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Abstract. In this paper we analyze the effects of mistakes in opinion propagation

in the voter model on strategic influence maximization. We provide numerical results

and analytical arguments to show that generally two regimes exist for optimal opinion

control: a regime of low transmission errors in which influence maximizers should focus

on hub nodes and a large-error regime in which influence maximizers should focus on

low-degree nodes. We also develop a degree-based mean-field theory and apply it to

random networks with bimodal degree distribution, finding that analytical results for

the dependence of regimes on parameters qualitatively agree with numerical results for

scale-free networks. We generally find that the regime of optimal hub control is the

larger, the more heterogeneous the social network and the smaller the more resources

both available to the influencers.

Keywords: network dynamics, random graphs, networks, interacting agent models

1. Introduction

People often change their opinions in response to interactions with their peers or due

to new knowledge from external sources of information. Such information contagion

processes are relevant for many applications, ranging from political or government

campaigns [1], marketing [2, 3], to the understanding of radicalization [4, 5]. In many of

these contexts the question arises how an external agent with limited resources should

best allocate its influence to maximally change opinion towards some target.

The latter question is traditionally addressed in the computer science and economics

literature, mostly analyzing contagion processes related to the independent cascade

model [6, 7, 8, 9]. Whilst the problem is NP-hard the model’s simplicity and

elegance have allowed for the development of fast computer algorithms with theoretical

convergence guarantees that give good approximations for large scale social networks

[6, 10, 11, 12, 13, 14, 15]. However, in the independent cascade model agents are assumed

to be committed to an opinion, once they have adopted it. The model might thus be

suitable for opinion spreading processes in which agents are strongly committed to a

choice once adopted, like, e.g. buying expensive products or adopting certain life-style

choices such as smoking.
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The independent cascade model is not suitable when modeling opinion formation

without strong commitment, e.g., when deciding about voting choices in elections or

when agents can easily be swayed in their choices due to repeated influence from

differing sources on social media. The dynamics of opinion change in the latter scenario

are addressed in a rich interdisciplinary literature, cf. [16, 17] for reviews. However,

questions of influence maximization on social networks have found relatively little

attention for such dynamic models of opinion propagation. Exceptions are recent studies

considering influence maximization for the case of continuous opinions [1] or for discrete

opinions for Ising-like dynamics [18, 19, 20], a version of an AB model [21] and the

voting dynamics [22, 23, 24, 25].

Here, because of its simplicity and prominence in the literature, we focus on the

voting dynamics [26, 27], which has also been investigated in noisy settings [28]. The

main effect of including noise in the voter model is that it prevents absorbing states, so

no full consensus can be reached. Interestingly, varying trade-offs between the effects of

noisy and pressure towards consensus formation from the copying dynamics, the noisy

voter model exhibits a finite-size transition from a phase in which most of the agents

spend most of the time close to one consensus state and then switch to the other to a

phase in which two macroscopic subpopulations at different states exist [29, 30]. Recent

work has shown that this finding essentially persists when interactions are given by

complex networks [30].

Close to our work below, for the voting dynamics a large body of work has

investigated effects of so-called zealotry on consensus formation [31, 32, 33]. Similar

to what we call influencers below, zealots are agents that are less likely to change their

opinions and thus they can exert substantial influence on the population. The effects of

zealots has recently also been investigated in the noisy voter model for the mean-field

scenario of all-to-all coupled populations [34]. However, literature on zealotry typically

does not focus on the optimal allocation of a zealot’s influence, and thus addresses a

slightly different problem from the problem of influence maximization outlined below.

However, recent work has also started to gain insights into optimal opinion control in the

voting dynamics. Specifically, [22, 24, 25] have pointed out that heuristics targeting hub

nodes perform very well on undirected heterogeneous networks, even though heuristics

based on centrality metrics do not correspond to exactly optimal allocations for all types

of networks [22]. This picture has been qualified by some of our recent work which has

shown that targeting hub nodes is not necessarily optimal in all situations, e.g., not if

agents have a large propensity to resist influence [35] or if time horizons of the influence

maximizer are very short [36].

