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The risk of loosening of extramedullary fracture fixation 1 

devices 2 

 3 

Abstract  4 

 5 

Extramedullary devices that use screws, pins or wires are used extensively to treat 6 

fractures in normal and diseased bone. A common failure mode is implant loosening 7 

at the bone-screw/pin/wire interface before fracture healing occurs.  This review first 8 

considers the fundamental mechanics of the bone-fixator construct with focus on 9 

interfacial strains that result in loosening. It then evaluates the time-independent and 10 

time-dependent material models of bone that have been used to simulate and predict 11 

loosening. It is shown that the recently developed time-dependent models are 12 

capable of predicting loosening due to cyclic loads in bone of varying quality.  13 

 14 
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1 Introduction 19 

 20 

Extramedullary devices that use screws, pins or wires are used extensively to treat 21 

fractures in normal and diseased bone. These devices carry most of the load, 22 

particularly in cases where there is a fracture gap, before callus formation occurs. 23 

The load is transmitted from the bone-screw/pin/wire interface to the plate or an 24 

external frame. It has been well documented that these devices need to fulfil three 25 

clinical requirements [1,2]: (a) they must support fracture healing; (b) they must not 26 

fail during the healing period; and (c) they should not loosen or cause patient 27 

discomfort. Requirement (a) depends on the stiffness of the bone fixator construct 28 

and the load applied by the patient, which determine the relative movement between 29 

fractured fragments or interfragmentary motion (IFM). Requirement (b) relates to 30 

stresses within the implant and potential failure before healing occurs. Strains at the 31 

bone-screw/pin/wire interface should not be too high to ensure that requirement (c) is 32 

met.  33 

 34 

There have been a number of studies that have considered requirements (a) and (b) 35 

[3–10] and shown that fulfilment of these depends on factors such as fracture 36 

location, device used and its configuration (e.g. where the screws are placed in a 37 

locking plate or how much tension is applied to the wires in ring fixators). 38 

Interestingly it has been found that device stiffness (or resulting IFM) and stresses 39 

within the device are not strongly effected by bone quality [3–5,11]. In other words, if 40 

the aim of a biomechanical study is to determine IFM alone then bone quality does 41 

not have a significant role to play. Whereas, loosening at the bone-implant interface 42 

strongly depends on bone quality in addition to the factors that influence IFM [3,4]. 43 
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Loosening is reported frequently as a complication in implant usage and some 44 

previous studies have noted that mechanical forces initiate it before any contribution 45 

from biological processes [12]. Since biomechanical prediction of loosening requires 46 

modelling the complex bone material, it is much more complicated; consequently, 47 

influence of bone properties to examine mechanical environment at interface has 48 

received relatively little attention [3,4,11].   49 

 50 

The first aim of this review is to present the fundamental mechanics of the bone-51 

fixator construct with focus on interfacial strains that result in loosening. The second 52 

aim is to consider the constitutive material models of bone used to predict loosening, 53 

in particular recently developed novel time-dependent models that are capable of 54 

predicting loosening due to cyclic loads [13–15]. While most discussion presented is 55 

in the context of extramedullary devices such as locking plates, unilateral fixators 56 

and Ilizarov rings, many of the concepts presented are equally applicable to other 57 

fixation devices. 58 

 59 

2 The mechanics of extramedullary devices 60 

2.1 Interfragmentary motion and stresses in the implant 61 

 62 

We first consider the mechanics of extramedullary devices. Figure 1a shows a bone-63 

locking plate construct, the mechanics of which is not too dissimilar to unilateral 64 

fixators. A number of biomechanical responses arise due to the application of load P 65 

(due to partial or full load bearing by the patient). Firstly load bearing causes 66 

interfragmentary motion (IFM) between the fractured fragments (Figure 1b) which is 67 

known to aid callus formation [16,17] – too much or too little inhibits fracture healing 68 

