of control

and Ctsd)/) mice. All stainings are repre-

sentative examples of a series of experi-

ments performed in Ctsd)/) (n = 4) and

control mice (n = 4) at the age of 24 days.

Scale bar, 200 lm.
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many myelin sheaths appeared thinner than those in corre-
sponding micrographs from control littermate mice. Quan-
titative measurements of myelin sheath thickness confirmed a
significant reduction in Ctsd)/) mice (Fig. 2c; p < 0.0001,
unpaired Mann–Whitney test). Interestingly, a small popula-
tion of axon profiles in Ctsd)/) mice showed evidence of
hypermyelination not present in control preparations
(> 0.3 lm thick; Fig. 2e; also note data points at �3.75
and �4.75 lm in Fig. 2c). Myelin integrity in the corpus
callosum was also assessed using g ratios. The g ratio (axon
diameter : myelin sheath thickness · 2) is normally tightly
regulated in healthy nerve fibers (Fraher and O’Sullivan
2000). The g ratios were significantly increased in Ctsd)/)
mice compared with littermate controls (Fig. 2d; p < 0.0001,
unpaired Mann–Whitney test), confirming that the observed
reduction in myelin thickness was not simply occurring
because of reduction in axonal diameter.

Proteomics
As the histochemical, immunohistochemical and morpho-
logical data suggested severe alterations in the myelin of
Ctsd)/) mice, we next examined the myelin-related proteins
by applying quantitative shotgun proteomics on synaptic
fractions isolated from Ctsd)/) and control mice brains.

About 500 proteins were identified in three parallel analyses
of four different biological samples from both genotypes. A
marked reduction of myelin-related proteins was evident
from the proteomic analysis, whereas the quantity of proteins
related to glucose metabolism were equally abundant in the
Ctsd)/) and Ctsd+/+ mice, as summarized in Table 1. A
highly significant reduction in the amount of three essential
myelin proteins, PLP (0.59 · normal), MBP (0.51 · nor-
mal), and 2¢,3¢-cyclic nucleotide 3¢-phosphodiesterase (CNP;
0.55 · normal) was observed in Ctsd)/) mice compared
with controls at P24 (Table 1). The amount of peripheral
myelin protein 22 also appeared reduced in the proteomic
analyses but the result was not statistically significant. In
addition, we noticed that the amount of ApoE, related to
cholesterol transport, was increased �2-fold in the affected
brains (Table 1).

Lipid analyses
We next investigated if we would gain a further insight into
the myelin-associated alterations by studying the lipid
composition in Ctsd)/) mouse brains. Even in healthy
vertebrate brain the myelination process markedly affects the
brain lipid profile, and is highly dependent on the develop-
mental stage. Therefore, the myelination process and also the

(a) 

(c) (d) (e) 

(b) 

Fig. 2 Ultrastructural evidence for disrupted myelin in the corpus

callosum of late-symptomatic (P23/24) Ctsd)/) mice. (a and b)

Representative electron micrographs from the corpus callosum

showing intact axons and myelin sheaths in littermate control mice

(a) but reduced axon number, evidence for axon degeneration and

disruption, as well as thinning of myelin sheaths in Ctsd)/) mice (b).

Scale bar (a and b), 1 lm. (c) Scatter plot showing a significant

decrease in the thickness of the myelin sheath in the corpus callo-

sum of Ctsd)/) mice [***p < 0.0001, unpaired Mann–Whitney test;

n = 87 axons from three control (+/+) and n = 93 axons from three

Ctsd)/) ()/)) mice]. Note the outlier data points in the )/) showing

evidence for hypermyelination of a small minority of axons. (d)

Scatter plot showing a significant increase in the g ratio in the corpus

callosum of Ctsd)/) mice [***p < 0.0001, unpaired Mann–Whitney

test; n = 87 axons from three control (+/+) and n = 93 axons from 3

Ctsd)/) ()/)) mice]. (e) Electron micrograph showing a hypermye-

linated axon (arrow) occasionally seen in the corpus callosum of

Ctsd)/) mice. Scale bar, 500 nm.
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degradation of myelin can be monitored by studying the
occurrence of these characteristics in the brain lipid profile.