In the voting dynamics agents repeatedly adopt opinions of randomly selected

neighbors. However, in real-world situations communication is often noisy, and we

might not always correctly interpret a neighbor’s choice or intention (or may be swayed

by a variety of influences extrinsic to the system when making up our minds). Such

a scenario of communication with frequently occurring misunderstandings might be

particularly applicable in humanitarian situations [37]. Communication in such noisy
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settings has previously been modeled in the so-called Kirman or noisy voter model

[38, 28], but up to our best knowledge influence maximization has not yet been studied

in the context of the noisy voter model.

Whilst strategies for optimal influence enhancement have been analyzed in various

settings for the voting dynamics [22, 23, 24, 25], the effects of randomly occurring

mistakes when adopting opinions on optimal allocation of external control have only

found very limited attention. The only study in this domain is [20] who develop a

gradient ascent algorithm based on mean-field solutions to study the role of noise in the

Glauber dynamics for opinion formation. The authors of [20] find that targeting hub

nodes is optimal in high noise scenarios while low-degree nodes should be targeted when

noise is low.

Here we extend previous work on opinion control by investigating strategies for

optimal influence allocation in the voting dynamics when opinion updating is subject

to randomly occurring mistakes. Below, we extend the framework developed by [25] to

this scenario and give guidelines how optimal allocation strategies have to be modified

depending on the amount of uncertainty in communication.

Our approach to this problem is as follows. We first develop a numerical framework

to estimate vote shares in the stochastic dynamics of the voter model via stationary

solutions of the master equation. We then use optimization techniques to gain insights

into optimal allocations, and develop an analytical understanding of the results via

a degree-based mean-field theory. We also use these insights as the basis of testing

heuristics which can easily scale to large-scale systems.

2. Model

Consider a set of N voters who each hold an opinion si ∈ {A,B}, i = 1, ...N . Agents

are connected by a social network given by its adjacency matrix G = {aij}Ni=1 which we

assume to be symmetric and unweighted. Additionally, two influencers (or controllers)

A (who holds opinion A) and B (who holds opinion B) are considered. Both can exert

unidirectional influence on the N votes. This influencing is modeled through vectors ~pA
and ~pB with pA,i = 1 (or pB,i = 1) if A (or B) exert influence on node i and pA,i = 0

(or pB,i = 0) otherwise. Note, that influence is thus modeled as a binary variable and

–somewhat different to some approaches considering zealots [31]– the influencer is not

subject to influence from the social system comprised of the N voters. Below we will

always assume that A is active or strategic in the sense that A aims to allocate her

influence with an aim to optimize her vote share in the steady state. In contrast, if

present, B is considered passive in the sense of allocating her influence randomly.

Given some influence allocation ~pA and ~pB of the influencers we then proceed with

the voter dynamics with transmission errors by iterating the following steps. (i) A

randomly chosen focus agent selects a randomly chosen in-neighbor (which includes

the controllers). (ii) The agent adopts the opinion of this in-neighbor with probability

1− q and adopts the opposite opinion in the other case. The probability q thus models
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‘transmission errors’, i.e. with probability q the message to follow an opinion is corrupted

during transmission from the chosen in-neighbor to the focus agent. Steps (i) and (ii)

are then iterated until a stochastic equilibrium is reached.

It is immediately obvious that for q = 0 the above model reduces to the traditional

voter dynamics. However, it is worth commenting that our setup differs slightly

from the traditional noisy voter model of [28] in which flip rates from states are

augmented by a neighbour-independent probability additional to the ratios of neighbours

of opposite states. The model as introduced above is meant to more explicitly model

miscommunication as a source of noise, but could be mapped to the model of [28] with

node-specific probabilities for state changes.

Note, that provided the social network is connected, for q = 0 the voting dynamics

will always reach a consensus in finite networks [16]. For any q > 0 it is known that

the noisy voter model is exponentially ergodic and an equilibrium state with certain

fractions of voters adopting A and B votes will be reached. Importantly, other work on

‘opinion control’ in the voter model has assumed the presence of two influencing parties

[25]. Without noise, such a choice is necessary because otherwise one opinion would

become extinct. Here, the presence of transmission errors ensures the presence of an

entropic force that always guarantees a mixed equilibrium and thus we can also consider

settings of ~pB = 0.

The voting dynamics allows for analytical treatment [16]. Here we follow the

approach of [25] and analyze it via mean-field rate equations for probability flows.

