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Abstract 
Exploiting the diversity between different renewable resources is regarded as a significant tool to 

managing their grid integration. Hybrid combinations of resources provide the potential to smooth 

output and so overcome limits on the export of power, but their network wide impact is not well 

understood. This paper examines whether combinations of renewable distributed generation can make 

more effective use of distribution network capacity. A multi-period, multi-resource optimal power flow 

approach is used to optimally configure wind and solar photovoltaic capacity to maximise energy 

production whilst complying with network physical limits. The effectiveness of hybrid distributed 

generation and the optimization method was examined through comparison with cases using single 

types of renewable distributed generation. This study demonstrates that by capturing the 

complementarity between renewables through hybrid design, the network can host more renewable 

generation capacity and increase total energy export. In addition, smart grid techniques, such as active 

network management, further boosts the value of resource diversity by allowing connection of more 

generation capacity of all considered renewables through isolating the infrequent co-occurrence of high 

outputs during periods of low electricity demand.   
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Highlights 

• Network wide impact of deploying hybrid combinations of renewables studied 

• Multi-period optimisation configures renewable capacity to maximise energy export  

• Combination of resources leads to more effective use of network capacity 

• Value of complementarity compounded by network topology, control and demand 

• Combined benefit of hybrid generation with active network management is identified 



Nomenclature 

Acronyms: 
ACOPF Alternating current optimal power flow 

ANM Active network management 

DG Distributed generation 

HRES Hybrid renewable energy systems 

GSP Grid supply point 

OLTC On-load tap changers 

PV Photovoltaic 

NLP Nonlinear program 

Sets and Indices: 
B , b  Set/Index of electrical buses 

G , g  Set/Index of all DG  

 bG   Set of generators connected to bus b 

L , l  Set/Index of power lines (and transformers) 

M , m  Set/Index of time periods 

R, r  Set/Index of renewable types 

 X , x Set/Index of external connections 

 bX   Set of external supplies connected to bus b 

1 lβ , 2

lβ  Bus at each end of line ( 1,2

l Bβ ∈ )  

Variables: 
1,
,

P
l mf , 2,

,
P

l mf  Active power injections at each end of line (MW) 

1,
,

Q
l mf , 2,

,
Q

l mf  Reactive power injections at each end of line (Mvar) 

,
l
b mp , ,

l
b mq  Active/Reactive power injections into line l at b (MW, Mvar) 

,r gp  Installed capacity of DG for renewable type r (MW) 



, ,
curt
r g mp  Curtailment of power output for renewable type r (MW) 

,x mp , ,x mq  Active/reactive power flow through external supply source (MW, Mvar) 

,b mV  Bus Voltage magnitude (p.u.) 

VOLTC,m Voltage at transformer secondary bus (p.u.) 

,b mδ  Bus Voltage angle (°) 

Parameters: 

0b   Reference (slack) bus 

P
bd , Q

bd  Peak active/reactive bus demand (MW, Mvar) 

lf
+   Apparent power flow limit of line (MVA)  

Px
+, Px

– Active power flow limit at GSP (MW) 

Qx
+, Qx

– Active power flow limit at GSP (Mvar) 

bV + , bV −  Max/min voltage limit of bus (p.u.) 

OLTC
V + ,

OLTC
V −  Max/min voltage limit of transformer secondary bus (p.u.) 

mτ  Duration of time period (h) 

mω   Potential generation level at time period m for renewable type r 

curt
rλ  Maximum curtailment level  

mη  Demand level relative to its peak value in period m  

,g mφ   Power factor angle of generator (°) 

 

1 Introduction 
Renewable generation from wind, solar photovoltaics (PV) and hydro is growing rapidly to meet 

ambitious targets for carbon emissions reduction [1]. Connecting renewable generators into power grids 

typically occurs in the distribution network, as distributed generation (DG). This can be a challenging 

exercise as these grids were generally designed to supply power from the transmission network via a 

grid supply point (GSP) to customers at medium and low voltages. Distribution network operators are 



concerned with a range of technical criteria that can be affected by the connection of DG: voltage rise, 

reverse power flows, increased fault levels, power quality and system stability [2]. The strict technical 

limits on these factors serve to limit the capacity of DG that may be connected to the network or 

necessitates expensive network reinforcement in order to raise capacity. 

Reverse power flows and voltage rise are generally the major issue [3]. These arise due to the changes 

in power flows following DG connection. Without DG, power flows through lines and transformers 

towards the load with flows following the pattern of demand. Voltage reduces in the direction of power 

flows through the network and more significant voltage drops are seen under high demand conditions. 

Once DG is connected, lower levels of DG output may be sufficient to supply local loads, reducing the 

power flows through the network. However, larger output will exceed the local load and power is 

exported back towards the transmission network; if these reverse flows are sufficiently large they can 

exceed the power flow capability of lines and transformers [4]. By reducing flows, smaller DG output 

tends to reduce the extent of voltage drop but the reversal in flow at high output means voltage can be 

higher at the DG than the GSP. Should it become too large then voltage may rise above the allowed 

limits. The output of renewable DG also varies and this sets an upper limit to the capacity of DG that 

can be connected. This is normally the ‘firm’ capacity at which maximum DG output can be exported 

at any time. This tends to occur during maximum generation output and minimum demand levels as 

this sees the highest reverse power flow and voltage rise. With renewable generation, these conditions 

tend to occur relatively infrequently, meaning that firm capacity could limit the ability of a network for 

connecting renewable generation based on conditions in a few hours a year [5]. As such it is the 

combined variability of demand and renewable generation that is important in defining capacity and 

ultimately the energy produced. 

One way to ease the shortcomings of variability is to exploit the complementarity among different 

renewable sources through portfolio effects. Many studies report mutual complementarity of multiple 

renewable resources across large geographic areas including Italy [6], Britain [7], Canada [8] and China 

[9]. This can be captured by ‘hybrid’ renewable energy systems (HRES) which can be any combination 

of generation from two or more renewable and/or conventional resources [10], that work standalone or 

grid-connected. A considerable amount of work has been carried out on HRES, demonstrating that they 

can improve efficiency, reliability and facilitate greater energy production.  

