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ARTICLE

The temporal dynamics and infectiousness
of subpatent Plasmodium falciparum infections
in relation to parasite density
Hannah C. Slater

Malaria infections occurring below the limit of detection of standard diagnostics are common

in all endemic settings. However, key questions remain surrounding their contribution to

sustaining transmission and whether they need to be detected and targeted to achieve

malaria elimination. In this study we analyse a range of malaria datasets to quantify the

density, detectability, course of infection and infectiousness of subpatent infections.

Asymptomatically infected individuals have lower parasite densities on average in low

transmission settings compared to individuals in higher transmission settings. In cohort

studies, subpatent infections are found to be predictive of future periods of patent infection

and in membrane feeding studies, individuals infected with subpatent asexual parasite

densities are found to be approximately a third as infectious to mosquitoes as individuals with

patent (asexual parasite) infection. These results indicate that subpatent infections con-

tribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics

to detect them in lower transmission settings.
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The occurrence of malaria infections below the parasite
density threshold detectable by conventional field diag-
nostics (microscopy and rapid diagnostic tests (RDT)) is

well established1. These infections are considerably less likely
to cause symptoms2; however, in feeding assays they have
been shown to be infectious and are likely to contribute to the
infectious reservoir and onwards transmission3–5. Furthermore,
parasite densities in infected individuals fluctuate over time
meaning that these low-density infections may have future phases
of higher density, infectiousness and potentially morbidity6–8. As
the drive towards malaria elimination intensifies, the question
arises as to the added benefit of identifying and treating low-
density infections in order to interrupt transmission. The answer
to this lies in better understanding the prevalence, detectability,
temporal dynamics and infectivity of these low-density infections
in a range of transmission settings.

Here, for clarity, we outline the terminology used throughout
this article: a submicroscopic infection is defined as an infection
which is detectable by molecular methods, but not by microscopy.
A subpatent infection is an infection which is detectable by
molecular methods, but not by the field diagnostic being used
in the study, whether this is microscopy or RDT. A low-density
infection is as described, with no reference to the diagnostic being
used to try and detect it. A submicroscopically or subpatently
infected individual is someone who is detectable by molecular
methods but is undetectable by microscopy or microscopy/RDT,
respectively. All these definitions refer specifically to infections
with asexual parasites. Most of the studies analysed here use a
form of PCR as their molecular method, therefore, for brevity,
we use the term PCR synonymously with ‘molecular methods’.

A large number of surveys confirm the existence of subpatently
infected individuals in all transmission settings. However, the
proportion of all PCR-detected malaria-infected individuals that
are detected by microscopy/RDT is significantly lower in lower
transmission settings. This indicates a lower average parasite
density in these settings, contrary to what might be expected
given the lower antiparasite immunity to malaria in these
populations1,9,10. Until recently, most PCR methods detected
presence or absence of infection but were not quantitative, and
therefore the distribution of parasite densities in the subpatent
range was unknown. Wider application of quantitative molecular
methods now offers the opportunity to study how parasite density
distributions in infected populations may shift as transmission is
reduced. Combining parasite density distribution data with
infectivity data allows us to estimate how much of the infectious
reservoir will be detectable with more sensitive diagnostics.

To date, most reviews of low density, subpatent infections
focus on cross-sectional prevalence surveys.1 While informative,
these offer only a snapshot in time of an otherwise a dynamic
situation. When initially infected, a person has a period of sub-
patent parasitaemia after blood-stage parasites emerge from the
liver, before they multiply to microscopically detectable densities.
This takes longer in semi-immune adults (average ~3 weeks,
sometimes >63 days) compared with young children (average
1 week)11, and indeed some infections may never reach micro-
scopically detectable levels. Untreated P. falciparum infections
persist on average for 6 months8,12,13, but can last anywhere
between a few weeks and several years6, and parasite density
fluctuates over the course of an infection. Artificially induced
malariatherapy infections showed clear declines in average
parasite density and detectability over time even when no treat-
ment was given1,14,15. However in these infections, low-density
periods also occurred early in infection, with more than 60% of
untreated patients experiencing a subpatent period lasting for
1–34 days directly after the initial peak in parasitaemia16.
In naturally acquired infections, changes in detectability in

relation to duration of infection are extremely difficult to measure
due to superinfection, where individuals may be repeatedly
infected over time with different parasite strains17. This makes it
difficult to measure the relative densities or durations of different
parasite clones without longitudinal genetic studies. Therefore
a better understanding of these dynamics in endemic, semi-
immune populations is key to elucidating whether there is a need
to identify and treat low-density infections. If low-density infec-
tions are mainly short lived, destined to clear quickly without
treatment, and not very infectious, perhaps their contribution to
the infectious reservoir is small and clearing them is not essential
to achieve elimination. Alternatively, if low-density phases occur
frequently throughout an infection, treatment of low-density
infections may prevent long periods of these individuals being
infected and infectious. Additionally, low-density infections have
been identified as a potential marker of micro heterogeneity of
transmission (i.e., hotspots); therefore, treating and prophylacti-
cally protecting these individuals could prevent future morbidity
and onwards transmission as these individuals are more likely
to develop future symptomatic infections18.