Whilst the approach is a standard technique often used in this context, it is worth-

while bearing in mind that this involves an uncontrolled approximation that essentially

ignores fluctuations, see, e.g. [39] for a more detailed discussion. Assume that xi gives

the probability of node i being in state A. We then have

dxi
dt

= (1− xi)

(
(1− q)(

∑
j aijxj + pA,i)∑

j aij + pA,i + pB,i
+
q(
∑

j aij(1− xj) + pB,i)∑
j aij + pA,i + pB,i

)
−

− xi

(
(1− q)(

∑
j aij(1− xj) + pB,i)∑

j aij + pA,i + pB,i
+

q(
∑

j aijxj + pA,i)∑
j aij + pA,i + pB,i

)
. (1)

The terms in Eq. (1) correspond to probabilities of the focus agent chosen being of type

B (top line) or A (bottom line) and then reflect probabilities of conversions according

to the voting dynamics. For example, with the first term at the top line events in which

a B is chosen as focus agent which will select an agent of type A as in-neighbor and

correctly adopt its opinion state is modeled. With the second term on the top line an

event in which a B chooses a B-agent to copy, but mistakes B’s state and (mistakenly)

adopts opinion A is described; analogous arguments lead to the terms at the bottom

line. Here we are interested in stationary states of the opinion dynamics and hence

set dxi/dt = 0 for all i. After some simplification a linear equation for steady-state



Transmission errors and influence maximization 5

probabilities ~x∗ results

(diag(pA,i + pB,i + ki)− (1− 2q)G)~x∗ = (1− q)~pA + q~pB + q~k, (2)

where ki =
∑

j aji and diag(pA,i + pB,i + ki) gives a zero matrix with diagonal entries

pA,i+pB,i+ki. Note, that for q = 0 Eq. (2) reproduces Eq. (4) in [25]. The stationarity

condition (2) gives a system of linear equation. Finding solutions to this system will

allow us to optimize configurations of exerted influence below.

Before proceeding, we note that one can immediately read mean-field results for

stationary vote shares for all-to-all connected networks from Eq. (2). Defining the

average share of A opinions in the network by X∗ = 1/N
∑

i x
∗
i we have

X∗(pA, pB) =
(1− q)pA + qpB + q

pA + pB + 2q
, (3)

where pA = 1/N
∑

i pA,i and pB = 1/N
∑

i pB,i are the respective densities of influencers

A and B. There is, of course, no point in influence maximization for an all-to-all

connected network, but Eq. (3) confirms our intuition about the role of transmission

noise. For q = 0 results reproduce results of [25], and for q = 1/2 we find X∗ = 1/2

irrespective of pA and pB.

Similar to what was noted by Masuda [25] for the case without noise, we note that

(2) is diagonally dominant for all q and thus, for shorter computation times for large

networks, we can solve it by Jacobi iteration, starting, e.g., with x
(0)
i = 1/2, i = 1, ..., N

and then iterate

x
(n+1)
i =

(1− q)pA,i + qpB,i + qki + (1− 2q)
∑

j ajix
(n)
i

ki + pA,i + pB,i
(4)

until convergence.

To obtain influence maximizing configurations we proceed as follows. First,

undirected unweighted social networks are constructed using the configuration model

[40] for power law degree distributions P (k) ∝ k−α where we typically consider α = 3

in most numerical experiments below. More or less heterogeneous networks can be

constructed by choosing smaller or larger values of the exponent α and adjusting

proportionality constants to keep connectivities constant. In this procedure, multiple

connections and self-connections are prevented and it is ensured that the resulting

networks are connected. Next, for given influence resources nA =
∑

i pA,i and nB =∑
i pB,i we allocate the influenced nodes by choosing nA and nB of the N nodes of the

social network at random. Next, optimization of the influence of A from one randomly

chosen influenced node i with pA,i = 1 to another randomly chosen not yet influenced

node j with pA,j = 0 takes place if X∗(pA,i = 1, pA,j = 0) < X∗(pA,i = 0, pA,j = 1).

Influence reallocation according to stochastic hill-climbing is repeated until no further

improvements have been found in the last 10N attempts.

In the above we have assumed that also the influence of controllers is subject to

transmission errors. For comparison we have also considered a scenario where opinions
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Figure 1. Dependence of vote share gains achievable by optimizing influence

allocations ~pA for influencer A on the influencer’s total resource nA for different

amounts of transmission noise q. (a) Gains for A without a passive influencer B.