[2]. IFM can vary across the thickness of the bone; for example from Figure 1a and 69 
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1b it can be seen that the largest IFM is at the far cortex and given by x-x’. Secondly 70 

the plate and screws experience bending causing stresses within the implant. The 71 

amount of bending and IFM depend on factors such as dimensions and materials of 72 

the locking plate, bone-plate offset, load applied and the manner in which bone 73 

experiences load and screw configuration particularly the working length (also known 74 

as the bridging span and defined as the distance between the two innermost screws 75 

on either side of the fracture). In cases with a fracture gap, higher working length 76 

results in larger plate stresses (primarily in the plate portion bridging the fracture) 77 

and larger IFM [2,4].  Some studies have incorrectly reported larger stresses with 78 

shorter working lengths [18], but the reasons for this erroneous interpretation have 79 

been discussed in Macleod and Pankaj [2]. Plate bending also results in pull-out and 80 

push-in forces as shown in Figure 1b; these have been previously discussed in the 81 

context of unilateral fixators [11]. As the applied load increases the lever arm d 82 

(Figure 1a) increases to Δ > d (Figure 1b) which increases the bending forces even 83 

further. In engineering mechanics this is often referred to as P - Δ effect and causes 84 

the relationship between load and IFM to become nonlinear [19].  Nonlinear load-85 

displacement behaviour also arises in Ilizarov fixators (Figure 2a) due to sagging 86 

wires [3]. Studies on locking plates [4], unilateral fixators [5,11] and Ilizarov fixators 87 

[3] have shown that bone quality has a relatively small influence on IFM and implant 88 

stresses. 89 

 90 

2.2 The mechanics of loosening 91 

 92 

Let us now consider strains at the bone-screw interface due to forces along the axis 93 

of the bone (as shown in Figures 1a and 2a); these strains are responsible for 94 

loosening, which is the primary focus of this review. It is important to note that we 95 
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deliberately employ the response parameter strain rather than stress for three 96 

reasons. Firstly it is now well recognised that bone fails due to strain rather than 97 

stress [20]. Secondly, failure strain does not vary significantly with bone quality or its 98 

anisotropy (this is further discussed later in this review). Lastly, while stresses have 99 

peak values beyond which they cannot rise due to yielding/failure, strains can 100 

continue to increase. Typical large strain regions for locking plates are shown in 101 

Figure 1c and for Ilizarov fixators in Figure 2b. It has been shown that the maximum 102 

bone strains at the interface of the screw/pin/wire closest to the fracture (e.g. screws 103 

2 and 3 rather than screws 1 and 4 in Figure 1a) [3–5,11,21]. For locking plates and 104 

unilateral fixators the strains are the largest at the periosteum of the near cortex and 105 

progress towards the endosteum with increasing load [11]. The volume of bone that 106 

goes beyond the yield level increases considerably with poor bone quality [3,11]. The 107 

pattern of bone yielding is different between unilateral and Ilizarov fixators. For 108 

unilateral fixators and locking plates bone yielding can progress through the full 109 

cortex as shown in Figure 1c for screw 2, where bone superior to the screw 110 

experiences large strains. If the depth of yielded bone is greater than thread height, 111 

then loosening can be initiated due to loss of screw thread purchase. For Ilizarov 112 

fixators, on the other hand, bone yield remains concentrated separately at the 113 

periosteum and endosteum, superior and inferior to the wire, respectively [3] as 114 

shown in Figure 2b. This is a possible reason for Ilizarov wires being associated with 115 

lower rates of loosening than half pins [22,23]. 116 

 117 

It has also been shown that reduced stiffness (or increased flexibility) of the bone 118 

fixator construct, which increases IFM, also results in larger interfacial strains 119 

[3,4,11]. Flexibility can be increased by using materials with lower elastic modulus 120 
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(e.g. titanium rather than steel), smaller plate or screw dimensions, larger working 121 

length or in case of Ilizarov fixators smaller wire tensions. So flexibility is detrimental 122 

from the point of view of large strains at the interface but it may result in an IFM that 123 

causes faster healing before any ill effects of high interfacial strains come to the fore. 124 