We found several abnormalities in the lipid composition of
Ctsd)/) mouse brains. The fatty acyl and alkenyl chain
compositions in total lipids of Ctsd)/) mouse brains showed
significantly reduced amounts of all individual plasmalogen-
derived alkenyl chains and 20- and 24-carbon saturated and
monounsaturated fatty acids typical for glycosphingolipids,
as demonstrated by the PC analysis blot (Fig. 3a). The total
mol% values for these indicators in Ctsd)/) mouse brain
(rostral and caudal parts of cerebrum) were about two-thirds
of those in the controls (Fig. 3b; statistically significant
difference in each, Student’s t-test). As myelin is known to be
rich in plasmalogens and glycosphingolipids, the results
suggest that the diseased brains have lost roughly one-third
of their original myelin. The largest differences in the
phospholipid molecular species profiles between Ctsd)/)
and control mice were found in the ethanolamine plasmal-
ogens (Fig. 3c; changes were more pronounced in the caudal
part of cerebrum). In the Ctsd)/) brain, polyunsaturated
plasmalogen species (alkenyl/acyl) 18:0/20:4, 18:1/20:4,
16:0/22:6, 18:0/22:5 and 18:0/22:6 were increased at the
expense of all the species comprised of saturated and
monounsaturated chains. These differences reflect changes in
the relative amounts of different phosphatidylethanolamine
(PE) plasmalogen pools of the brain (see Discussion). In
addition, in phosphatidyl choline there were small 1-2 mol%
increases in the 16:0/20:4 and 16:0/22:6 diacyl species, and
the profiles of diacyl species of PE showed minor changes.

In our analyses, the total phospholipid and cholesterol
content, calculated per total protein, appeared similar to
controls in Ctsd)/) mouse brains (data not shown). How-
ever, a striking increase of cholesteryl esters and a reduction
in triacylglycerols was found in the neutral lipid fraction of
Ctsd)/) brains (Fig. 4). Cholesterol is an important struc-
tural component of myelin, and the turnover of cholesterol in
the brain is slow. If present in excess, cholesterol may be
stored intracellularly in the form of cholesteryl esters in lipid
droplets.

To examine whether the observed alterations in cholesteryl
esters were reflected in the protein machinery governing
cholesterol homeostasis, we analyzed the protein amounts of
ApoA–I, ApoE, and ABCA1 in P24 Ctsd)/) and control
brains by semi-quantitative western blotting. The apoE
protein amount was found to be increased 4-5 fold in
Ctsd)/) tissue (Fig. 5a), in line with the elevated ApoE
amounts observed by proteomics (Table 1). In contrast, a
clear reduction in the protein amount of ABCA1 was found
in Ctsd)/) brains (Fig. 5b). No change in the ApoA–I
protein levels was observed (Fig. 5c).

Discussion

The myelin sheath is a layered membrane structure sur-
rounding all myelinated axons in vertebrates. It is formed by
oligodendrocytes, and it is essential for nerve conduction. In
this work, we show multidisciplinary evidence for a marked
disruption of myelin in the brains of Ctsd)/) mice.

Table 1 Selected proteins related to myelin metabolism identified in the proteomic analysis of Ctsd knockout and wild-type mouse synaptosomes

Accession no Name

Sequence

coverage % Ratio Ctsd)/)/Ctsd+/+ p

Analysis I/II/III

MYPR_MOUSE (P60202) Myelin proteolipid protein 26/26/28 0.47/0.68/0.62 0.0000/0.0188/0.0000

MBP_MOUSE (P04370) Myelin basic protein 32/44/40 0.57/0.52/0.44 0.0000*

CN37_MOUSE (P16330) 2¢,3¢-Cyclic nucleotide

3¢-phosphodiesterase (EC 3.1.4.37)

42/47/45 0.58/0.59/0.47 0.0000*

APOE_MOUSE (P08226) Apolipoprotein E precursor 38/40/N.D. 2.02/2.08/N.D. 0.0220/0.0001/N.D.