(b) Gains for A against a passive influencer B with nB = 100. Results are for scale-

free networks with α = 3 of size N = 1000 with average degree 〈k〉 = 3. Data

points represent averages over 50 network realizations and error bars are smaller or

comparable to the size of symbols.

from the external influencer are always understood correctly. In that case Eq. (4) needs

to be modified by omitting the pre-factor 1 − q to pA,i and the pre-factor q to pB,i
on the right hand side. Results for both scenarios are essentially the same with small

differences in numerical values for large nA and nB. To avoid unnecessary duplication

we only present results for the first scenario.

3. Results

In this section we first present numerical results that illustrate a clear dependence

of strategic influence allocation on heterogeneous complex networks on settings for

transmission noise in subsection 3.1. Numerical results are complemented by analytical

solutions for an illustrative network model in subsection 3.2, which clarifies the main

observation of Sec. 3.1 and provides theoretical understanding.

3.1. Numerical Results

We first present results from numerical optimization in Fig. 1 which shows the

dependence of influence gains achieved by optimization X∗opt/X
∗
rand − 1 on the budgets

of the active and passive influencer for various amounts of transmission noise q. Several

observations can be made. First, it is apparent that influence maximization can

achieve larger gains in systems with low amounts of noise, whereas gains in very noisy

systems are limited to single digit percentages. Gains also strongly depend on resource

allocations to the competing influencer, i.e. acting against a well-resourced passive

influencer a strategic influencer can generally improve outcomes by a far larger amount

than when competing against a resource-poor opponent, when A’s aim is essentially to
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Figure 2. Strategic allocations of influence for different settings of the transmission

error. (a) Dependence of likelihood of a node to be influenced by A on its degree

k. (b) Dependence of average degree and (c) standard deviation of the distribution

of influenced nodes in the optimal allocation 〈k〉controlled on transmission noise q.

Parameters are α = 3, N = 1000, 〈k〉 = 3, nA = 10, and nB = 0 and data points

represent averages over 50 runs. Note that for each setting of q optimizations have

been performed for the same 50 networks.

dampen noise. Optimization gains also typically exhibit a maximum depending on A’s

resource endowment and the location of this maximum shows a clear dependence on

transmission noise q. Generally we find that increasing q tends to shift the maximum

towards larger nA. Thus, in low noise settings strategic allocation matters most when

resources of the active planner are small (e.g. nA = 1 in Fig. 1a for q = 10−4), but

for the largest noise setting of q = 1 strategic allocation gives largest gains for large

resource endowments (e.g. nA ≈ 400 in Fig. 1a for q = 10−1). Results of these initial

experiments thus clearly indicate major differences in influence maximization in the

voter model with and without transmission noise.

To further understand the importance of transmission noise for strategic allocation

we next constructed optimal allocations for different settings of q. We then quantify

optimized allocations via the likelihoods of nodes to be influenced depending on their

degree, i.e. the ratio nk,controlled/nk (where nk, nk,controlled are the number of nodes

with degree k and the number of controlled nodes with degree k) and the distribution

of influenced degrees. For the latter, two measures are of interest, e.g. the average

controlled degree

kcontrolled = 1/nA
∑
i

pA,iki (5)

and the standard deviation of controlled degrees

σ2
k,controlled = 1/nA

∑
i

pA,i(ki − kcontrolled)2. (6)

The respective numerical experiments are illustrated in Fig. 2. Panel (a) shows the

probability of nodes to be influenced depending on degree for low and high transmission

error settings. For low error rate q = 0.01 the dependency is step like with all nodes

with degree larger than k ≈ 20 being subject to influence and all other nodes remaining

uncontrolled. Thus clearly, for low transmission noise strategic influencers should almost
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Figure 3. Comparison of performance of low and high degree heuristics relative to

optimal allocations for settings with relatively low (left, q = 0.01), larger (middle,

q = 0.1) and large (right, q = 0.25) transmission error probabilities. Parameters are

α = 3, N = 1000, 〈k〉 = 3, nA = 10, and nB = 0 and data points represent averages

over 50 runs.