Thus need for maintaining adequate IFM needs to be balanced with the risk of 125 

loosening. It is also important to note that compressive and tensile strains often 126 

occur simultaneously as shown in Figure 1d for the near cortex of screw 2. In this 127 

case compressive strains due to screw pushing up in the radial direction are 128 

accompanied by tensile strains in the circumferential direction due to screw hole 129 

being enlarged.  130 

Figure 1 131 

It is also important to note that drilling (prior to screw insertion) causes interfacial 132 

damage which has been estimated to extend up to 300 µm around the circumference 133 

[24]. Moreover, large interfacial strains also result from an interference fit when the 134 

drilled pilot hole has a smaller diameter than the screw being inserted [19].  135 

Figure 2 136 

Push-in and pull-out forces discussed in the context of unilateral fixators and locking 137 

plates can cause loosening which is resisted by screw threads. It has been shown 138 

that the bone at the interface of the first thread from the screw entrance carries the 139 

largest load [6] and this load carrying demand decreases for screws deeper inside 140 

the bone. As bone is not homogeneous, local microarchitecture can play an 141 

important role in determining whether the device may become loose [25].  142 

 143 

 144 

 145 
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 146 

3 Material models of bone to predict loosening 147 

 148 

As discussed above bone quality (varying from healthy to osteoporotic) plays a major 149 

role in the distribution of strains at the bone-screw/pin/wire interface. In order to 150 

predict loosening using principles of biomechanics it is important to use appropriate 151 

material models of bone. The most commonly used mechanical models of bone are 152 

time-independent i.e. they assume that any deformation due to loading occurs 153 

instantaneously. Almost all research on bone-implant systems assumes bone 154 

behaviour to be time-independent [26] though it is well recognised that bone 155 

deformation on load application increases with time or is time-dependent [13–156 

15,27,28] In the following sections we first discuss time-independent models that 157 

have been employed to examine loosening; these include use of elasticity and 158 

elastoplasticity. We then go on to consider time-dependent models that have been 159 

recently developed by the authors and employed to evaluate fixator loosening.  160 

 161 

3.1 Modelling bone as an elastic material  162 

 163 

In computational biomechanics the most common assumption for modelling bone is 164 

that it is linear, isotropic and elastic. The term elastic implies that any deformation 165 

experienced by the material on application of forces is fully recovered when the 166 

forces are removed. Addition of the term linear means that the mechanical response 167 

(e.g. deformation) is proportional to the load applied and isotropic material is one 168 

which has the same mechanical properties in all directions and requires two elastic 169 

constants to relate stresses to strains (e.g. Young’s modulus and Poisson’s ratio). In 170 

most computational studies with generic bone geometries it is a common practice to 171 
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further assume that the material is homogeneous (i.e. properties do not vary from 172 

point to point), though distinctly different regions (e.g. cortical and trabecular) may be 173 

assigned different properties [29]. In subject-specific studies for which CT data is 174 

available inhomogeneous material properties are often assigned [30,31] by 175 

empirically converting CT attenuations to Young’s modulus. It is arguable as to 176 

whether answers obtained from subject- or patient-specific models have a limited 177 

applicability and whether generic or “average” models are more suitable for 178 

answering general questions.  179 

 180 

While the assumption of isotropy serves well for many biomechanical studies, it is 181 

well recognised that both cortical and cancellous bone are better represented by 182 

orthotropic or transtropic elasticity [32] requiring many more properties for relating 183 

stresses to strains. Materials that are not isotropic do not have the same properties 184 

in all directions. For example, orthotropic materials have three orthogonal planes of 185 

elastic symmetry and stress-strain relations are defined by using 9 elastic constants. 186 