The design of HRES focusses on the optimization of the capacities of different renewables along with 

storage and/or conventional generation as support. Studies have mainly focused on off-grid applications 

employing different optimisation techniques including probabilistic [11], iterative [12] [13] and 

artificial intelligence approaches [14]; all report reduced system costs and reliable supply. Recent 

studies include improved particle swarm optimisation with strong computational performance [15] and 

robust multi-objective optimization to handle renewable uncertainty [16]. With the development of 



smart grids, increasing attention has been paid to grid-connected hybrid systems, using grid supply as 

backup in case of deficiency while selling surpluses to improve system economics. Grid-connected 

HRES is optimally sized in [17] using a genetic algorithm coupled with sensitivity analysis. Constraint-

based iterative search algorithms are used in [18] to obtain optimal sizes with both maximum reliability 

and minimum cost. The effect on reducing carbon emissions from grid-connected hybrid systems is 

studied in [19] while the uncertainty of power exchanges between grid and HRES in optimal scheduling 

is tackled with stochastic multi-objective programming in [20]. All of the studies above are either off-

grid or grid-connected at a single location. There is little work explicitly looking at the network-wide 

impact of deploying co-located hybrid combinations of resources to multiple locations at distribution 

level, and, more specifically, the value of integrating these from the point of view of efficient use of 

network capacity. With DG a common term in distribution network studies, grid-connected HRES will 

be generally referred to in this paper as ‘hybrid DG’. 

A second approach to handling variability is exploiting the potential for smart grids with active Network 

Management (ANM) a particular focus at distribution level [21]. The scope for ANM to make the best 

use of existing network capacity for accommodating (or ‘hosting’) renewable generation and avoiding 

costly reinforcement is widely recognised [22]. It does this by coordinating controls between network 

equipment and DGs to enable greater overall output within the network operational limits. In doing so, 

it facilitates larger generators to be connected than would otherwise be possible with traditional network 

practice. ANM includes voltage control using transformer on-load tap changers (OLTC) [23], active 

output control (i.e. power curtailment) [24], network reconfiguration [25], and may involve energy 

storage [26] and demand side management [27]. However, much of the ANM work has been envisaged 

in networks with single, non-hybrid renewable types. With ANM enhancing the network-side control 

while hybrid systems smooth out variable production on the generation side, they appear to be a good 

match for increasing renewable energy deployment. Nevertheless, the value of ANM and hybrid DG 

has not been explicitly examined in terms of the effective use of network capacity. 

Examining how prospective connections of DGs with multiple resource types may influence effective 

use of network capacity is complex. Identifying where opportunities exist within the distribution 

network to connect hybrid DG is a nonlinear optimisation exercise that requires detailed assessments 

of power flows to capture the key network operational constraints such as bus voltages and the thermal 

loading of feeders. These values depend on renewable availability at each location, typically requiring 

a long study horizon to capture a wide range of potential meteorological conditions that might occur, 

yet employing relatively short time steps (e.g. hourly) to accurately capture the renewable variability. 

The need to model the complementarity between multiple renewables in detail, as well as, account for 

critical nonlinear features such as network voltage profiles, makes such analysis challenging.  



Given the research gap and challenges, this paper employs a multi-period, multi-resource optimal power 

flow-based assessment methodology to evaluate how hybrid DG with combinations of renewables 

influence the effective use of the network: the ‘hosting capacity’. To our knowledge, this is the first 

paper that quantifies the network-wide benefit of hybrid DGs and the joint value with smart grid 

approaches. Its primary contribution lies in highlighting that diversity between renewables has ‘value’ 

in terms of being able to better exploit network capacity (i.e. ‘fill’ the network) and that this effect 

becomes more pronounced when active network management is employed. A secondary aspect of the 

novelty lies in the technique for combining multiple renewable resource time series in order to make 

computation more accessible.  

The paper is organised as follows: Section 2 describes the methodology for evaluating the value of 

hybrid distributed generation in terms of maximizing energy production and effective use of network 

capacity. In Section 3 results for planning hybrid wind and PV DGs in a typical UK distribution network 

are presented and discussed. The remainder of the paper discusses and concludes the work. 

2 Modelling methodology 

2.1 Assessing hybrid renewable DG for effective use of network capacity 
The connection of renewable DG in electricity networks needs to ensure that the network can physically 

handle power flows within defined technical and equipment limits. Optimal power flow (OPF) is a 

standard tool in electrical power systems and has traditionally been used for economic dispatch and 

operational planning. OPF is an optimisation problem formulated and solved to obtain optimal control 

settings such as the required power output of a given generator whilst respecting important system limits 

such as power line ratings. The most accurate OPF uses the full alternating current ‘AC’ formulation 

(‘ACOPF’) which, by considering both active and reactive power flows, accurately models the voltage 

profile throughout the network. This is critical in distribution networks as voltage levels are driven by 

both active (MW) and reactive (Mvar) power flows and voltage limits are normally the most significant 

constraint on capacity. ACOPF is a complex non-linear problem (NLP) with non-linear constraints.  

ACOPF has also found application in a ‘planning’ setting including in identifying where generation 

capacity may be located without the need to reinforce the network (hosting capacity) [4,28]. Specifically, 

this means identifying the capacities that are feasible at one or more network buses (nodes). The time 

variability of renewable generation makes identification of capacity more challenging, particularly with 

multiple resources with different operational patterns. To handle this, the standard ACOPF is extended 

to a multi-period multi-resource approach to optimise the configuration of generation capacities over 

multiple renewable resources.  

Mathematically, the objective of the optimisation is to maximise overall energy production from hybrid 

renewable DG within the constraints imposed by the existing network. This objective is chosen as it 



provides a measure of efficient use of overall network capacity but with the view that the energy 

generation is the valuable product not capacity per se. The maximum production is obtained by 

optimally siting and sizing capacities for each resource r (R, set of renewable types), whilst accounting 

for the time variability and coincidence of demand and generation levels. The objective is given as:  

 , ,max
b

r g r m
m M r R g G

p ω
∈ ∈ ∈
∑ ∑∑   (1) 

where ,r gp  is the (active) power capacity of generator g for renewable type r; Gb is the set of generators 

connected to bus b (B, set of buses); ωr,m is the generator output level relative to its peak value as dictated 

by the renewable resource r in period m (M, the set of time periods). At each location a generator can 

be made up from one or more renewable resource types. The problem then seeks to find a unique and 

optimal set of capacities ,r gp  of hybrid DGs at all prospective connection buses, which deliver the 

maximum energy over all periods in the study period M. While based on the same broad framework as 

[24], the objective function, application, use of multiple renewable resources and specific details of the 

formulation are quite distinct. The specific technique used to combine multiple renewable resource time 

series in order to make computation more accessible is detailed in section 2.4. 