In this article we analyse a series of datasets, harnessing the
increasing quantities of molecular data generated in recent years,
to investigate the density, temporal dynamics and infectiousness
of low-density P. falciparum infections. Firstly, we examine
the parasite density distributions of asymptomatically infected
populations in a range of transmission settings measured by
quantitative molecular methods, with implications for the
required sensitivity of new diagnostics. Next, longitudinal studies
are analysed to elucidate the temporal dynamics of parasite
densities in endemic populations, with particular reference to the
risk of subpatently infected individuals developing future higher
density infections. In the final section, we use studies where
mosquito were fed on asymptomatically infected individuals to
estimate the relative infectivity of individuals with subpatent
parasitaemia and their contribution to the infectious reservoir.

Results
Density and detectability of P. falciparum infections. A litera-
ture search was conducted to identify cross-sectional data on the
parasite densities of individuals with Plasmodium falciparum
infections in endemic areas measured using a quantitative
molecular method. Fifteen articles were identified, consisting of
data from 22 locations in a wide range of transmission inten-
sities (prevalence by molecular method ranging from 0.4% to
90.6%)3,4,12,13,19–30. Details of the literature search criteria and
more information on the diagnostic methods and study settings
are in Methods and Supplementary Table 1.

The median parasite density in identified dataset was between
1 and 1336 parasites per µl (Fig. 1a). The range of parasite
densities (parasites per µl) in infected individuals spanned at least
two orders of magnitude, and in several cases, more than six
orders of magnitude (Fig. 1a). Individuals in each dataset were
split into two groups: those with infections that were detectable
by PCR and microscopy or RDT, and those with infections that
were detectable by PCR only (Fig. 1b). Median parasite density is
lower in the subpatently infected individuals in all datasets
compared with the microscopy/RDT-positive group. However,
the interquartile range of the two groups overlaps in 3/18 of the
datasets and the total range overlaps in all datasets. The limit of
detection for microscopy in routine diagnostic settings is thought
to be around 100 parasites per µl31 and around 10 parasites per
µl by expert microscopists, yet 12/18 datasets have subpatent
infected individuals with parasite densities >100 parasites per
µl and all have subpatent-infected individuals with parasite
densities >10 parasites per µl. Infected individuals that are patent
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but have very low-parasite densities by PCR typically have asexual
parasite densities by microscopy in the traditional range of this
method (> 50 parasites per µl), indicating a disagreement in
density measures between the two tests.

Figure 1c shows that median parasite density (from each of the
studies in Fig. 1a) increases in higher transmission settings; a

trendline fitted to the data indicates that the median parasite
density increases from below five parasites per µl in the datasets
with the lowest prevalence to 100 parasites per µl in the highest
transmission datasets. As has been shown previously1, the
proportion of infected individuals that are detectable by
microscopy/RDT is lowest in low transmission settings (Fig. 1d).
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We did not standardise the age distribution of data across the
studies (as several studies did not include age data), but results
from an age-standardised analysis were consistent with those in
Fig. 1 (Supplementary Note 1 and Supplementary Figure 3).
There was no difference in the parasite densities of submicro-
scopic compared with sub-RDT infections from an analysis
looking at the two studies which used both diagnostics and had
sufficient sample sizes (Supplementary Figure 2).

A Bayesian logistic regression model with a study-level random
effect was used to estimate the relationship between parasite
density by quantitative PCR and the probability of detection by
microscopy. We used a normal prior distribution with a mean of
zero and standard deviation of three. Four chains were run for
1000 iterations each after a burn-in of 500. The median model
prediction for each study is shown in Fig. 2a–j with a 95%
credible interval, the median predictions from each study are
overlaid in Fig. 2k and a pooled prediction of all data is presented
in Fig. 2l. There is large variation between studies on the
probability of detection by microscopy; at a qPCR-detected
parasite density of 100 parasites per µl, the median probability
of being detected by microscopy is 29.7%, with a range of
3.8−69.7%.

The proportion of infected individuals in each dataset with
parasite densities above certain thresholds (1, 10 and 100
parasites per µl) is shown in Fig. 3. Across all datasets, a mean
of 42% (range 1–97%) of infected individuals had densities above
100 parasites per µl, and the proportion of infected individuals
detected at this threshold increased in higher prevalence settings.
This is consistent with Fig. 1d showing that a lower proportion of
infected individuals have subpatent infections in higher transmis-
sion settings. By contrast, an average of 56.5% infected individuals
(11–100%) had densities above 10 parasites per µl, and the
parasite density distributions suggest that a diagnostic tool with
this sensitivity would detect >55% of infections in the majority of
settings. The proportion of infections that would be detected with
a diagnostic with this sensitivity was lower in low transmission
settings. For simplicity, this estimate assumes absolute detection
thresholds rather than a gradual decrease in sensitivity as parasite
density decreases. More than 80% of infected individuals (average
of 89.2%) had densities >1 parasite per µl in all settings except
those in very low transmission settings (6 out of 10 of the datasets
with PCR prevalence <4%). There is a clearer decline in
diagnostic performance (i.e., proportion of the infected popula-
tion detected) in low transmission settings for a threshold of 100
parasites per µl compared with 10 or 1 parasite per µl. For the
higher threshold of 100 parasites per µl, 56% of infected
individuals are predicted to be detected in the highest transmis-
sion, whereas only around 10% would be detected in the very-
low-transmission settings (PCR prevalence < 5%). The compar-
able reduction in sensitivity is from 68% to 29% for a limit of
detection (LOD) of 10 parasites per µl and from 93% to 69% for a

LOD of 1 parasite per µl. This could indicate that the reduced
sensitivity of microscopy/RDT observed in low transmission
settings (Fig. 1d) may be less severe with more sensitive
diagnostics.