Orthotropic properties of bone have been determined using experimental [33] and 187 

numerical approaches [34,35].  188 

 189 

In computational modelling to evaluate loosening of fracture fixation systems two 190 

questions arise. The first is whether an isotropic bone model is adequate for 191 

obtaining reasonable answers and the second is whether elasticity can be used to 192 

predict loosening. Let us consider each of these questions in turn.   193 

 194 

To our knowledge there have been no studies that have compared isotropic and 195 

anisotropic models in fracture fixation studies. It can be argued that the use of 196 
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orthotropic material properties increases the complexity of the model, and if these 197 

are not accurately assigned, they may introduce more prediction errors than a simple 198 

assumption of isotropy. However, Young’s moduli for both cortical and cancellous 199 

bones in one principal orthotropic direction can be around three times the other 200 

direction [35]. Therefore, same force acting in one direction will cause much larger 201 

strains than in the other. Donaldson et al. [35] showed that in the femoral mid-shaft 202 

the elastic modulus of cortical bone in the proximal-distal direction was not only 203 

higher than that for endosteum-periosteum direction but also decreased less rapidly 204 

with age i.e. bone became more anisotropic with age. Considering this finding in 205 

conjunction with the mechanics of unilateral and locking plate fixation in which axial 206 

loading of bone is accompanied by pull-out and push-in forces it can be concluded 207 

that half-pin or screws apply forces in the direction least adapted to loading, and 208 

therefore most at risk of failure in patients with osteoporosis [11].  209 

 210 

Let us now consider use of elasticity in the estimation of loosening. It has been 211 

suggested that loosening is caused by large irreversible strains at the bone implant 212 

interface that enlarge the screw/pin/wire hole [3,11]. Since elasticity implies that 213 

deformations are recovered on load removal it is argued that it cannot be used to 214 

model loosening. However, researchers often use elasticity wherein they assume a 215 

threshold output variable (e.g. yield strain in compression) and evaluate the volume 216 

of material that exceeds this threshold value, which is then taken as an estimate of 217 

the volume susceptible to yielding [4,36,37]. In reality, when a small region bone 218 

goes beyond its yield limit and cannot carry additional loads, considerable 219 

redistribution of stresses occurs resulting in the yield region becoming localised; 220 

these phenomena cannot be captured by elasticity. In spite of this shortcoming, it 221 
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has been shown that in the case of hip screws prediction of regions likely to yield 222 

using elasticity are similar to those obtained from more complex models [38]. 223 

MacLeod et al. [4] used orthotropic elasticity with equivalent strain threshold to 224 

examine screw placement to reduce loosening risk in locked plating. They found that 225 

the use of titanium in comparison to steel increased the volume of bone exceeding 226 

the threshold; results similar to those obtained with plasticity models [11]. MacLeod 227 

et al. [4] also showed that larger working lengths increase the predicted volumes of 228 

bone above the threshold (Figure 3). Therefore, simple elastic models can be 229 

successfully used to, at least, ascertain trends, though they are unable to predict 230 

propagation of yielding or damage. 231 

Figure 3 232 

3.2 Modelling bone as an elastoplastic material  233 

 234 

It has been shown that load bearing causes strains at the bone-screw/pin/wire 235 

interface that are larger than the elastic limit for bone [3,11] resulting in irreversible 236 

deformations and these are responsible for loosening. Simulation of this irreversible 237 

deformation response requires inclusion of post-elastic material behaviour for bone 238 

which has been most commonly modelled using elastoplasticity. Elastoplasticity 239 

implies that the material remains elastic when loaded up to a certain limit (yield value 240 

defined in terms of stresses or strains) and has irreversible deformations when 241 

loaded beyond this limit. A wide range of yield criterion are available in commercial 242 

finite element codes and several of these have been used for bone [26], often with 243 

little thought to their suitability. Most models available in commercial codes are 244 

based on stress i.e. a material is considered to have yielded when a combination of 245 

stress components reaches a yield value (i.e. elastic limit). In addition to anisotropic 246 
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elasticity, bone is also anisotropic in terms of yield strength, which varies with bone 247 

quality. So, specifying yield parameters for stress-based criteria cannot be readily 248 

achieved. Interestingly relatively recent experimental [39] and computational [40] 249 

research has shown that bone yields at relatively isotropic strains and yield strain is 250 

not dependent on apparent elastic stiffness or density. In other words, it is much 251 

simpler to model bone of varying quality and microstructure using strain-based 252 