2.2 Network constraints 
The objective of maximising energy production from multiple DGs is subject to a set of constraints 

representing those that govern the physical operation of the networks (e.g. nodal power balance) and 

limits imposed by statute and standards (e.g. voltage limits) as well as equipment ratings (e.g. power 

flow limits).  

1) Active and reactive nodal power balance: 

The physical nodal balance of electricity power flow is enforced by Kirchhoff's current law for each 

bus in the network, which states that current flowing into a node must match that flowing out. The nodal 

power balance for active power is given by:  

 
1,2

, , , ,
|

,
b bl

P
b m b m r g r m
L

r
x m

g G xR Xl L b

d p Bp mp b M
β

η ω
∈∈ = ∈ ∈

+ = + ∀ ∈ ∀ ∈∑∑ ∑∑    (2) 

where L
,b mp  is the total active power injection into lines (and transformers) at bus b, and mη  is the 

demand level in time period m relative to bus peak active power demand P
bd . The distribution network 

is ultimately connected to external networks such as the transmission network through a grid supply 

point substation. This acts to balance the distribution network by allowing imports or exports of excess 

generation; ,x mp  is the active power imported/exported from external connections x (Xb, set of external 

supplies). 

A similar relationship governs the reactive power nodal balance: 



  
 

1,2|

L
, , , , , ,tan( ) ,

l b br R

Q
b m b m r g r m r g m

l XL xb
x m

g G
d b B m Mq p q

β

η ω φ
∈ ∈∈ ∈=

+ = + ∀ ∈ ∀ ∈∑ ∑∑ ∑    (3) 

where L
,b mq  are the total power reactive power injections into lines; Q

bd  are the bus peak reactive 

demands; ,x mq  is the reactive power supplied to/from external connections; and ,g mφ  are the generator 

power factor angles.  

The power flow requires one bus to act as the reference in order to ensure overall balance. The higher 

voltage side of the GSP substation is taken as the reference bus 0b  with the voltage angle set at zero, 

0 , 0b mδ = . The constraints on import and export of active and reactive power flow through the GSP are 

given by: 

 ,

,

,x x m x

x x m x

P p P
x X m M

Q q Q

− +

− +

≤ ≤
∀ ∈ ∀ ∈

≤ ≤
   (4) 

where Px
(+,–) and Qx

(+,–) are the active and reactive flow limits.  

2) Voltage level limits: 

Voltage rise at or near renewable DG connection points is one of the major issues for network operators. 

Voltages at network bus b are constrained by the maximum and minimum allowed levels Vb
(+,-): 

 , , ,b b m bV V V b B m M− +≤ ≤ ∀ ∈ ∀ ∈    (5) 

Voltages are typically described relative to their nominal voltage level using the per unit scale (p.u.). 

For example, a voltage of 11,550 V on an 11 kV line would be recorded as 1.05 p.u. or +5% of nominal. 

Voltage limits are defined on a percentage of nominal basis, e.g. ±6%. 

3) Power flow limits: 

Equipment ratings constrain overall power flow through lines and transformers, l (L, set of lines): 

 ( ) ( ) ( )2 2 2(1,2), (1,2),
, , , ,P Q

l m l m lf f f l L m M++ ≤ ∀ ∈ ∀ ∈    (6) 

where lf
+  is the apparent (i.e. total active and reactive) power flow limit of the lines. (1,2),

,
P

l mf  and 

(1,2),
,

Q
l mf  are the active and reactive power injections at each end of the line (denoted 1 and 2) as standard 

Kirchhoff voltage law expressions. These provide the fundamental link between power flows within 

lines and voltages at buses; further details can be found in any good power systems textbook. 

2.3 Boosting hybrid systems using active network management 
The integration of hybrid combinations of resources may be able to exploit the capability of ANM 

alongside potential advantages of production diversity. A wide range of relevant ANM techniques are 



available and can be readily incorporated, but to illustrate this two ANM schemes are modelled within 

the optimisation: adaptive voltage control and active output control (i.e. production curtailment).  

2.3.1 Adaptive voltage control  
Active exploitation of the voltage regulation function provided by the on-load tap changers on 

transformers is often proposed to mitigate voltage rise. Traditional use of OLTC requires a defined 

setpoint voltage to be specified for the secondary (low voltage) bus that the OLTC aims to meet by 

adjusting the winding ratio on the transformer. The setpoint value is normally specified for entire 

seasons or years. Adaptive voltage control involves actively modifying the target voltage of the OLTC 

according to the conditions at a particular point in time instead of using a single predefined target 

voltage across all time periods.  

In the modelling framework here, the secondary (low) voltage bus at the substation transformer is 

dynamically controlled by the OLTC in each period so as to ensure all the voltages along the feeders 

are within allowable limits. It is treated as a variable, VOLTC,m maintained within a range 
OLTC

V + to 
OLTC

V − , 

rather than as a fixed parameter. This is handled as a constraint within the multi-period OPF formulation:  

 
,OLTC OLTC m OLTC

V V V− +≤ ≤    (7) 

In general, the optimisation will raise voltage VOLTC,m at the transformer when demand is high and DG 

production low to avoid under voltages at the edges of the network, while lowering it when DG 

production is high and demand low to avoid over voltages. 

2.3.2 Active output control  
Without ANM, most renewable generators are provided with a ‘firm’ connection at present, where DG 

can freely operate up to its rated output albeit limited by the weather conditions. The limiting factor is 

generally the worst-case scenario of low demand and high renewable output. Due to the infrequent 

occurrence of these, firm connection arrangements could unnecessarily limit the hosting capacity of a 

network for connecting renewable generation. Active control of DG production provides a general 

solution for connecting capacity above the firm capacity level by reducing (i.e. curtailing) generation 

output during low demand periods ensuring that network parameters remain within limits. While this 

may involve lost revenue for the DG, this may be acceptable to the developer as it enables larger 

generators to be connected, increasing the overall energy production and total revenue.  