The results are compared with the actual sensitivity of a new
ultra-sensitive rapid diagnostic test (U-RDT) that has been
evaluated in cross-sectional prevalence surveys in Myanmar and
Uganda12. In Uganda, 84% of qPCR-positive infected individuals
were also detectable by U-RDT, and in Myanmar this figure was
44%. These values fall between the proportion of the populations
detected assuming limits of detection of 1 and 10 parasites per
µl for each setting; however, further data are needed to better
evaluate the sensitivity of this new test.

Sensitivity of diagnostics over the course of an infection. A
systematic review was conducted to identify studies which had
information on how the detectability by microscopy/RDT of
naturally acquired P. falciparum parasites changes over time (see
the Methods section). We analysed two types of studies that are
informative for this question: cohort studies testing individuals by
both microscopy and PCR, and studies that monitored popula-
tion prevalence during a change in transmission intensity.

We identified and requested access to 16 cohort datasets in
endemic areas that used both microscopy and PCR. We analysed
seven cohorts to which we were granted access within the time
frame of the study or which contained the full information in the
publication (Table 1). These were all conducted in moderate-to-
high transmission areas and the total duration of follow-up was
from 3 days to 16 months. Example patterns of slide-negative and
slide-positive infection in individuals over time are shown in
Fig. 4. Only two of these studies included genotyping infections
over time; these found that almost all individuals had multiple
clones. Since standard PCR for infection multiplicity does not
assess the relative density of different parasite clones, no analyses
could be performed on clone-specific density fluctuations.
Previous studies have analysed the duration of infection with
specific parasite clones over time32,33. The cohort studies varied
in terms of frequency of follow-up, rates of treatment during the
study and age of participants (Table 1 and Supplementary
Table 2), but nonetheless show some dynamics of parasitaemia,
which are informative about varied endemic settings. Here, we
analysed three metrics on the dynamics of infections detected by
microscopy/RDT and PCR over time (Table 1), whilst bearing in
mind that we do not distinguish new infections over the course of
follow-up in these data:

(i) What percentage of infected individuals never test slide-
positive during the study?

(ii) What percentage of submicroscopic episodes in individuals
are preceded or succeeded by slide-positive samples, further
submicroscopic samples or negative samples?

Fig. 1 Parasite densities and detectability of asymptomatically infected individuals. a Boxplot of the parasite densities (parasites per µl) of all infected
individuals by quantitative PCR or nucleic method. The blue numbers along the top indicate the PCR prevalence in each setting and the studies are ordered
from left to right by prevalence. The dark red numbers along the bottom indicate the number of PCR-positive individuals in each study. The location and
first author of each study is presented at the bottom of panel b. b The individuals in each study are separated in to two groups—those detectable by PCR
and RDT/microscopy (darker shade on the left in each column) and those only detectable by PCR (lighter shade on the right). The dark red numbers along
the bottom indicate the number of infected individuals in each group. For both boxplots, the centre line indicates the median, the upper and lower bounds
of the box show the 25% and 75% percentiles, and the whiskers show the minimum and maximum values of each dataset. c The median parasite density in
each study (also shown as the centre lines in the boxplots in panel a plotted against PCR prevalence. The fitted line is of the form: mean parasite density
per µl= a – b*exp(m*PCR prevalence) where a= 2.342, b= 1.637, m=−1.896. The size of each circle is proportional to the number of PCR-positive
samples in each study (shown at the bottom of panel a). d The proportion of PCR-positive individuals that are also detected by microscopy/RDT and 95%
binomial confidence intervals. These are compared to a previously published relationship1, shown by the grey dashed line. The colours of the points
correspond to the studies in panels 1a, b. Source data are provided as a Source Data file
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(iii) What is the relative risk of becoming slide-positive in the
future in individuals with submicroscopic infections versus
negative individuals?

In each cohort, 0–36% of total samples were submicroscopic, a
relatively low level compared with the average of 46% found in a
previous systematic review1. In all studies, infected individuals
were rarely submicroscopic for more than one consecutive
sample, although sampling frequency varied from repeated
measures < 24 h apart to sampling once every 2 months (Table 1).
A relatively large proportion of individuals with submicroscopic
infections had negative samples in preceding and subsequent
surveys (this occurred in at least 30% of submicroscopic episodes
in five of the cohorts). These results could indicate short-lived
infections that never became slide-positive, or infections that
fluctuated below the PCR detection limit33–35, or alternatively,
slide-positive periods may have been missed between follow-up
visits. Most individuals in the cohorts who had any infection
during the study tested slide positive on one or more sample, with
0.8% to 18% having submicroscopic-only samples (Table 1). Rates
of treatment were higher in the cohort in Papua New Guinea than

in other cohort studies with available treatment data (Supple-
mentary Table 2), but there was no obvious difference in
submicroscopic patterns in this cohort.