criteria in comparison to stress-based approaches. Strain-based plasticity was first 253 

discussed about four decades ago by Naghdi and Trapp [41] but has received little 254 

attention in comparison with stress-based theories. Algorithms to achieve these are 255 

now available [42].  256 

 257 

Donaldson et al. [3] used orthotropic elasticity in conjunction with strain-based 258 

plasticity to determine loosening in Ilizarov fixators. They used asymmetric yield 259 

strain limits, 0.5% in tension and 0.7% in compression, and showed that the pattern 260 

of yielding in ring fixators was as shown in Figure 2. They found that: increasing wire 261 

tension reduces volume of yielded bone and the volume increases as the bone 262 

quality decreases; and that there is significant reduction bone yield volume when the 263 

number of wires on either side of the fractures are increased.    264 

 265 

3.3 Bone modelled as a time-dependent material 266 

 267 

As discussed loosening at the bone-screw/pin/wire interface has been considered by 268 

examining strains on load application using time-independent elastic or elastoplastic 269 

constitutive models for bone. A number of studies [43,44,45] have shown that 270 

loosening of connecting screw/pin is a function of loading cycles. Time-independent 271 

models are unable to capture this phenomenon as cyclic loading (with the same 272 
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magnitude and direction) merely reproduces the mechanical response from the first 273 

cycle. Here we consider a recently promulgated theory which explains loosening due 274 

to cyclic loading via time-dependent behaviour of bone [46].  275 

 276 

Bone is recognised as time-dependent material and its time-dependent properties 277 

have been measured experimentally using: creep tests [13–15] in which time-varying 278 

strain due to applied constant load is measured over time; relaxation tests [47,48] in 279 

which time-varying force due to applied constant deformation is measured over time; 280 

and dynamic tests [49,50] in which the lag between sinusoidal stress and strain is 281 

measured over a frequency range. Although time-dependent behaviour of bone has 282 

been studied extensively, most experimental studies were not developed into 283 

computational models or employed in modelling of bone-implant systems.  Recently 284 

studies employed multiple-load-creep-unload-recovery experiments [13] to 285 

characterise time-dependent behaviour of trabecular bone, and developed BV/TV-286 

based linear viscoelastic [14], nonlinear viscoelastic [15] and nonlinear viscoelastic-287 

viscoplastic [51] constitutive models – models with increasing complexity and 288 

consequent accuracy.  289 

 290 

Xie et al. [46] considered the influence of cyclic loading in an idealised unicortical 291 

bone-screw system (Figure 4a and 4b). In this the screw was subjected to 500 292 

cycles of lateral loads (Figure 4c) with loading frequency f = 1 Hz followed by 1000 293 

sec recovery. The trabecular bone modelled as time-dependent material. The study 294 

examined the accumulation of strain at the bone-screw interface with increasing 295 

number of cycles and after recovery.  296 
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Figure 4 297 

Figure 5 shows the minimum (compressive denoted negative) and maximum (tensile 298 

denoted positive) principal strain contours from the symmetry surface (Figure 4a) 299 

and Section A-A (Figure 4b). Figures 5a and 5b show the compressive strain 300 

contours at time points when the load is at its peak and when it has been reduced to 301 

zero respectively at different loading cycles. Similarly, Figures 5c and 5d show the 302 

tensile strain contours at time points when the load is at its peak and when it has 303 

been reduced to zero respectively at different loading cycles. Figures 5e and 5f show 304 

the compressive and tensile strain contours respectively after 1000 sec of recovery 305 

following 500 cycles of loading. It is clear that the strain experienced by bone 306 

increases with increasing number of cycles, similar to that reported in previous 307 

studies [43,44,45]. It is important to note that with time-independent models the 308 

variation with number of cycles cannot be captured. Moreover, time-independent 309 

elastic models will show zero strains upon unloading. For the nonlinear viscoelastic-310 

viscoplastic simulation [46], not all of the strain is recovered upon unloading and  the 311 

strain experienced by bone increases with applied loading cycles. A residual strain 312 

exists even after 1000s of recovery. This increase in strain with increasing number of 313 

loading cycles and residual strain indicates that the mechanical environment at the 314 

bone-screw interface will change as physiological activities are undertaken by the 315 

patient and will accentuate screw loosening.  316 

Figure 5 317 

By assigning time-dependent material properties for different bone densities based 318 

on recent experiential studies [14], permits simulation of bone-screw interface 319 

strain/micromotion similar to that reported experimentally [43]. This has only become 320 

possible recently. 321 
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 322 