HXK1_MOUSE (P17710) Hexokinase-1 (EC 2.7.1.1) 22/31/32 0.89/1.08/1.11 0.1082/0.2358/0.0020

KPYM_MOUSE (P52480) Pyruvate kinase, isozyme M2

(EC 2.7.1.40)

31/68/38 1.03/1.11/0.93 0.8634/0.2456/0.2440

K6PP_MOUSE (Q9WUA3) 6-Phosphofructokinase type C

(EC 2.7.1.11)

15/20/8 1.04/1.14/1.15 0.0037/0.1677/0.4780

NUAM_MOUSE (Q91VD9) NADH-ubiquinone oxido-reductase

75 kDa subunit, mitochondrial

precursor (EC 1.6.5.3.)

13/20/17 1.07/1.03/1.01 0.0003/0.6501/0.9190

Mass spectrometry based proteomic analysis was performed in three parallel experiments (I/II/III) in four different biological samples of each

genotype as described in Materials and methods. Identification of the proteins is always based on multiple peptides. Table shows sequence

coverage of each identified protein as percentages of the detected sequence of the total sequence in three parallel analysis. Quantitative comparison

of each protein between the cathepsin D knockout and control mice is based on the results received from iTRAQ labeling (for more details see

Materials and methods). Relative protein quantity differences are expressed as protein ratios (Ctsd ko/wt) in the three parallel analyses. Only if

p-value of the quantitative analysis is less than 0.05, the protein ratio is statistically significant. *The same in all three analyses, N.D., not detected.
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Proteomic analyses indicated a significant loss of three major
myelin proteins, PLP, MBP, and CNP. PLP is the most
abundant structural component of myelin. PLP is responsible
for the maintenance of myelin stability and axonal integrity
(Boison and Stoffel 1994; Hobson et al. 2002), and it has
also been shown to interact with cholesterol (Krämer-Albers
et al. 2000). MBP is the second most abundant protein of the
CNS myelin, comprising as much as 30% of its total protein
(Boggs 2006). It is essential in the assembly of myelin,
indicated by the lack of compact myelin in mice and rats with
mutations in MBP gene (Boggs 2006). CNP is a myelin-
associated enzyme that makes up �4% of total CNS myelin
protein, and it catalyzes the phosphodiester hydrolysis of
2¢,3¢-cyclic nucleotides. CNP is an early marker of oligo-
dendrocyte differentiation, while MBP is important for
oligodendrocyte morphogenesis at later stages of differenti-

ation (Galiano et al. 2006). In good accordance with the
proteomic analysis, PLP staining was markedly reduced in
Ctsd)/) brains compared with controls. Staining for MBP,
however, was unable to show major alterations between the
control and affected mouse brain, although quantitative
analysis revealed a significant reduction of the MBP protein
in the Ctsd)/) brain.

The reduced amounts of the essential myelin proteins are
well in line with our EM findings showing significant
thinning of axonal myelin sheets and axonal degeneration in
Ctsd)/) mice, suggesting that demyelination occurs in the
corpus callosum of Ctsd)/) mice. We also found evidence

(a) 

(b) 

(c) 

