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ABSTRACT: High-volume, hydraulic fracturing (HVHF) is widely applied for natural gas
and oil production from shales, coals, or tight sandstone formations in the United States,
Canada, and Australia, and is being widely considered by other countries with similar
unconventional energy resources. Secure retention of fluids (natural gas, saline formation
waters, oil, HVHF fluids) during and after well stimulation is important to prevent
unintended environmental contamination, and release of greenhouse gases to the
atmosphere. Here, we critically review state-of-the-art techniques and promising new
approaches for identifying oil and gas production from unconventional reservoirs to resolve
whether they are the source of fugitive methane and associated contaminants into shallow
aquifers. We highlight future research needs and propose a phased program, from generic
baseline to highly specific analyses, to inform HVHF and unconventional oil and gas
production and impact assessment studies. These approaches may also be applied to broader
subsurface exploration and development issues (e.g., groundwater resources), or new
frontiers of low-carbon energy alternatives (e.g., subsurface H2 storage, nuclear waste
isolation, geologic CO2 sequestration).

1. INTRODUCTION

Hydraulic fracturing of subsurface geologic formations by
multistage injection of high-volume, high-pressure fluids,
chemical additives, and proppants, typically in horizontal
wellbores, has opened up previously inaccessible oil and
natural gas resources for production on an unprecedented
global scale over the past decade.1 Yet, concerns exist about
potential negative impacts of high-volume hydraulic fracturing

(HVHF) on the environment, such as chemical contamination
of groundwater and accumulation of flammable gases in
drinking-water aquifers.2 Despite this, and knowing the large
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number of wells that have been drilled in the United States,
Canada, and elsewhere, there are relatively few documented
instances of surface water and shallow groundwater contam-
ination by accidental release of HVHF fluids3−6 and produced
waters4,7−10 associated with unconventional oil and gas
production. Leakage of natural gas from HVHF reservoirs
into shallow aquifers has been documented in a few cases of
poor well construction3,11−16 and possibly leakage along
fractures.3 These reported instances account for ∼ <4.5% of
all HVHF wells.3,11,15 In cases of suspected contamination,
identifying the sources and extent of contamination related to
HVHF and oil and gas production is often challenging because
of the lack of baseline data prior to HVHF, adequate
subsurface hydrogeologic and well construction information,
and appropriate geochemical and isotopic tracer data. For
these reasons, there is continued debate about the magnitude
and scale of environmental impacts from HVHF.7,11,17−26

Robust scientific assessment of these important issues will
require development of best practice standards for appropriate
geochemical and isotopic sampling strategies (e.g., fluid types,
density, and type of wells),27 effective natural tracers for
determining and distinguishing the source of both fugitive and
natural fluids, and strategies for establishing baseline
conditions prior to energy development. In addition, tracer
results should ideally be combined with other complementary
data, such as HVHF well casing integrity, hydrogeologic
context (e.g., characteristics of aquifers and confining units
between shallow aquifers and target HVHF reservoirs,
including natural gas accumulations), and the presence of

microbial communities that can generate and/or degrade
hydrocarbons. This paper seeks to provide a starting point for
development of a robust best practice approach to monitoring
HVHF impacts, which may be applied more broadly to other
subsurface resource extraction and related storage issues
relevant to the current hydrocarbon-based global economy as
well as the transition to a more renewable energy-based future.
Currently, a combination of fluctuating oil and gas prices,

and the introduction of moratoria and formal reviews on
exploration or use of HVHF methods, have slowed production
in the United States, Canada, Scotland, France, Germany, and
Australia. Some countries, such as South Africa and China, are
commencing production using HVHF, while others are still
considering development of unconventional energy resources
(e.g., England). There is an opportunity for the scientific
community to provide guidance on the best methods for
evaluating fugitive gas leakage and HVHF fluid or produced
waters contamination of groundwater, including establishment
of predrill baseline conditions, recommendations for monitor-
ing during and post-HVHF, and evaluation of alleged cases of
contamination.
Building from established approaches (e.g., geochemical,

isotopic, microbial), novel technologies for tracing environ-
mental contaminants associated with HVHF are rapidly
advancing. Recent development of new naturally occurring
isotope tracers (i.e., clumped isotopes of hydrocarbons), high-
resolution data sets of natural gases and associated fluids with
depth, and incorporation of noble gas geochemistry and
microbiology with more traditional hydrogeological and

