Short Communications

Salmonella infections in garden birds and cats in a domestic environment

D. J. Taylor, A. W. Philbey

WILD bird strains of Salmonella enterica serovar Typhimurium, including phage types (definitive types) DT40 and DT56v, have been associated with disease in finches (Family Fringillidae), cats and human beings in the UK and Sweden (Tauni and Österlund 2000, Pennycott and others 2006, Hughes and others 2008, Philbey and others 2008, 2009). Salmonellosis in wild finches in the UK is related to congregation of birds around feeding tables in gardens in the cooler months of the year (Pennycott and others 2006). Cats are thought to become infected with wild bird strains of S Typhimurium by catching small birds at these feeding stations (Philbey and others 2008), but a direct link between salmonellosis in birds and cats has not been demonstrated. This short communication describes a study to investigate the occurrence of Salmonella species in wild birds, cats and the environment in a domestic setting.

The study site comprised a household and two adjoining village gardens in Lennoxtown, near Glasgow, with three human occupants and two male neutered domestic shorthair cats (cat 1: five years old; cat 2: 10 years old). Feeders containing mixed seed, niger seed, peanuts or fat were provided at two feeding sites in each of the gardens. Sick birds were observed in both gardens over an eight-week-period from late December 2008 to early February 2009 (Fig 1a). During this period, cat 1 caught 14 goldfinches (Carduelis carduelis) and eight siskins (Carduelis spinus), and later caught several greenfinches (Carduelis chloris) and chaffinches (Fringilla coelebs) (Fig 1b). Many of these birds were taken from cat 1 by cat 2 and, apart from intact birds retrieved for postmortem examination, the birds were mostly eaten indoors by either of the two cats. In the previous year, cat 1 had caught only a few small rodents.

Six uneaten or partially eaten carcases (two siskins, two chaffinches, one goldfinch and one greenfinch) were retrieved from the cats in January and February 2009 (Table 1, Fig 1c). On gross examination, all six carcases had pale yellow foci, 1 to 2 mm in diameter, in the liver and spleen (Fig 1d). Histological examination revealed that these foci were necrotising inflammatory lesions containing colonies of bacteria (Fig 1e). Samples of tissue from these birds, along with tissue from one wood mouse (Apodemus sylvaticus) caught by one cat, were submitted for Salmonella species isolation.

Tissues, faecal samples and swabs from the environment were inoculated into tetrathionate broth and incubated overnight at 37°C aerobically, then subcultured on to Salmonella Shigella agar and desoxycholate agar (Oxoid). Bacterial colonies typical of Salmonella species were subcultured and identified by slide agglutination and biochemical testing (API 20 E; bioMérieux) as Salmonella species. The serovar and phage type of the isolates were determined at the Scottish Salmonella Reference Laboratory.

S Typhimurium phage type DT40 was recovered from the liver, spleen, intestine or partially eaten viscera of the six bird carcases submitted for postmortem examination, from one faecal sample from each cat, from the sample of mouse viscera and from the ground under the four bird-feeding stations in the main garden, as well as the ground under two feeding stations in the neighbouring garden (Table 1). However, samples from the bird feeders, the contents of a vacuum cleaner in the house, the sewerage drain of the house, and

FIG 1: (a) Sick siskin (Carduelis spinus) on a niger seed feeder at feeding site 1. (b) Cat 1 with a goldfinch (Carduelis carduelis) inside the house. (c) Goldfinch 1 that had been caught by cat 1; Salmonella enterica serovar Typhimurium DT40 was isolated from this bird. (d) Multiple pale yellow foci in the liver (L) and spleen (S) of goldfinch 1. (e) Histological section of the liver of goldfinch 1, showing focal necrotising hepatitis. Haematoxylin and eosin. Bar=100 µm

Correspondence to Dr Philbey, e-mail: adrian.philbey@vet.gla.ac.uk

Provenance: not commissioned; peer reviewed
other debris from birds brought into the house by the cats were all negative. A chaffinch with foot lesions and a chaffinch killed by a sparrowhawk (Accipiter nisus) were also both negative for Salmonella species. Faecal swabs from both cats and from the ground under the feeding stations were negative for Salmonella species. Faecal swabs from both cats and from the ground under the feeding stations were negative for Salmonella species. Feeding station 1 (swab) January 19, 2009

Environment
- Ground under feeding station 1 (swab) January 19, 2009
- Ground under feeding station 2 (swab) January 19, 2009
- Ground under feeding station 3 (swab) January 26, 2009
- Ground under feeding station 4 (swab) January 26, 2009
- Ground of neighbour’s garden 1 (swab) January 26, 2009
- Ground of neighbour’s garden 2 (swab) January 26, 2009

These findings confirm that cats can be infected with S Typhimurium DT40 by catching and eating garden birds, and that both cats and the garden environment are a potential source of infection for human beings.

Acknowledgements
The authors thank Richard Irvine for gross photography, Lynn Stevenson for processing histological sections and Kathleen Reynolds and Manuel Fuentes for culturing and identifying the Salmonella species isolates. The authors also thank John Coia and Henry Mather at the Scottish Salmonella Reference Laboratory for determining the serovars and phage types.

References
Salmonella infections in garden birds and cats in a domestic environment

D. J. Taylor and A. W. Philbey

Veterinary Record 2010 167: 26-27
doi: 10.1136/vr.c3156