The curtailment scheme is formulated as a time-dependent variable , ,
curt
r g mp  which defines the necessary 

curtailed generation for each renewable component r of generator g in period m. In the original power 

balance equations (2) and (3), delivered power generation matches the potential generation , ,r g r m
r R

p ω
∈
∑ . 



Here, actual delivered energy is reduced by the amount curtailed, , , , ,)( curt
r g r g m r m

r R
p p ω

∈

−∑  and the 

balance equations are changed to: 

 
1,2

L
, , , , , ,

||

( ) ,
bl b

P cur

r Rl L b

t
b m b m r g r g m r m x m

g G x X
p p p pd b B m M

β

η ω
∈∈ = ∈ ∈

+ = + ∀ ∈ ∀− ∈∑ ∑∑ ∑   (8) 

1,2

L
, , , ,

|
, , ,t( ) an( ) ,

bl b

Q curt
b m b m r g r g m r m g m x m

g G x Xr Rl L b

q p qd b B m Mp
β

η ω φ
∈∈∈ = ∈

+ = + ∀ ∈ ∀ ∈− ∑∑ ∑∑  (9) 

By its physical meaning, the curtailment , ,
curt
r g mp  for each renewable DG should not exceed the full 

potential output in the corresponding period:  

   , , , , , , ,curt
r g m r g r m r Rp p g G m Mω ∀ ∈ ∀ ∈ ∀ ∈≤      (10) 

Economic considerations will ultimately limit the total amount of curtailed energy that will be 

acceptable to the owner of renewable generators. These are strongly dependent on the network 

connection arrangements where different ‘principles of access’ govern the order and extent of 

curtailment between DGs [29]. This is an evolving area and complex in its own right so here a simplified 

approach is taken which places an upper limit on the amount of curtailment that is allowed. A 

curtailment factor 𝜆𝜆𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is applied as a constraint restricting the proportion of the total potential energy 

at each location that could have otherwise been delivered over the whole period:  

 , , , , ,curt curt
r g m m g r g r m m

m M r R m M r R
p p g Gτ λ ω τ

∈ ∈ ∈ ∈

 ≤ ∀ ∈  
∑ ∑ ∑∑    (11) 

The optimisation chooses the precise split in curtailment between different resources at each location 

in relevant periods. There are alternative ways of applying a constraint on curtailment and the effect of 

these are considered in the section 3.7. 

2.4 Framework for handling variable renewables 
Ideally, the nonlinear ACOPF formulation of (1)-(6) would directly use a long time-series of renewable 

and demand data, so that the analysis captures the full range of varying operational conditions.  This 

study period M should be a year (and preferably much longer), however, this introduces a significant 

number of time-varying variables and correspondingly additional constraints into the nonlinear program. 

For example, a set of half-hourly data for 1 year will generate 17,520 periods of network operation to 

be considered simultaneously so as to find a unique inter-temporal solution in the nonlinear optimization. 

Therefore, an explicit long-term time-series study on even a relatively small section of the distribution 

network results in a large computational burden which tends to be laborious or intractable. As such, 

evaluating distribution network capacity requires a means of effectively dealing with the problems of 



multi-dimensionality introduced by renewable variability, without unduly increasing the associated 

computational burden. 

To mitigate the computational burden, a process is used to discretise and then aggregate according to 

the characteristics of ‘similar’ periods. In essence this reduces the number of discrete periods to be 

evaluated whilst preserving the behaviour and inter-relationships between multiple resources and 

demand. Such treatment of long-term time-series data is first proposed by Ochoa et al. [24] although 

only wind was considered. The further development of the multi-period approach in this paper addresses 

the ‘coincidence’ of multiple renewable resources with electrical demand. 

The discretisation process allocates original data values for resources and demand into a series of bins 

covering the range between zero and overall peak value. To illustrate this, Figure 1 (a) presents a two 

day-long snapshot of hourly demand and wind power data [30] with values expressed as percentage of 

respective peak values. For each set of data, the hourly values are compared with and assigned to one 

of 7 bin ranges – {0}, (0,20%], (20%,40%],…, (80%,100%), {100%} – with the mean value of the 

range characterising each hour (e.g., 30% for the (20%,40%] range). Figure 1 (b) shows the resulting 

time series. The choice of bin is flexible but the ranges shown here are deliberately wide and much 

narrower ranges will allow values to be closer to original values. The discretisation process can be 

carried out for any number of resource and demand time series. 

The aggregation process then groups hours in which the same combination of demand and generation 

occur. In the optimisation problem each combination will constitute a period m to be evaluated along 

with other combinations M. The maximum number of periods to be evaluated will be the product of the 

number of bins from each series. The occurrence of each combination determines the overall duration 

τm for which it applies – the ‘coincident hours’. For instance, in the wind-demand case from Figure 1 

(b), there are 49 possible combinations (7 × 7 bins) and the orange blocks indicate hours where demand 

is 70% of peak and wind is 10%; these conditions occur for a total of 6 hours in this case. The process 

goes through each possible combination and sums the occurrences. Figure 1 (c) shows the resulting 

number of hourly occurrences for the two-day window indicating some combinations where there are 

more occurrences and a lot where there are no instances. When carried out over a much longer time 

series, the process captures the full range of generation-demand combinations. Discretisation does 

reduce the accuracy of the analysis but only by a few percent, and small compared to uncertainties 

associated with other planning stage factors (e.g. costs, locations, and demand growth). Importantly, it 

does retain the extreme cases (e.g. maximum generation, minimum demand and vice versa) which are 

critical in driving network constraints.  

Figure 1 (a)-(c) shows the case for a single resource and demand time series, providing a bivariate 

distribution of occurrence. When an additional resource is added, the process remains the same but 

three-way combinations are defined for each resource and demand. For example, as in this paper where 



there is wind and PV, the result is a tri-variate distribution of occurrences. This is more challenging to 

illustrate, but Figure 1 (d) shows how the combinations are handled – this effectively results in a stack 

of wind-demand combinations arranged by PV output level.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 1: (a) Normalised hourly demand and wind power time series; (b) discretised wind and demand 
time series; (c) all aggregated wind-demand combinations showing ‘coincident hours’; (d) visualisation of 
PV-wind-demand combinations. 