exclusively target the highest degree nodes, which agrees with previous findings in the

literature for the setting without noise [25]. As the error rate is increased this heuristic

breaks down with a mixture of high and low degree nodes being targeted for q = 0.06,

a focus on intermediate degree control for q = 0.08 and almost exclusive control of the

lowest degree leaf nodes for q = 0.25. By showing the dependence of controlled degrees

on q Fig. 2b reinforces this point. We observe a clear transition between a high-degree

and low-degree control regime. In fact, exact transition points can easily be determined

by plots of the standard deviation of the distribution of controlled degrees vs. the error

probability q, cf. Fig. 2c, where we see a very sharp drop in the standard deviation of

the distribution of controlled degrees when increasing q beyond the low-noise regime. As

suggested in Fig. 2a the plot also confirms that the switch between exclusive hub control

to leaf node control is not immediate. Instead, in between both phases we find a region

of parameter space at approximately 0.07 < q < 0.25 in which σ2
k,controlled is small, but

does not vanish, corresponding to a situation where controlling nodes of intermediate

and gradually declining degree maximizes vote shares.

The existence of separate low- and high-error regimes points out that heuristics

based on high degree or centrality scores do not always fare best when considering

opinion control in the voter model. In Fig. 3 we illustrate this point by comparing the

relative under-performance X∗heuristic/X
∗
opt of degree-based heuristics relative to optimal

configurations. More specifically, we compare random allocations and low- and high-

degree heuristics based on controlling the nA highest or lowest degree nodes (and

randomly choosing controlled nodes in case of degree ties). In agreement with [25],

on undirected networks high-degree heuristics perform very well. However, note that

(as also pointed out in [22]) exclusively controlling high-degree nodes does not always

achieve optimal performance. For low error probability, controlling low-degree nodes in

all settings proves inferior to controlling hub nodes. For high-error settings the exactly

opposite result is observed, i.e. the low-degree heuristic leads to results very close to

optimal, followed by random allocations and the high-degree protocol always performs

worst. For the intermediate setting differences between the three protocols are subtle
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α. Parameters are α = 3, N = 1000, 〈k〉 = 3, nA = 10, nB = 0, and data points and

errors estimated from plots of σk,controlled vs. q.

and depend on resource endowments.

Our above result points out that simple degree-based heuristics can work reasonably

well on heterogeneous networks, but require at least approximate knowledge about the

error probability-control regime which applies in the system under investigation. To

develop better intuition for this case we proceed by investigating the dependence of

the low-high degree threshold qthresh on resource allocations to the influencers and the

network structure. As a good proxy for the threshold we use the level of noise at which

the sharp drop in standard deviation of the distribution of controlled degrees is found

(cf. Fig. 2c). We start by analyzing the dependence of the threshold on the resources

nA and nB at the disposal of the active and the passive influencer, cf. Fig. 4. We

consider two scenarios. In the first setting, we fix nB = 0 and vary the resource nA
of A (open boxes in Fig. 4). In the second, we fix nA = 10 and consider competition

against an opponent B with varying resource nB (filled boxes in Fig. 4). For both
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settings a non-linear dependence of qthresh and the respective resource endowments with

a tendency for markedly lower thresholds the larger the resource budgets is observed.

In Fig. 5 we also investigate a setting in which we systematically vary network

structure from very heterogeneous networks with scaling exponent α = 2 up to more

and more homogeneous networks as α is increased. Again, a clear dependence of the

threshold on α is observed with values saturating at around qthresh ≈ 0.065 in the limit

of regular networks. Thus, the more heterogeneous a network, the larger its high-degree

control regime.

Both of our findings above give rough guidelines for selecting appropriate heuristics

when some knowledge about the social network and opponent budgets is available.

Roughly, the more resource available to the opponent and to the optimizer, the lower

the noise threshold and the less appropriate hub-focused strategies are. Contrariwise,

the more heterogeneous the social network, the larger the regime in which hub-control

applies.