In most cohorts, current submicroscopic infection was
associated with a higher risk of being slide-positive later during
follow-up, compared with individuals who were currently
negative by PCR (Fig. 5, Table 1). The association was not
significant in all studies, but the trend was consistent in 4/5
cohorts where there were sufficient numbers of submicroscopic
infections to assess this association. We neither pooled the odds
ratios of future slide-positive infection, nor looked at covariates
within studies, because the duration and frequency of follow-up
was different for each study. Future slide-positive infection could
arise directly from the current submicroscopic infection increas-
ing in density, from variable sensitivity of microscopy or could
simply be a marker of an exposed individual who is more likely to
contract a future infection. The short-term changes in slide-
positivity after the initial sample are most likely to be due to
either fluctuating densities of the current infection or variable
microscopy sensitivity, since new infections would take a longer
time to accumulate. One study in Papua New Guinea sampled
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individuals on consecutive days, showing that about 20% of those
initially submicroscopic at day 0 became slide-positive on the
day after (Fig. 5). The persistent difference in risk of slide-
positive infection by initial infection status which occurred in
most cohorts throughout follow-up, up to 35 weeks (Fig. 5), is
less likely to be due to the initial infection (most of which would
have cleared by this time point). The cause of this pattern is
more likely to be variation in individual exposure, or some other
long-term difference between individuals (e.g., immunity sup-
pressing parasite densities).

Surveys from multiple time points in areas with seasonal
variation in malaria transmission provide an indirect way to look
at changing detectability of infections with duration. During the
high-transmission season, a larger proportion of infections will
have been recently acquired, whilst during dry/low transmission
seasons, the average age of infections (the time since acquisition
of the most recent parasite clone) will be older, assuming that at
least some infections have a duration of several months. Likewise
in areas with declining transmission, fewer infections are recent at
later time points.

We searched the literature for all cross-sectional surveys that
measured Pf prevalence by microscopy and a molecular method
in different seasons in the same location and by the same
authors and laboratory methods (unless otherwise indicated),
with the same inclusion criteria in each survey (age etc.) (see the
Methods section for search strategy). We included surveys of
individuals from defined endemic areas, who were not selected
based on malaria symptoms or test results, and excluded surveys
that used RDT instead of microscopy, since RDT positivity
persists after infection is cleared. We identified 20 locations
with two or more surveys, giving a total of 48 surveys (10 locations
were identified from a previous review36 and we found 10 more

locations during the current review). A previous analysis
found a non-significant increase in detectability in the rainy
season36. Here, we analyse the seasonal patterns in more detail
with the increased number of datasets. If more than one survey
was conducted during the same season and same year in a
location, these were pooled. We discarded data from three
locations, where the relative difference in slide prevalence
between seasons was <5%. Surveys do not necessarily include
the same individuals at each time point, therefore this is an
ecological analysis.

The sensitivity of microscopy compared with PCR as gold
standard was not significantly different between seasons in 17/20
locations (Supplementary Figure 1). When all the seasonal survey
results were pooled by meta-regression as previously,36 the ratio
of microscopy sensitivity in the high season relative to the low
season was 1.07, 95% CI 0.50–2.31 (i.e., a similar fraction of PCR-
positive infections was detected by microscopy in the wet season).
We further categorised which locations had high seasonal
variation in transmission, defined as the slide-prevalence in the
low season being less than half of the slide prevalence in the high
season (n= 10 locations). In this subgroup of the most seasonal
settings, there was a greater increase in the fraction of infections
detected by microscopy in the high season compared with the low
season, although this difference in sensitivity was not significant
(the ratio of microscopy sensitivity in the high season relative to
the low season was 1.25, 95% CI 0.66–2.39). The same conclusion
was reached if we tested across all sites for a linear effect of
the degree of seasonal variation (Supplementary Figure 1) on
microscopy sensitivity, rather than using the cut-off to identify
the most seasonal settings.

Our literature search also identified five studies in which Pf
prevalence was measured multiple times by slide/RDT and
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Fig. 3 The proportion of PCR-positive infections with parasite densities above three thresholds. a all datasets— the triangle, square and circle represent the
proportion of individuals in each dataset with parasites densities greater than 1, 10 and 100 parasites per µl, respectively (assuming 100% detection below
the threshold and 0% detection above, for simplicity). b Zoom-in of the 0–4% prevalence area. The black stars indicate the actual proportion of infections
detected using the ultra-sensitive RDT in Myanmar (left) and Uganda (right)12. The dashed grey lines show the best-fit line (of the form: proportion
detected= a–b * exp(m * PCR prevalence) for the estimated proportion of PCR-positive individuals that would be detected using the three limits of
detection. The details of the fitting and the parameter values for the three lines are shown in Supplementary Note 2. Source data are provided as a Source
Data file
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molecular methods in cross-sectional surveys by the same authors
during a period of declining transmission (Table 2). All areas
started with slide prevalence < 10% and reached a slide
prevalence of < 1% by the end of the time period. There was
always a slightly higher proportion of subpatent infections in
the last survey (6–27% increase in subpatent infections), despite
fluctuation in sensitivity during the studies. Although RDT
positivity can persist after an infection, its duration (up to
6 weeks37) is much shorter than the minimum time gap between
surveys here (6 months), so persistence would be unlikely to
affect results.