2.5 Implementation 
The methods were implemented using the AIMMS optimization modelling environment [31] using the 

CONOPT 4.0 NLP solver to solve the nonlinear programming formulation of the multi-period multi-

resource OPF. Analysis with a single renewable type took 5 minutes and hybrid combinations around 

30 minutes. The generic problem formulation given here can be coded in any optimisation software (e.g. 

General Algebraic Modelling System, MATLAB) and there are open source NLP solvers available, e.g. 

IPOPT. The modelling of renewable variability through discretisation and aggregation to reduce 

computational complexity (section 2.4) is independent from the choice of software and solver. 

3 Case study  
The case study considers the connections of multiple co-located hybrid wind and PV generators across 

a representative distribution network in order to identify the value of diverse resources and active 



network management on the effective use of network capacity. The network is representative of UK 

systems but the analysis process will be applicable elsewhere. 

3.1 Distribution Network 
The EHV1 Network from the UK Generic Distribution System is used as the study case (see Figure 2). 

Full data for this 61-bus 33/11-kV weakly-meshed rural network are available in [32]. Two identical 

30-MVA 132/33-kV transformers connect to the transmission network and supply the feeders with total 

peak demand of 38.2 MW. The upstream GSP voltage is assumed to be nominal. In the traditional 

network case that operates without active network management (termed the ‘passive’ network), the 

substation OLTC operates to maintain a target voltage of 1.045 p.u. at the lower voltage bus (bus 302). 

The OLTCs on the 33/11-kV distribution transformers and voltage regulators have a target voltage of 

1.03 p.u. In line with UK regulations, all 11 and 33 kV voltages are to be maintained within ±6%.  

Six example locations are selected to co-locate wind and PV connections. They are considered 

sufficiently close geographically such that the same wind and PV time series apply, although this can 

be extended to consider site specific series. Three different renewable mixes are considered at each site: 

wind-only, PV-only and hybrid wind-PV. It is important to point out that in the hybrid case, the 

optimisation may opt to only build generation capacity of one renewable at some or all locations. The 

analysis of available capacity is first analysed under firm connections in a ‘passive’ network case to 

focus on the complementary value of wind-PV. Following that, active network management is 

considered to investigate the combined benefits.  

 

Figure 2: UK GDS EHV1 Network and potential locations for hybrid generation. 



3.2 Electricity demand  
Hourly demand data from Scotland is used in all simulations. The load factor of this demand profile is 

0.63. The whole year demand variation is illustrated in Figure 3 with load in summer relatively lower 

than winter. Most of the demand occurs within a range of 60-80% of peak demand with peak demand 

experienced for 83 hours over the whole year, similar to the lowest level of 110 hours (around 40% of 

peak).  

 

Figure 3: Hourly demand variation for Scotland. 

 

3.3 Wind and PV resource 
The analysis uses information on wind and solar PV resource for a location in Northeast Scotland (57°N 

and 3°W) to simulate the generation output. The same time period is used for wind, solar and demand 

data (i.e. co-temporal) to ensure that the key hourly and seasonal patterns and interrelationships between 

the data are appropriately captured.  

Simulated wind and solar radiation time series data is used for the analysis as measured generation data 

is not always available due to confidentiality, at the locations of interest or, available for both resource 

types at the same location. Both the wind and solar simulation approaches are based on high quality 

datasets that have been well validated, and the general approaches are now well-established and in use 

in academic, consulting and industry work. The approach means that the location can be varied should 

the analysis need to be repeated elsewhere.  

The wind generation time series is created from the output of a high resolution mesoscale 

meteorological modelling approach described in [33]. This employed the Weather Research and 

Forecasting Model and the UK national supercomputer to create a hindcast from the NCEP Global 

Forecast System. The hourly data covered the whole of the UK and Ireland at 3 km resolution for the 

years 2000-2010. It is validated against measured data from many UK Met Office met stations, on- and 

offshore wind mast data and offers wind speed estimates that offer low bias and high correlation. The 

power production time series was generated using wind speed data from 80 m height along with the 

power curve of a 3MW Vestas V90 wind turbine. The resulting power time series have been validated 

against individual wind farm and national aggregate generation time series.  



The solar PV time series is created from the Satellite Application Facility on Climate Monitoring 

(CMSAF) dataset using the approach as described in [34]. CMSAF employs EUMETSAT geostationary 

satellite data to estimate key irradiance values and provides data on an hourly basis on a 0.05° latitude 

and longitude grid (approximately 4km) for 1983 to 2015. The global horizontal irradiance has been 

validated against UK Met Office met station data, showing low bias and high correlation. The PV 

generation data is modelled using well established trigonometric and PV cell relationships. A typical 

mono-silicon PV panel installation (~16% standard efficiency, 35° tilt, southerly orientation, and 96% 

inverter efficiency) is adopted to calculate the solar PV output time series; these have been validated 

against available solar PV output from a range of installations. 

Data for the 2008 year are used for illustration. The resulting capacity factors are approximately 37% 

for wind and 12% for PV; these are credible for a windy site in Scotland. While the PV resource is not 

as good as wind in terms of overall capacity factor in this area, complementarity still exists between 

wind and PV as the cross-correlation is -0.13, indicating a relatively low and slightly negative 

correlation, suggesting low likelihood of high production at the same time. In addition to the specific 

location used in the case study, several other locations in Scotland were examined prior to application 

to the electrical modelling. These differed in terms of the specific level of wind and solar resource as 

well as their coincidence, and while these effects would have come through in the analysis, they were 

not regarded as large enough to substantially change the overall picture.  

To simplify the presentation and simulation, the levels of wind and PV generation are normalised (per 

unit) against peak values. The seasonal pattern is illustrated through monthly box plots shown in Figure 

4. Sample time series of wind, PV and demand during a winter and summer month is given in Figure 5.  

 

Figure 4: Monthly boxplot of load, wind and PV output level (p.u.): extremes, median, interquartile range 



 

Figure 5: Time series of wind, PV output and load (p.u.) for winter (top) and summer (bottom) month 

 

3.4 Coincidence of hybrid renewables and demand 
The hosting capacity of hybrid DG is largely determined by the ‘coincidence’ between multiple types 

of renewable generation and demand. When high levels of generation occur with low local demand, it 

is most likely to impose constraints on the network as a result of the export of power towards the GSP.  