3.2. Degree-based mean-field theory

In the following we aim for an analytical understanding of the switch between optimal

low- and high-degree control depending on the rate of transmission errors. For this

purpose we approximate the voting dynamics with influence using a mean-field approach

which will then allow us to find analytical expressions for optimal vote shares. We start

with Eq. (2) which gives stationary vote shares of individual nodes and then group

nodes according to degree k and whether they receive influence of strength one from A

or not, which leaves us with 2k groups of nodes which we label x
(0)
k (for nodes of degree

k which are not influenced by A) and x
(1)
k (for nodes which are influenced by A). For

simplicity we don’t explicitly model groups of nodes influenced by B or not, but assume

that all nodes receive influence from B of average strength pB,k = nB/N for all k. Then,

introducing the shortcuts ∆
(0)
k = k + pB and ∆

(1)
k = 1 + k + pB and approximating∑

j aijxj ≈ k〈x〉, we obtain:

∆
(0)
k x

(0)
k = qk + (1− 2q)k〈x〉+ qpB, (7)

∆
(1)
k x

(1)
k = 1− q + qk + (1− 2q)k〈x〉+ qpB. (8)

The mean field at the end of a randomly chosen link is

〈x〉 =
∑
k

khk
〈k〉

(
rkx

(1)
k + (1− rk)x(0)

k

)
, (9)

where hk is the fraction of nodes with degree k and rk gives the fraction of the nodes

with degree k which are influenced by A.

Combining Eq.s (7) and (9) we obtain a self-consistency relation

〈x〉 =
∑
k

khk
〈k〉

rk
1− q + qk + qpB + (1− 2q)k〈x〉

∆
(1)
k k

+ (1− rk)
qk + qpB + (1− 2q)k〈x〉

∆
(0)
k

(10)
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which allows to solve for the mean-field

〈x〉 =

∑
k
khk
〈k〉

(
rk

1−q+qk+qpB

∆
(1)
k k

+ (1− rk) qk+qpB

∆
(0)
k

)
1−

∑
k
k2hk
〈k〉 (1− 2q)

(
rk/∆

(1)
k + (1− rk)/∆(0)

) . (11)

Equation (11) can now be used to find vote shares x
(0)
k and x

(1)
k for nodes with degree k

via Eq. (7), which then gives an expression for the overall vote share

X =
∑
k

hk(rkx
(1)
k + (1− rk)x(0)

k ). (12)

We next seek to find influence allocations rk that maximize X for given budget

nA = N
∑

k hkrk, given degree distribution hk, and given rate of transmission errors

q. Inspection of Eq. (12) with all substituted indirect dependencies shows that

general expression for optimality quickly become extremely unwieldy. So, instead of

proceeding with an analysis of general network structures, we restrict further analysis

to a minimal network model, composed of a random network of equal fractions of hub

nodes (with degree k1 > k2) and periphery nodes with degree k2, so that the average

degree is 〈k〉 = (k1 + k2)/2. This simple network model is only a crude abstraction for

heterogeneous complex networks, but allows to gain basic insights into optimal influence

allocation to periphery and hub nodes.

For the above example, we can now evaluate Eq. (11) and obtain 〈x〉 = B/(1−A)

with

A =
1− 2q

2〈k〉

(
rk1k

2
1/∆

(1)
k1

+ (1− rk1)k2
1/∆

(0)
k1

+ rk2k
2
2/∆

(1)
k2

+ (1− rk2)k2
2/∆

(0)
k2

)
(13)

and

B =
1

2〈k〉

(
k1rk1

1− q + qk1 + qpB

∆
(1)
k1

+ k1(1− rk1)
qk1 + qpB

∆
(0)
k1

)
+

+
1

2〈k〉

(
k2rk2

1− q + qk2 + qpB

∆
(1)
k2

+ k2(1− rk2)
qk2 + qpB

∆
(0)
k2

)
. (14)

Overall, we thus obtain

X =
rk1
2

1− q + qk1 + qpB + (1− 2q)k1
B

1−A

k1 + pB + 1
+

1− rk1
2

qk1 + qpB + (1− 2q) B
1−A

k1 + pB
+

+
rk2
2

1− q + qk2 + qpB + (1− 2q)k2
B

1−A

k2 + pB + 1
+

1− rk2
2

qk2 + qpB + (1− 2q) B
1−A

k2 + pB
. (15)

As we aim to divide a constant budget nA between equal numbers of hub and

periphery nodes we assume that a fraction rk1 = snA/N of the hub nodes and a fraction

rk2 = (1 − s)nA/N of the periphery nodes are influenced, so that varying 0 ≤ s ≤ 1
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Figure 6. (a) Dependence of relative vote share X(s)/X(s = 0) on the fraction of

influenced hub nodes for a scenario of low transmission errors q = 0.001 and a scenario

of high transmission errors q = 0.25. (b) Dependence of vote shares on transmission

error rates q for an allocation in which all influence is assigned to hub nodes (s = 1), and

an allocation of all influence to periphery nodes (s = 0). (c) Dependence of optimal

fraction of influenced hub nodes on the error rate q for nA = 1. Curves represent

mean-field results based on Eq. (15) calculated for k1 = 100, k2 = 1, nA = N/2, and

nB = 0.