Gametocyte carriage and infectivity. Data on gametocyte pre-
valence and density, measured by a PCR in asymptomatically
infected individuals, were taken from the studies identified in the
first section3,4,26,28,38,39 plus one additional study39 (Supple-
mentary Table 3). The PCR prevalence of gametocytes was sig-
nificantly higher (p < 0.05, Pearsons Chi-squared test) in
individuals with patent asexual infections compared with sub-
patent asexual infections in six of the seven studies (Fig. 6). The
proportion of subpatent individuals with PCR-detectable game-
tocytes increases in higher transmission settings (OR:1.05
(1.04–1.07) p < 0.05, Wald test), but the same is not true for
individuals with patent infection (p > 0.05, Wald test). Although

subpatent infections are associated with lower densities of both
asexual parasites and gametocytes, the distribution of gametocyte
density of subpatent individuals was significantly different
(p < 0.05, Kolmogorov–Smirnoff test) from than the densities
of patent individuals in only three of the seven studies.

The contribution to the infectious reservoir (the combined
onwards infectivity of a population to mosquitoes) of individuals
with subpatent infection was calculated for several of the studies
where mosquito feeding was conducted3–5,40 (details in Supple-
mentary Table 4). Using the methodology outlined in Stone
et al.41 where the relative contribution of each individual to
the infectious reservoir depends on the relative proportion of
mosquitoes they infected, weighted to ensure the age distribution
of the population is equal for each study (15% under 5 years old,
30% 5–15 and 55% over 15), the relative bites received by each
individual are a function of their body surface area and how likely
they are to use a bednet. Figure 7 shows the contribution to the
infectious reservoir of individuals with subpatent infection (light
blue area in fourth bar in each panel). The studies, ordered by
PCR prevalence, are all from moderate and high transmission
settings. The contribution to the infectious reservoir of all
individuals with subpatent infections is greater in moderate
compared with high transmission settings. The robustness of
these results is dependent on the sample sizes in the studies, in

Table 1 Dynamics of infections detected by microscopy/RDT and PCR during longitudinal studies

Country,
year

Follow-up
frequency

Follow-up
duration

% sub-
microscopic
out of infected
samples (N)

% of ever infected
individuals only having
sub- microscopic
samples, n/Nb

Odds ratio of any future slide-
positive samples in sub- microscopic
infected people versus PCR-
negatives (95% CI)

Number of consecutive
sub- microscopic samples
per sub- microscopic
episodeb

Infection status
before and after
sub- microscopic
periods % (n) *b

Senegal,
200562

1 week 9 weeks 29.7 (277) 13.0%
22/169

2.03 (0.83, 6.48) 1: 96% (64)
2: 3% (2)
3: 1% (1)

M, SM, M: 5% (2)
M, SM, Neg: 25%
(10)
Neg, SM, M: 5% (2)
Neg, SM, Neg: 65%
(26)

Senegal,
200462

1 week 9 weeks 3.4 (269) 0.8%
3/369

N/A 1: 100% (10) M, SM, M: 0%
M, SM, Neg: 0%
Neg, SM, M: 0%
Neg, SM, Neg: 100%
(4)

Papua New
Guinea,
200665

8 weeks, some
time points with
two surveys 24 h
apart

16 months 36.1 (1128) 6.3%
15/239

1.72 (0.53, 5.57) (variable follow-up) M, SM, M: 30%
(105)
M, SM, Neg: 25%
(87)
Neg, SM, M: 16%
(58)
Neg, SM, Neg: 30%
(105)

Ghana,
1994–199564

4 weeks 12 months 25.6 (776) 17.5%
21/120

3.13 (1.52, 7.61) 1: 83% (143)
2: 16% (28)
3: 0.6% (1)

M, SM, M: 22% (22)
M, SM, Neg: 8% (8)
Neg, SM, M: 19%
(19)
Neg, SM, Neg:50%
(49)

Senegal,
200363 a

8 times in 3 days 3 days 0.0 (168) 0%
0/21

N/A 0 M, SM, M: 0%
M, SM, Neg: 0%
Neg, SM, M: 0%
Neg, SM, Neg: 0%

Ghana,
200032

2 months 12 months 27.4 (1436) 9.1%
30/328

1.0 (0.36, 2.77) 1: 81% (116)
2: 22% (25)
3: 1% (2)

M, SM, M: 62% (89)
M, SM, Neg: 17%
(25)
Neg, SM, M: 7% (10)
Neg, SM, Neg: 13%
(19)

Tanzania
199666

1 month 6 months 20.7 (338) 8%
5/60

3.09 (0.92, 10.36) 1: 76% (52)
2: 18% (12)
3: 4% (3)
4: 0% (0)
5: 1% (1)

M, SM, M: 40% (27)
M, SM, Neg: 24%
(16)
Neg, SM, M: 6% (4)
Neg, SM, Neg: 30%
(20)

Details of these studies are given in Supplementary Table 2. Note: the relative densities of different parasite genotypes were not measured, and individuals may have contracted superinfections during
the study
*Only includes submicroscopic periods with non-missing samples before and afterwards.
†M, SM, M=microscopy-positive sample, followed by submicroscopic sample(s), followed by microscopy-positive sample
M, SM, Neg=microscopy-positive sample, followed by submicroscopic sample(s), followed by sample negative by PCR and microscopy
Neg, SM, M= sample negative by PCR and microscopy, followed by submicroscopic sample(s), followed by microscopy-positive sample
Neg, SM, Neg= sample negative by PCR and microscopy, followed by submicroscopic sample(s), followed by sample negative by PCR and microscopy
aIndividuals were selected based on being slide-positive at the initial time point
bResults from different studies are not fully equivalent since they depend on sampling frequency, the sensitivity of the different methods, and treatment
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particular the number of mosquitoes that were infected in each
study. Two of the locations in Fig. 6 had < 20 mosquitoes getting
infected (Kilifi: 4/10,763, Mbita: 16/13,913), meaning these
estimates have higher uncertainty.