The coincidence of individual renewables and demand is analysed first as the basis for comparison. 

Adopting the discretisation-aggregation process described in section 2.4, the time-series of demand, 

wind and PV generation levels are discretised into bins relative to maximum values with bin values 

based on the upper values of the ranges: ten ranges for demand ([0,10%], (10%,20%], …), and 11 each 

for wind and PV (e.g.,{0}, (0,10%], (10%,20%], …).  

Figure 6 shows the coincident hours (i.e. the bivariate distribution) for separate cases of wind and PV 

with demand. Of the 110 possible combinations of wind and demand, only 69 have a non-zero number 

of hours; similarly, of the 110 for PV and demand, 52 are non-zero. Many of the combinations with no 

instances arise from demand always exceeding 40% of peak. There are relatively few instances where 

peak generation occurs at high demand levels, particularly so for PV as insolation levels will be low in 

winter. Similarly generation levels are weighted towards lower levels, specifically for PV. Of most 

importance for hosting capacity is the occurrence of high generation availability and low demand as 

this promotes energy export and voltage rise. In both cases the occurrence of periods with high 

generation (80% to 100%) and low demand (40% to 60%) is relatively infrequent over the whole year: 

301 hours for wind and demand and 33 hours for PV and demand, respectively (highlighted in red in 

Figure 6). The much lower occurrence of these conditions with PV is due to the minimum load occurring 



during the night. The hosting capacity determined by such infrequent worst-case scenarios will 

constrain the network more than is necessary. 

 

(a) 

 

(b) 

Figure 6: Coincident hours for (a) wind-demand and (b) PV-demand scenarios. 

 

The combined (trivariate) coincident hours between wind, PV and demand together are also generated 

using the approach outlined in section 2.4. Following the three dimensional model outlined in Figure 1 

(d), the combinations can be visualised as a set of 11 layers of 110 wind-demand cases with a possible 



total of 1210 PV-wind-demand combinations. However, due to the minimum demand levels and the 

variability of wind and PV, only 401 cases contain a non-zero number of hours. Figure 7 illustrates a 

‘slice’ through the distribution with combinations of PV and demand when wind output is 60% of peak: 

almost half of the potential operational scenarios do not occur. While the trivariate coincidence matrix 

of wind-PV-demand is obtained, it is challenging to identify the jointly binding worst-case scenario due 

to all potential network interactions, without use of an optimisation approach such as that proposed here. 

  

Figure 7: Example of the coincident hours for PV and demand with wind output at 60% of peak 

3.5 Hybrid hosting capacity in a passive network 
The initial hosting capacity evaluation considers that the distribution network operates with no use of 

active network management (i.e. the ‘passive’ case). The only control actions in the network are from 

the transformer tap changers in the GSP substation, voltage regulator and 33/11kV distribution 

transformers to maintain their secondary (low) voltage at fixed values ensuring supply on the 11kV 

feeders is within voltage limits. The capacity is evaluated for all energy mix cases with the results 

presented in Table 1.  

For individual renewable cases, it can be seen that hosting capacity for the PV-only case is 24% higher 

than the wind-only case, but the total energy production from PV is only 39% of wind. The difference 

is partly due to wind’s better matching with demand variation than PV in this area as well as the much 

higher wind capacity factor, requiring less capacity to reach network limits. When PV and wind 

generation are considered jointly (hybrid), the total annual energy production increases: relative to 

wind-only the increase is 2% to 127 GWh but compared to PV-only the increase is 162%. The changes 

in production reflect the underlying changes in capacity: moving from the wind-only to the hybrid case 

sees overall capacity increase by 10% with wind capacity reducing slightly (0.5 MW) but with a larger 

(4.3 MW) amount of additional PV. Moving from PV-only to hybrid sees overall capacity fall by 11%, 

with PV dropping by over 90%, replaced by a slightly smaller amount of wind. Wind dominates the 

capacity mix at all sites (90%), mainly because the wind resource has better correlation with demand 

and high capacity factor. However, it is important to note that PV is part of the optimal result for every 



connection although in lower amounts. This demonstrates that the complementarity between wind and 

PV resources is captured by the evaluation approach as a ‘benefit’ in terms of additional generation. 

The different capacities imply different levels of network usage among the three cases. By inspecting 

the results, voltage rise is identified as the binding constraint in this passive network rather than line 

overloading. The occurrence of voltages reaching the allowed upper limits at any location in the network 

is summed for each month as shown in Figure 8. For the wind-only case, voltage is at the +6% upper 

bound more frequently during the winter months when wind speeds are higher. For PV-only, the 

occurrence of high voltages also follows its resource pattern, peaking in July, but much less than wind 

overall. This illustrates that, in this location, wind uses the network more effectively and is able to 

generate more energy than PV alone. However, the hybrid wind-PV case (black line in Figure 8) shows 

that the occurrence of high voltages is greater than the individual wind and PV cases, indicating that 

the capacity of the network is being used more effectively by a diverse portfolio. The exception is in 

June, when PV-only makes more use of the network; the reduction in the hybrid case is as a result of 

smaller PV capacity but is more than compensated by increases in the rest of the year. 

The optimal DG capacities exhibit substantial differences across the six locations, as Figure 9 shows. 

As these are voltage-limited, the capacity is broadly distributed according to the electrical distance to 

the GSP substation, with nearer sites having more capacity available. In cases where the sites share a 

section of feeder, there is also a trade-off between these that favours closer connection. The effect is 

most apparent with wind where the voltage constraints are more active. For the hybrid case, the 

allocations between wind and PV also differ between locations, with PV capacity at bus 1115 twice that 

at bus 1106 despite their wind capacity being nearly the same. This is due to the network topology 

compounding the effect of diversity and is difficult to evaluate without an approach such as that 

employed here. Overall, the results from the ‘passive’ case show that network capacity analyses that 

ignore the effect of resource diversity may be overly conservative, limiting the ability of generators to 

be used to best effect. 