Fig. 3 Altered profiles of fatty acyl and alkenyl chains and PE plas-

malogen species in the brains of Ctsd)/) mice. (a) The differences in

the profile of acyl and alkenyl chains between the control and Ctsd)/)
mouse brain samples are best demonstrated by using a multivariate

approach, principal component analysis (PCA). PCA compressed the

original high-dimensional data with minimal loss of information and

presented the data points by using only two newly formed axes PC1

and PC2, which represented 57% and 21% of the total compositional

variation among the samples, respectively (PC1 more important). The

PCA biplot showed grouping of the samples of same origin and a

clear-cut separation between the control and Ctsd)/) brain samples

(n = 4 per genotype). Also, the rostral and caudal parts of the cere-

brum were different. The larger the distance of any two samples

(marked with symbols) on this biplot, the more they differ in terms of

the whole profile of acyl and alkenyl chains. The abbreviated individual

carbon chains situated far from the origin (marked with a cross in the

middle of the plot) are responsible for the main part of the composi-

tional difference and the ones closer to the origin have less separation

power and importance. In addition, the brain samples farthest from the

origin on one side were relatively rich in the acyl and alkenyl chains

farthest on the same side (and relatively poor in the chains marked on

the opposite side). The degree of coincidence of different acyl and

alkenyl chains in all studied tissue samples can be read from the plot

by drawing a connecting line between any two of those chains (vari-

ables) via the origin and then looking at the angle formed: e.g.

0�= total positive correlation, 90� = no correlation, 180� = total nega-

tive correlation (between the mol% of those two side chains in the

studied brain samples). Based on these, the Ctsd)/) brains were

relatively poor in all individual plasmalogen-derived alkenyl chains (in

italics and denoted alk) and 20- and 24-carbon saturated and mono-

unsaturated fatty acids characteristic for sphingolipids, but rich in

polyunsaturated fatty acids 22:6n-3 and 20:4n-6. (b) The totals of the

20-24 carbon saturated and monounsaturated acyl chains and plas-

malogen species (deduced from dimethylacetals formed from the

plasmenyl chains) in the rostral and caudal parts of control and

Ctsd)/) brain, expressed as percentages of the corresponding

controls (*p < 0.05, **p < 0.01, and ***p < 0.001, Student’s t-test). The

mol% values of these indicators of all acyl chains or lipid molecular

species of the control brain are indicated inside the control bars. (c)

The main molecular species profiles of PE plasmalogens (the

chains were marked in the order: alkenyl/acyl) in the control and

Ctsd)/) brain, caudal part (statistics as in panel b); in the diseased

brain, the polyunsaturated species were significantly increased at the

expense of the monounsaturated ones.

� 2009 The Authors
Journal Compilation � 2009 International Society for Neurochemistry, J. Neurochem. (2010) 112, 193–203

Myelin pathology in cathepsin D null mice | 199



for a small population of hypermyelinated axons, strength-
ening the idea that the normally tightly regulated myelination
process is disrupted in Ctsd)/) mice. Importantly, the
increased g ratios observed indicate that the reduction in
myelin thickness was not simply occurring because of a
corresponding reduction in axonal diameter in Ctsd)/) mice.

Myelin assembly is a multi-step process: It starts already
during the transport of myelin proteins and lipids through the
biosynthetic pathway and continues at the plasma membrane
aided by MBP (Simons and Trotter 2007). At P24, PLP
staining was reduced in Ctsd)/) brains, but appeared
relatively normal at P16 and P19 (data not shown).
Apparently, the difference in PLP staining arises between
P19 and P24, simultaneously with other pathological changes
such as gliosis, magnetic resonance imaging changes and
loss of synapses in distinct brain areas (Haapanen et al.
2007; Partanen et al. 2008). This is also a period of active
myelination. Therefore, it is possible that the decrease in
myelin content in Ctsd)/) mice may not only result from
myelin degradation, but also from a delay or failure in myelin
assembly. These two processes, degradation of myelin and
abnormal myelin assembly, may occur simultaneously in
Ctsd)/) mice. In fact, the existence of hypermyelinated and
degenerating axons in the corpus callosum of Ctsd)/) mice

favor this idea. Moreover, characteristics of developmental
delay exist in the newborns and lambs with CTSD deficiency
(Fritchie et al. 2008; Tyynelä et al., unpublished data).