In Mbita (where only microscopy data were available), an
additional 17 mosquitoes were infected from one individual
who was negative for asexual falciparum parasites and positive
for falciparum gametocytes (at a very low density). This person
was additionally positive for malariae asexual parasites and
negative for malariae gametocytes. Therefore it is plausible

that these 17 infected mosquitoes could be infected with
falciparum, malariae or a combination. Here, we have adopted
a conservative assumption that they were infected with malariae,
but if we were to assume they were infected with falciparum, as
this individual is classified as subpatent (based on their asexual P.
falciparum parasitaemia), this would increase the contribution to
the infectious reservoir of subpatent individuals from 19.5%
(shown here) to 55.4%.

The relative infectiousness to mosquitoes of individuals with
microscopy-detectable infections compared with individuals
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Fig. 4 Example longitudinal data in a subset of individuals who experienced submicroscopic parasitaemia. The data include information by microscopy
(slide-positive) and PCR in (a) all-age individuals in Senegal in 200562 and (b) a birth cohort in Ghana64. Each row represents a single individual, with time
on the x-axis (time= age in the Ghana cohort). Individuals were sampled weekly in Senegal and every 2–4 weeks in Ghana, and the colours indicate their
infection status at each sampling time. Blank space indicates missing data. Source data are provided as a Source Data file
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with submicroscopic infections was compared across eight
studies3–5,24,39,40,42 (Fig. 8) (details in Supplementary Table 4).
Individuals with microscopy/RDT detectable infections were
more infectious in all studies except one which was conducted
in Senegal (which had a relative infectiousness of 0.99 (CI:
0.54–1.79)). Overall, the pooled relative infectiousness of
individuals with microscopy or RDT detectable infections was
2.87 times greater (95% CI: 2.54–3.25) than individuals with
subpatent infections.

Discussion
The proliferation of quantitative molecular methods has allowed
us to take a fresh look at the parasite densities, detectability

and dynamics of low-density Plasmodium falciparum infections.
We have shown that infected individuals have, on average, lower
parasite densities in lower transmission settings, but in a given
setting, the range of parasite densities in infected individuals can
span several log orders of magnitude. Several hypotheses have
been proposed to explain why parasite densities are lower in low
transmission settings, and the answer is likely to be a complex
and interacting combination of the following factors. Firstly, this
may simply be because individuals receive fewer infectious bites
and are therefore on average further along in their course of
infection where parasitaemia is expected to be lower1,43. Addi-
tionally, populations in areas that are now low transmission but
were higher transmission in the past will still have acquired
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immunity, therefore may be better able to control parasite
density than expected based on the current level of malaria
exposure. Individuals in areas that have historically low trans-
mission would not be expected to have much acquired immunity,
however, may harbour low parasite densities because they
reside in small geographic pockets of high transmission where
immunity is higher44. Another contributing factor could be that
the low genetic diversity of parasite populations in low trans-
mission settings enables individuals to rapidly acquire immunity
to those parasite clones45,46.

The decrease in average parasite density as an infection pro-
gresses, so that it is more often below the detection threshold of
microscopy, is clearly seen in artificially induced untreated
malariatherapy infections1, but in our analyses of cohort studies,
we could not test for this due to frequent reinfection. However,
there was a non-significant trend towards higher sensitivity of
microscopy in the rainy season when infections would be
expected to be more recent and potentially more detectable,
compared with the dry season.

The wealth of quantitative PCR data collated for this study
allowed us, for the first time, to investigate how the proportion of
infections detected in different transmission settings might be
expected to change with more sensitive diagnostics. We estimate
that the proportion of PCR-positive individuals detected with a
diagnostic with a LOD of 100 parasites per µl (akin to micro-
scopy/RDT) decreases from 49% in medium–high transmission
settings (> 10% PCR prevalence) to only 14% in low transmission
settings (< 10% PCR prevalence). With a more sensitive diag-
nostic, the expected drop-off in performance is smaller. The
estimated proportion of individuals detected decreased from 63%
in medium–high transmission settings to 33.1% in low trans-
mission settings when the LOD is 10 parasites per µl, and from
94% to 74% when the LOD is one parasite per µl. This suggests
that more sensitive point of care diagnostics (such as LAMP or a
more highly sensitive RDT) are essential for detecting asympto-
matic individuals in low transmission settings. A caveat of this
analysis is potential variation in results between laboratories and
experiments. While the sensitivity of many PCR techniques for
detection of presence of malaria appear comparable47, variation
in results is particularly an issue for quantitative measures of

parasitaemia. One study found a 2.4-fold variation in estimated
densities between replicates in the same laboratory48, and sensi-
tivity has been shown to vary based on the method used29,49.
However, the large number of studies included in our analysis
and the relative consistency of the trend towards higher parasite
densities in higher transmission settings increases the robustness
of these findings.