Table 1 Hosting capacity for different energy mixes in a ‘passive’ network 

  Wind only PV only Hybrid 

Wind capacity (MW) 37.6 - 37.1 
PV capacity (MW) - 46.7 4.3 
Total hosting capacity (MW) 37.6 46.7 41.4 
Total delivered generation (GWh/year) 124.1 48.6 127.2 
Equivalent capacity factor (%) 37.7 11.9 35.1 

 



 

Figure 8: Occurrence of high voltage hours per month for passive network 

 

Figure 9: Hosting capacity allocation for different locations for passive network 

 

3.6 Hybrid hosting capacity in an actively managed network 
The network value of hybrid DG is analysed once more using active network management schemes to 

investigate the combined impact of hybrid generation and ANM in improving network utilisation and 

renewable production.  

For adaptive voltage control, the transformer tap changers and voltage regulator are dynamically 

controlled, with the voltage on their (low voltage) secondary side set optimally in each period within a 



±6% range. For active output control, the simplified approach to handling principles of access governing 

curtailment means it is assumed that all DGs are available to be curtailed if necessary. In the hybrid 

case, the amount of curtailment for each period is optimally defined for wind and PV for each location 

individually. For illustration, curtailment for each site was limited to 10% of its total potential energy 

generation over the year, which is a function of its capacity. The effect of alternative assumptions about 

curtailment are considered in section 3.7. 

The resulting capacity and energy production are presented in Table 2. Looking at the ANM case in 

isolation, capacity in the hybrid case increases by 70% relative to wind-only and by 30% relative to PV-

only. The energy production benefits are 13% relative to wind-only but 183% relative to PV-only. These 

changes are considerably larger than the equivalent for the passive network. Comparison with the 

passive cases (Table 1), shows that both individual and hybrid renewable cases see increased energy 

production and more available capacity: wind-only sees growth of 74% in capacity and 56% in energy, 

PV-only sees an additional 78% capacity and 60% energy and, most notably, the hybrid case sees 

capacity increase by 162% with energy up 73%. The more balanced capacity split between renewables 

in the hybrid case with ANM is clear (PV is now ~46% of the total, up from 10% in the passive case) 

and shows the real value of active control in facilitating new connections with more diverse resources. 

The capacity distribution among different connection locations also shows significant differences 

(Figure 10). For single resources, capacity at individual buses increases by between 64% and 85% for 

wind, and 76 to 80% for PV. The hybrid cases see relative increases of between 144% and 163%. The 

large increases in capacity are driven by selective use of curtailment with the optimisation raising 

capacity until 10% reductions in total production are seen for each location. This reduces the average 

capacity factors across the sites to 34% for wind, 10.7% for PV and 23.2% for the hybrid combination. 

The low capacity factor in the hybrid case is simply a feature of a large proportion of PV in the mix. 

With ANM, the voltage-rise issue that was apparent in the passive network cases is largely solved by 

actively lowering the secondary voltage of the transformers to reduce the voltage across the network. 

As such, the binding network constraint for the ANM cases switches to the power flow limits of lines 

and transformers. In many cases this is the limit of the 33/11 kV transformers located close to the DG. 

The occurrence of high line-loading (any line or transformer with loading >98%) in each month is 

shown in Figure 11, indicating the utilisation of network capacity. While all three renewable cases show 

increased usage of the network to export energy than the passive case (where no line reached 98% of 

limits), the hybrid case shows more utilisation of network in almost every month. By isolating the 

infrequent periods of very high joint output, more ‘balanced’ hybrid renewable generation allows 

smoother output with less variability in other periods, and therefore more effective use of network 

capacity. 

 



Table 2 Hosting capacity and energy production with active network scheme 

  Wind PV Hybrid 
Wind capacity (MW) 65.2 - 58.1 
PV capacity (MW) - 83.0 50.1 
Total hosting capacity (MW) 65.2 83.0 108.2 
Total delivered energy (GWh) 193.9 77.7 219.8 
Total curtailed energy (GWh) 21.5 8.6 24.4 
Equivalent capacity factor (%) 34.0 10.7 23.2 

 

 

Figure 10: Hosting capacity allocation for different locations with active network 

 

Figure 11: Occurrence of high line loading hours in each month with active network  



3.7 Impact of curtailment rules 
With ANM, levels of curtailment for a particular DG depend strongly on the principles of access (as 

mentioned in section 2.3.2), which govern the sharing of curtailment according to predefined rules. The 

analysis has simplified this aspect but the framework can be used to examine the effect in broad terms 

by varying the assumptions underpinning allowable levels of curtailment.  

The main analysis in section 3.6 uses the assumption that a maximum 10% of total production from 

each site may be curtailed. The analysis was repeated with two alternative settings for allowable 

curtailment levels, in order to better understand how curtailment may be shared:  

• Alternative A applies a stricter limit on curtailment and restricts curtailment to a maximum of 

10% per renewable per site;  

• Alternative B applies a looser constraint and restricts overall curtailment to 10% across all sites, 

enabling the optimisation to choose the most appropriate amount of capacity and curtailment 

between wind and PV as well as among DGs.  

The results from these analyses are given in Table 3 for the initial case and the alternatives. These show 

the alternative cases have optimal capacities and resource distributions that are very close to the initial 

case. Alternative A is generally the same to one decimal place with Alternative B has around 0.2 MW 

greater overall capacity (<0.2% change) as a result of greater ‘freedom’ for the algorithm to choose 

between sites. The primary reason for the similarity is that as the main constraint is at the transformers 

close to the DG, there is limited scope to trade-off between resources and sites. Other networks may 

behave differently. 

The most significant result is that while the overall change in curtailment volume is virtually zero, there 

are notable differences in terms of the relative amounts of curtailment of wind and PV. The main case 

allows site level optimisation and tends to curtail wind on average by 6.5% over the sites but curtails 

PV by 23% on average. By contrast, alternative A imposes a resource-level constraint with all sites 

constraining wind and PV to 10%, in effect reducing PV curtailment by at least half but increasing wind 

curtailment by 50%. Alternative B has more freedom and constrains wind on average by 6.8% and PV 

by 21.6%, slightly less extreme than the initial case. There is also some variation between sites between 

the 3 cases: curtailment is uniform in Alternative A; it varies by 5.6-7.9% for wind and 17.5-26% for 

PV in the initial case; and by 6.2-8.2% for wind and 15.9-23.9% for PV for Alternative B. The outcome 

of this analysis is that the level of curtailment for individual sites and technologies is very sensitive to 

the underlying assumptions. In particular, it suggests that despite no net gain overall there could be 

substantial negative impacts on one technology and suggests that equitable solutions are required to 

avoid disproportionate outcomes.  