The myelination process has major effects on lipid profiles
of the vertebrate brain, with increases e.g. in alkenyl-acyl
species of phosphatidylethanolamines and in glycosphingo-
lipids with 20- and 24-carbon acyl chains (Rao 1977;
Martinez 1982). Moreover, altered concentrations of plas-
malogens and glycosphingolipids have been reported in
several neurological diseases, such as Alzheimer’s disease,
adrenoleukodystrophy, and sphingolipidoses (Ozkara 2004;
Hartmann et al. 2007; Khan et al. 2008). We found indica-
tions of significant net reduction in the total plasmalogen and
glycosphingolipid content, as well as altered molecular
species profiles of ethanolamine plasmalogens in Ctsd)/)

Fig. 5 The amount of ApoE protein is increased and that of ABCA1

decreased in the brains of Ctsd deficient mice. Aliquots of brain lysates

from wild-type (+/+) and Ctsd knockout ()/)) mice (20 lg of protein

lysate from each) were analyzed by western blotting using antibodies

against ApoE, ABCA1, or ApoA1. ABCA1 samples were separated by

6% sodium dodecyl sulfate–polyacrylamide gel electrophoresis,

ApoA1 and ApoE samples by 10-12% sodium dodecyl sulfate–poly-

acrylamide gel electrophoresis. The band intensities were quantified;

*p < 0.05 and **p < 0.005, n = 4 samples from two individuals per

genotype, except for ApoA1 n = 5 individuals per genotype. a.u.,

arbitrary units; error bars, SEM.

Fig. 4 Cholesteryl esters accumulate and triacylglycerols decrease in

the brains of Ctsd deficient mice. (a) Lipids were extracted from P24

Ctsd wild-type (+/+) and knockout ()/)) mice frontal lobes and ana-

lyzed with HPTLC as detailed in Materials and methods. Lipids were

identified by comparing their migration to known standards. CE, cho-

lesteryl esters; TG, triacylglycerols. (b) The HPTLC plates were

scanned and quantified in comparison to known amounts of standard

lipids; n = 4 samples from two individuals per genotype; wild-type

(+/+), knockout ()/)), ***p < 0.001, **p < 0.005; error bars, SEM.
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brain. These findings suggest a marked decrease, either
because of increased degradation or decreased synthesis, in
the myelin content of Ctsd)/) mouse brains. In the human
white matter, 50% or more of the ethanolamine plasmal-
ogens were reported to consist of molecular species with
monounsaturated acyl chains, whereas in gray matter, only
20-30% of these lipids were comprised of monounsaturated
species, and polyunsaturated species dominated instead
(Han et al. 2001). Thus, the observed reduction in the
monounsaturated species and the concomitant increase in
the polyunsaturated species in Ctsd)/) mice can be
explained by a decrease in the brain content of white
matter, i.e. myelin. The decreased tissue levels of plasmal-
ogens and glycolipids (largely galactolipids) may simply
mirror a reduction in the brain myelin content. Importantly,
defects in the metabolism of myelin lipids may also be a
factor accelerating myelin degradation, because mice that
are not able to synthesize galactolipids or are plasmalogen-
deficient develop drastic hypomyelination (Hirahara et al.
2004; Gorgas et al. 2006).

Previous evidence for altered glycosphingolipid metabo-
lism in CTSD deficiencies comes from two directions: First,
the amount of sphingolipid activator protein (SAP) precursor
was found to be reduced in the brains of Ctsd)/) mice (Jabs
et al. 2008). This protein precursor gives rise to SAP A–D,
which facilitate the lysosomal turnover of most glycosphin-
golipids. Second, accumulation of SAP D-positive inclusions
in the CNS is a pathological hallmark of human and ovine
CTSD deficiencies (Tyynela et al. 2000; Siintola et al. 2006;
Fritchie et al. 2008). It has been suggested that CTSD may
be involved in the processing of SAP precursor and hence
cause these abnormalities (Jabs et al. 2008). Alternatively, in
the light of our present results, the reduced amount of SAP
precursor and the pathological accumulation of SAP D may
be a consequence of severely decreased tissue levels of
glycolipids.