In our analysis of cohort studies, submicroscopic infection was
a predictor of future microscopy-detectable infection in four out
of five cohorts. Understanding whether this is due to an increase
in the parasite density of the current submicroscopic infection, or
because a submicroscopic infection is a marker of higher expo-
sure and risk of future infection, has important implications for
the impact of treating submicroscopic infections. Treatment
could prevent a current infection becoming higher density and
more infectious, but would not protect an individual with higher
exposure getting infected in the future after the prophylactic
effect of the antimalarial has waned. Recent cohort studies in
Vietnam and Mozambique found that some individuals with
untreated low-density P. falciparum infections later had high
density infections50,51. While the possibility of new infections
could not be excluded in these studies due to low levels of DNA
for genotyping the submicroscopic infections, the Vietnam study
was in a very low transmission area with low reinfection risk,
suggesting the lower density infection later increased in density.

We did not directly estimate the duration of submicroscopic
infection in this analysis due to infrequent follow-up times during
cohort studies, and the presence of multiple clone infections.
However, the mean total duration of infection with a particular
parasite genotype has been estimated at around 6 months (ran-
ging from a few weeks to several years) in previous analyses in
high transmission areas8,12,33. In lower transmission areas, a
shorter duration with a median of 2 months or less has been
estimated using ultra-sensitive PCR50,52, but this was in cohorts
with frequent treatment and also it was not possible to exclude
continued infection below the limit of PCR detection as has been
seen in other cohorts by genotyping33. Wider application of
quantitative molecular techniques in future is likely to provide
further insight into the fluctuations of clone-specific densities in
endemic populations (e.g., ref. 53).

Table 2 Sensitivity of microscopy or RDT compared with PCR in areas with declining transmission

Country Year Microscopy
or RDT

Microscopy/ RDT
prevalence % (N)

PCR prevalence
% (N)

Sensitivity of
microscopy/RDT

Reference

Brazil* 2004
(Mar–Apr)

Microscopy 1.5 (388) 9.1 (386) 16.5 70

2004 (Sep–Oct) Microscopy 1.6 (378) 8.7 (379 18.4
2005 Microscopy 0.0 (329) 6.7 (328) 0
2006 Microscopy 0.3 (351) 2.4 (334) 12.5

Kenya 2012 Microscopy 2.0 (779) 6.2 (779) 32.3 68

2013 Microscopy 0.2 (797) 3.3 (797) 6.1
Tanzania 2005 Microscopy 1.9 (2721) 32.5 (453) 5.8 69

2008 Microscopy 0.0 (370) 2.8 (145) 0
Tanzania,
Zanzibar†

2005 Microscopy 7.5 (2471) 21.1 (534) 35.5 23

2009 Microscopy 0.0 (2423) 3.3 (2423) 0
2011 RDT 0.4 (2904) 2.2 (2977) 18.2
2013 RDT 0.3 (3026) 2.3 (3038) 13

Zambia† 2009 RDT 0.7 (676) 2.7 (638) 25.9 67

2010 RDT 0.2 (871) 1.8 (871) 11.1
2011 RDT 0.4 (740) 1.5 (740) 26.7
2012 RDT 0 (688) 0.4 (688) 0

Sensitivity is measured by slide and PCR unless otherwise indicated: Zanzibar23 (microscopy used up to 2009, RDT used > 2009), Zambia67 (RDT), Kenya68, Tanzania69 (QT-NASBA), Brazil70

*Blood samples were finger prick in 2004 and 2006 and venous in 2005
†Filter papers in earlier years were stored for longer prior to PCR
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Low-density infections have repeatedly been shown to be
infectious4,54, although their relevance to onwards transmission
may depend on local vector competence55 and the likelihood
that infected mosquitoes produce infectious sporozoites56,57.
Here, a meta-analysis of eight studies with mosquitoes feeding
on asymptomatically infected individuals estimated that on
average an individual with subpatent infection is approximately
a third (0.348 times) as infectious to mosquitoes as a microscopy-
positive individual. As the proportion of infections that are
subpatent increases in low transmission settings (Fig. 1d),
these individuals are predicted to contribute an increasing pro-
portion to the infectious reservoir of the infected population.
In low transmission settings, symptomatic infections may
also be an increasingly important contributor to the infectious
reservoir, but these infections are often not captured in cross-
sectional prevalence surveys. Understanding the relative
contribution to the infectious reservoir of symptomatic and
patent and sub-patent asymptomatic individuals is key to deter-
mining whether these latter groups need to be detected and
treated in order to interrupt transmission and achieve local
elimination24. The relative impact of treating asymptomatic
individuals in comparison with other interventions such as
improving access to treatment for symptomatic cases or improved
vector control remains to be quantified in the field58. A recent
study in Myanmar showed that combining MDA in higher
transmission villages with widespread improved access to

treatment resulted in a marked and sustained reduction in
transmission, with no transmission documented in many areas
for > 6 months59,60.