Table 3 Hosting capacity with different curtailment rules for active network scheme 



  Initial case 
Alternative 

A 
Alternative 

B 
Wind capacity (MW) 58.1 58.1 58.0 
PV capacity (MW) 50.1 50.1 50.4 
Total hosting capacity (MW) 108.2 108.2 108.4 
Total delivered energy (GWh) 219.8 219.7 219.6 
Total curtailed energy (GWh) 24.4 24.4 24.4 
Wind energy curtailed (%) 6.5 10.0 6.8 
PV energy curtailed (%) 23.0 10.0 21.6 

 

4 Discussion 
This work examined the value of hybrid combinations of renewable DGs in terms of being able to better 

use the capacity of the distribution network for generating and exporting renewable energy, in this case 

with wind and PV. This is understood to be the first analysis to specifically link diversity of supply to 

use of network capacity in this manner. The diversity in timing between solar and wind output is seen 

to be useful in driving this. However, it is important to emphasise that the network will still be 

constrained by critical periods of joint maximum production and low demand. Therefore, if renewable 

resources reach their peak around the same time (e.g. strong wind during a summer day), even for very 

few periods of the year, the benefit of complementarity over the other periods is reduced. This explains 

the limited ‘value’ of diversity from hybrid DG seen in the passive network case. Implementation of 

advanced network control to actively manage constraints during these critical periods was anticipated 

to add significant value for the grid integration of hybrid DG. It was clear from the case study that there 

were major increases in network capacity and energy production arising from ANM across the single 

resource and hybrid cases. In addition, it was seen that ANM significantly enhanced the benefit of 

diversity between wind and PV, relative to the passive cases.  

The relatively high winds and low insolation in Scotland is likely to have influenced the ‘value’ of 

diversity in supplies. It might be expected that the value of hybrid DG in increasing network utilisation 

and total energy export would be strengthened in areas where the wind and PV resources are more 

comparable. In saying that, the insight gained from the case study can be generally transferred to other 

networks and there would be scope to expand the scope of the analysis to other areas and alternative 

combinations of resources. The choice of most appropriate ANM technology for different networks 

needs separate, detailed study, but in general, adaptive voltage control is a useful option where the 

voltage issue solely constrains the network, while curtailment can, at least partially, solve both voltage 

rise and power flow issues.  

There are two main applications of the approach. The first, as employed in this paper, compares 

‘optimal’ combinations of resources at particular sites and this would be directly applicable to 

developments in undeveloped (or ‘greenfield’) networks where it can be used to identify appropriate 



shares of capacity at specific locations to guide patterns of development of different renewables. In 

practice, DG is rarely located optimally so the second application would be in networks where there is 

existing generation of a dominant technology type. There may be additional capacity available for 

renewables that exhibit different characteristics to the dominant resource. In this case, the approach can 

be used by modelling pre-existing generation with fixed capacities but variable production and the 

‘spare’ capacity identified by optimising the remaining capacity with the complementary technology. 

This is especially valuable in areas, such as parts of the UK, where networks are considered largely 

‘full’ as a result of dominant connections from single resource types.  

The ability to exploit complementarity between resources is strongly dependent not only on the 

technical feasibility but also the economic feasibility. This is governed by the capital and operating 

costs but also potential revenues which can be negatively influenced by curtailment levels. With ANM, 

levels of curtailment for a particular DG depend strongly on the principles of access. Ultimately these 

govern how curtailment is to be shared between DGs and can take a number of forms, including 

proportional sharing as well as those based on the order of connection with earlier connections having 

priority over later connections (termed ‘last-in-first-out’). For example, where such arrangements are 

in force, PV aiming to connect to a wind-dominated distribution network may be curtailed more 

severely than wind. The analysis in section 3.7 was useful in showing how changes in curtailment 

‘sharing’ drove how technologies were curtailed and where. The analysis showed that there is scope for 

quite different outcomes for individual DG, some of which were potentially detrimental. The economics 

of the different technologies and potential subsidy regimes will therefore play a big role in determining 

if such ‘spare’ capacity is exploitable.  

The case study employed wind and PV generation time series based on modelled data; the overall 

analysis would work equally well with measured resource or generation data. The analysis can also be 

extended to other renewable resource types. The analysis shown here employs a single year of wind 

and PV data which will tend to reduce the variability in conditions that might be experienced in practice 

over the life time of the DG. However, the coincidence technique is very well-suited to extended lengths 

of time series as it will reduce the resulting series to a small number of representative multi-periods. 

This is an active area of research with a number of useful contributions in recent years, e.g. [35].   

Availability and use of storage and demand side management, would also help hybrid DGs to exploit 

‘spare room’ in the network by time-shifting power away from conditions that result in binding 

constraints. While not examined in this paper, such analysis would be valuable but is more 

computationally challenging given the temporal dependency introduced by storage, which precludes 

use of the representative periods technique employed in this paper. 



5 Conclusions 
Hybrid combinations of resources are recognized as a strategy for handling the variability of 

renewables. This paper studies the grid integration of hybrid renewable generation from the point of 

view of efficient use of network capacity. A multi-period, multi-resource AC optimal power flow 

approach is used to optimally identify the network value of hybrid distributed generation connections 

in maximising total energy production whilst complying with network operational limits. The 

effectiveness of hybrid distributed generation and the optimization method was examined through 

comparison with single resource systems. This study demonstrates that by capturing the 

complementarity between different renewables helps hybrid distributed generation to better exploit 

available network capacity, enabling more renewable generation capacity to connect and so raise energy 

output. In addition, the efficient use of network from hybrid distributed generation becomes more 

pronounced when active network management is involved, which isolates the infrequent co-occurrence 

of high outputs.  

The network value of hybrid distributed generation is complicated by network topology, the degree of 

synergy between renewables and correlation with local demand. The evaluation approach presented in 

this paper allows rapid identification of network-wide benefit of hybrid distributed generation and the 

combined value with smart grid controls. It can facilitate the wide deployment of hybrid generation in 

the electricity network to promote renewable generation, carbon reduction and offers assistance in 

choosing the appropriate active network management technology to enhance hybrid generation in 

different networks.   
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