The structural alterations and reduction of myelin were
associated with a marked increase of cholesteryl esters within
the brains of Ctsd)/) mice. Increase in cholesteryl esters
serves as a detoxification mechanism for excess free
cholesterol (Yao and Tabas 2001). The enzyme responsible
for cholesterol esterification, acyl coenzyme A:cholesterol
acyltransferase, is expressed only at low levels in the CNS
(Uelmen et al. 1995) and in line with this, essentially all
cholesterol in the CNS is in the unesterified form under
normal conditions (Bjorkhem and Meaney 2004). However,
degradation of myelin might release an excess of free
cholesterol, which then might become converted to choleste-
ryl esters. In addition to increased cholesteryl esters,
triacylglycerols were found to be markedly decreased in
terminal Ctsd)/) brains. Triacylglycerols constitute a major
source of energy in many tissues but in the CNS, which relies
on glucose and ketone bodies for energy, their content is low
(Macala et al. 1983). The decrease of triacylglycerols

observed in Ctsd)/) brains may, however, be linked to the
cholesterol imbalance: The fatty acyls are needed to store
cholesterol as cholesteryl ester may have been derived from
degraded triacylglycerols.

In addition, alterations were found in the content of ApoE
and ABCA1, key proteins related to cholesterol transport in
the CNS (Pitas et al. 1987; Karasinska et al. 2009). Recently,
reduced CTSD activity was shown to be associated with
reduced expression of ABCA1, and CTSD was shown to
regulate ABCA1 mediated lipid efflux and high-density
lipoprotein cholesterol levels (Haidar et al. 2006). These
observations are in line with our findings, showing a
dramatic reduction of ABCA1 in P24 Ctsd)/) mouse brains.
Increase in the amount of ApoE in Ctsd)/) mouse brains
may reflect the increased activity of CNS lipoprotein
synthesizing cells in an attempt to clear the excess free
cholesterol resulting from the breakdown of myelin. Alter-
natively, the increased expression of ApoE may reflect the
fact that after injury, ApoE expression is elevated and also
found in cell populations that normally do not express it (Xu
et al. 2006). Additionally, CTSD has been implicated in the
proteolysis of ApoE (Zhou et al. 2006), and hence, perturbed
degradation is yet another possible explanation for the
increase of ApoE. ApoE-containing nascent lipoprotein
particles secreted by astrocytes are in part lipidated by
ABCA1 (Hirsch-Reinshagen et al. 2004; Wahrle et al.
2004). As CTSD deficiency leads to a marked down-
regulation of ABCA1, astrocytes are likely to be unable to
produce sufficiently lipidated lipoprotein particles. As a
consequence, the intracellular storage of cholesterol as
cholesteryl ester would be increased.

In conclusion, we show the first evidence for a marked
disruption of myelin in the brains of Ctsd)/) mice. This is in
agreement with findings in other species with CTSD
deficiency. In parallel, hypermyelination and altered myelin
integrity was observed in Ctsd)/) mice. Structural altera-
tions of myelin were associated with an unforeseen accu-
mulation of cholesteryl esters and abnormal fatty acyl and
alkenyl chain profiles within the brains of Ctsd)/) mice,
suggesting that pronounced degradation of myelin is occur-
ring in the brains of these mice at P24, possibly simulta-
neously with aberrant myelin assembly. In addition, the
abnormal levels of proteins related to cholesterol transport
suggest that the overall trafficking of cholesterol is distorted
in the brains of Ctsd)/) mice and emphasize the role of
CTSD in the regulation of lipid homeostasis. These data
suggest that alterations in lipid metabolism may play an
important role in the process leading to neurodegeneration in
CTSD deficiencies.
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