A recent study has also shown that the strain/displacement experienced at the 323 

interface is also loading frequency dependent [51]. In the first few cycles the larger 324 

strain is observed if bone-screw system is loaded at a lower frequency; while the 325 

interface experiences larger strain at higher loading frequencies after a large number 326 

of loading cycles have been applied. In the first few cycles, a lower loading 327 

frequency has a relatively longer loading time and relatively smaller loading rate. 328 

Therefore, larger displacement occurs when bone-screw system is loaded at a lower 329 

frequency during the loading and unloading phases as the bone is provided more 330 

time to deform or recover. When the bone-screw system is loaded at higher 331 

frequencies, the loading/unloading time is shorter (in comparison to lower frequency 332 

loading) and the bone is loaded again by the next cycle before it can recover from its 333 

last loading cycle. 334 

 335 

4 Conclusions 336 

 337 

Implant loosening is initiated by strains at the bone-screw/pin/wire interface. These 338 

strains are generally larger in low density bone. The interfacial strains increase with 339 

decrease in the stiffness of the bone fixator construct which can be caused by 340 

features such as increased working length, use of implant materials with lower 341 

stiffness (e.g. titanium rather than steel) or reduced wire tension in ring fixators. The 342 

reduction of the construct stiffness also causes increased interfragmentary motions 343 

between fractured segments which may be beneficial for healing. Therefore, risk of 344 

loosening needs to be balanced by the need of maintaining adequate 345 

interfragmentary motion.  Computational simulation/prediction of loosening requires 346 
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appropriate models of bone behaviour. For this most previous studies have 347 

employed time-independent models. These are unable to capture loosening that is 348 

accentuated due to cyclic loading. Recently developed time-dependent models are 349 

extremely promising in this respect.  350 

 351 

 352 

  353 
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 Fundamental mechanics of the bone-fixator construct with focus on interfacial 

strains that result in loosening are discussed 

 Bone models as time-independent and time-dependent material that have 

been used to simulate and predict loosening are reviewed 

 Capability of time-dependent models to capture cyclic accumulated 

deformation at bone-pin/ interface is highlighted 
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Figure 1 Locking plate used for mid-shaft fracture fixation: prior to load application (a) and after load 
application (b); pattern of large strains at the bone screw interface for screws 2 and 3 (c); 
compressive and tensile strain distributions for the near cortex for screw 2 (d). Unilateral 
fixators present similar strain patterns.  

Figure 2 Ilizarov ring-wire external fixator construct (a); the deformed shape of bone-wire system with 
regions of large interfacial bone strains (b).   

Figure 3 Predicted volumes of bone above 0.02% equivalent strain (EqEV) for different working 
lengths. (a) Screw arrangements C123; C234; and C345. EqEV values at different screw 
locations for (b) healthy bone and (c) osteoporotic bone. Load of 250N is applied to the bone-
fixator construct. Reproduced from MacLeod et al. [4] (open access) 

Figure 4 Geometry of the bone-screw system showing symmetry surface with location of load 
application (a); section A-A (b); load application - each model was subjected to 500 cycles of 
triangular load of 300 N amplitude followed by 1000 s of recovery (c). From Xie et al. [46] 
(open access) 

Figure 5 Compressive (a, b and e) and tensile (c, d and f) strain (%) contours from the symmetry 
surface and Section A-A. Three representative cycles were selected to show the strain 
accumulation with increasing cycle number when load is at its peak (a and c); at the time 
points when load is zero (b and d); and recovery after 1000 s (c and f). Redrawn from Xie et 
al. [46] (open access) 
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