In this study, we used detailed data from a range of trans-
mission settings to pave the way for understanding the relative
importance of subpatent malaria infections and assessing whether
they need to be targeted specifically in elimination settings. We
have shown that infected individuals on average have lower
parasite densities in low transmission settings and that these
infections are likely to be infectious to mosquitoes in the field.
Furthermore, although these infections may have shorter dura-
tions and lower infectiousness compared with patent infections,
we have shown that submicroscopic infections are predictive of
future patent infection. Therefore, detecting and treating these
infections may be an effective approach to prevent future periods
of parasitaemia and identifying micro ‘hotspots’ of higher expo-
sure and transmission. We have also shown that a large pro-
portion of infected individuals have parasite densities below the
LOD of standard field diagnostics in low transmission settings,
and that higher sensitivity field diagnostics are needed if it is
decided that detecting and treating these infections is necessary.
The next step is to synthesise the results from this analysis with
future field data on interventions which target low-density
malaria infections to further understand when, where, and whe-
ther we need to identify and treat these low-density infections to
interrupt transmission.
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Methods
Systematic review. There are three main topics within our review (see below)
and we designed specific search strategies for each. Abstracts of publications
within PubMed were searched for the specific terms below. The authors also
sought relevant unpublished data as far as possible within the time frame of the
review.

1. Density and detectability of P. falciparum infections: search after 01/11/2011
(date at which previous systematic review1 was completed) for:

● falciparum AND (densit* AND (pcr OR polymerase chain reaction)) OR
“quantitative pcr” OR “quantitative polymerase chain reaction” OR qpcr OR
“real time pcr” OR real time polymerase chain reaction OR NASBA

● falciparum AND (densit* OR quantitative) AND (LAMP OR loop-
mediated isothermal amplification OR thermophilic helicase dependent
amplification OR tHDA OR recombinase polymerase amplification
OR RPA)

2. Sensitivity of diagnostics over the course of an infection: search terms were (no
date restrictions):

● falciparum AND (within-host OR “within host”)
● falciparum AND (longitudinal OR cohort OR repeated OR duration) AND

(PCR OR polymerase chain reaction OR LAMP OR loop-mediated isothermal
amplification OR thermophilic helicase dependent amplification OR tHDA
OR recombinase polymerase amplification OR RPA)
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Fig. 7 Contribution to the infectious reservoir of individuals with microscopic and subpatent infections. The results are shown for data from six study
locations3–5, 40. The first column in each panel shows the proportion of the population that are infected with microscopy or RDT detectable and
undetectable asexual parasites. The second column shows how these two groups make up the infected population. The third column shows the unweighted
contribution to the infectious reservoir of the two groups, accounting for the proportion of people in each group and their relative infectivity to mosquitoes.
The weighted infectious reservoir shown in the fourth column additionally accounts for the relative biting frequency (based on their age and probability of
using a bednet) of individuals and corrects for the age distribution of participants in each study. Source data are provided as a Source Data file
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3. Gametocyte carriage and infectivity: search terms (no date restrictions)

● falciparum AND reservoir AND (infectivity OR infectious)
● falciparum AND infectivity AND (gametocyte OR submicroscopic OR

asymptomatic)
● falciparum AND (gametocyte density OR gametocytemia) AND transmission
● vectorial capacity AND (gametocytaemia OR gametocyte).

Statistical analysis. The relationship between PCR parasite density and detect-
ability by microscopy was modelled using a logistic regression model with a study-
level random effect fitted using a Bayesian framework and Stan61. For the
analysis of cohort studies, to test whether individuals with submicroscopic infec-
tions are more likely than PCR-negative individuals to become slide positive in
the future, we computed the probability of slide-positive infection at any follow-up
time, by initial infection status. We calculated the odds ratio and 95% confidence
intervals of future slide-positive samples using a continuity correction and
small sample size correction since the number of individuals in the initially
submicroscopic group was sometimes small. One cohort in Senegal in 200462 and
one in 200363 were not included, as there were too few individuals with sub-
microscopic infection. One cohort of 0–2 years old in Ghana64 had only a few
individuals who were initially submicroscopic. Here, we subdivided the follow-up
samples into five 16-week intervals beginning at 6 months of age (excluding earlier
time periods because of maternal immunity), and took the initial infection status at
the start of each time. The follow-up frequency was the same in the different time
periods. The risk of slide-positive infection was then computed for each follow-up
period using logistic regression with random subject effects to account for repeated
measures.

The proportions of patent versus subpatent individuals with PCR-detectable
gametocytes was compared using a chi-squared test. The relationship between
community level (asexual parasite) PCR prevalence and the proportion of patent
and subpatent individuals with PCR-detectable gametocytes as assessed using a
generalised linear mixed effects model with asexual parasite prevalence as a fixed
effect and study as a random effect. The distribution of parasite densities of
gametocytes in patent versus subpatent individuals was compared using a two-
sided, two-sample Kolmogorov–Smirnoff test on (log10) transformed data.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Disclaimer. The findings and conclusions in this report are those of the author(s)
and do not necessarily represent the official position of the Centers for Disease
Control and Prevention.

Data availability
All data used in this manuscript are provided as Source Data files, which are also
deposited on dryad (https://doi.org/10.5061/dryad.75t5382), or in online repositories
previously deposited by study principle investigator for each relevant study with original
publication of data. Details of repositories are provided in the Source Data files on tabs
relating to the relevant study. All data supporting the findings of this study are also
available from the authors upon request.
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