allows us to interpolate between pure hub and pure periphery influence. Further, varying

the fraction of overall influenced nodes nA allows for a qualitative comparison with

numerical results presented in Fig. 4 above. Substituting the corresponding terms into

Eq. (15) gives an expression X(k1, k2, nA, nB, s, q) that allows to compute vote shares

as a function of all relevant parameters.

Using the expression just obtained for a concrete example network with k1 = 100

and k2 = 1 we illustrate the dependence of relative vote shares on the fraction of

influenced hub nodes in panel (a) of Figure 6 for very low and large settings for

transmission errors. Consistent with our earlier numerical results we clearly see that

for large amounts of noise, the largest influence is obtained for s = 0, i.e. an exclusive

allocation of all influence to periphery nodes. Contrariwise, for a low amount of errors,

best vote shares can be obtained when most influence is allocated to hub nodes. Further

results that show the dependence of vote shares obtainable for exclusive hub (s = 1) and

exclusive periphery (s = 0) allocations on the amount of transmission noise are given

in panel (b) of Fig. 6. Again, as observed in numerical optimization results in Sec.

3.1, we see a crossover from a low error regime in which hub allocation is optimal to a

large error regime in which periphery allocation is best. Equation (15) also allows for a

straightforward analytical derivation of an optimality condition and in panel (c) of Fig.

6 we also show the dependence of the optimal fraction of influenced hub nodes on q.

In contrast to observations in the numerical optimization for scale-free networks above,

results indicate an abrupt change from a regime of exclusive hub control to a regime of

exclusive periphery control. The absence of a larger transition region in which a mix of

high and low degree nodes is best likely is an artifact of the mean-field approximation

which ignores differences in centrality between nodes.

Based on the observation that the transition between hub and periphery control

is typically sharp, one can find good approximations for the dependence of the
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Figure 7. (a) Dependence of crossover point qthresh between hub control to periphery

control on the amount of resource nA available to controller A for nB = 0. (b)

Dependence of crossover point qthresh between hub control to periphery control on

the amount of resource nB available to controller B for nA = 1. Settings are

k1 = 20, k2 = 5.

transition point on various parameters by evaluating X(k1, k2, nA, nB, s = 1, qthresh) =

X(k1, k2, nA, nB, s = 0, qthresh). Solutions of the resulting cubic equation are again

involved and we only report illustrative results in Fig. 7. Panel (a) of Fig. 7 gives

the dependence of qthresh on the amount of resource available to controller A. As in the

numerical optimization (cf. Fig. 4 – curve qthresh(nA, nB = 0)) we see that thresholds

are generally lower the larger nA. In a similar vein, Fig. 7(b) reports the dependence

on nB for fixed nA = N/2. Again, consistent with Fig. 4 in subsection 3.1 we find a

decline in qthresh with increasing resource availability for nB.

4. Summary and Conclusions

In this paper we have analyzed the impact of noise in the form of randomly occurring

misunderstandings in the voting dynamics on influence maximization. As one might

expect, our results in the mean-field approximation and in numerical evaluation point

out that networks become the more difficult to influence, the larger the probability of

misunderstandings. Further, extensive numerical results for heterogeneous undirected

networks combined with an analytical understanding obtained from a degree-based

mean-field analysis point out that optimal allocation strategies will generally be different

in low- and high noise-regimes which tend to be separated by a sharp transition. For

low noise, we have shown that highest-degree heuristics give close to optimal allocations,

while for high noise, lowest-degree heuristics give allocations within less than 0.5% off

the optimum.

Interestingly, our findings in the dynamic setting of the voter model are in agreement

with recent findings for optimal allocations in complex contagion dynamics [41]. In both

situations it is found that nodes are the more difficult to control, the higher their degree.
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In complex contagion this is the case in the beginning of cascades, when not enough

activated neighbors are available to ‘convince’ them. In the voting dynamics with noise,

nodes are exposed to the more potentially contradicting opinions the larger their degree,

and thus the more difficult to influence the larger their degree.
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