Figure 1. Conceptual model of sources and pathways of natural gas and associated formation water migration from multiple reservoirs at depth in
geologic basins into shallow groundwaters, and biodegradation of hydrocarbons via aerobic and/or anaerobic microbial oxidation; modified from
ref 14.
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geochemical approaches are particularly promising analytical
tools for identifying sources of fluids in the subsurface and
providing the critical information and interpretational baseline
for quantitatively assessing impact and contamination. Here,
we critically review techniques for tracing the origin, transport,
and fate of natural gas, saline waters, and fluids injected during
HVHF, starting with the current state-of-the-art and
subsequently focusing on emerging approaches. We highlight
future research needs and opportunities throughout. We also
propose a phased analytical program for groundwater
monitoring with increasing levels of complexity and cost of
analyses that can be applied to specific conditions and localities
and provide a strategic conceptual framework for broader
issues of subsurface exploration and development (e.g.,
groundwater resource development, subsurface storage).
1.1. HVHF-Associated Sources of Contamination.

Sources of hydrocarbons and contaminants from HVHF
associated with oil and gas production include the release of
(1) flammable natural gas, including methane (CH4) and
higher chain hydrocarbons, such as ethane (C2H6, commonly
termed C2), and propane (C3H8, termed C3); and (2)
produced liquids, including oil, saline formation water
(naturally occurring waters sometimes containing elevated
levels of naturally occurring radioactive materials (NORMs)
emplaced within sediments and trapped during the formation
of rock layers), and HVHF fluids (fluids injected during
HVHF)4,5,12−14 into shallow aquifers. Oil and gas wells are
usually completed at considerable depth (up to several km
below surface), although ∼6% of wells in the United States
have been hydraulically fractured shallower than 900 m,28 and
in some cases zones of HVHF coincide with zones of fresh and
brackish water resources.29 Casing or well sealing (i.e.,
cementing) failures have the potential to act as short-circuit
conduits for the flow and mixing of many different fluids from
multiple geologic formations and multiple gas, water, and oil
sources.13,30−32 In some cases, fugitive natural gas and/or
saline formation waters may originate from nontarget
formations above or below the hydrocarbon production
zone.14,22,28,33 Upward leakage along well bores is, therefore,
a likely pathway for the migration of fugitive fluids into shallow
aquifers (Figure 1).11,13,14,30−32,34

Stray formation waters, HVHF fluids, and natural gas can
also migrate into potable aquifers via vertical leakage along
faults or zones of intense fracturing, via imperfectly sealed
abandoned wells, or from underground gas storage facilities
(Figure 1).2,11,14,16,24,35−38 Accidental surface spills of HVHF
chemicals and produced fluids can contaminate local environ-
ments, including surface waters and shallow aquifers.7,10,21,39 In
some jurisdictions, disposal of flow-back water and produced
fluids from hydraulically fractured boreholes may not be
injected into the subsurface and require additional costs of
special facilities to eliminate all salinity, chemical additives and
NORMs before surface discharge.40 In other jurisdictions,
surface discharge of treated HVHF fluids and hyper-saline
brines may introduce contaminants, including metals, organic
compounds, and NORMs into surface waters, streambed
sediments, and soils with potential for infiltration to ground-
water.41,42

1.2. Natural Gas and Brine Seepage. Natural migration
of hydrocarbons to the Earth’s surface (in the form of seeps,
gas vents, mud volcanoes, gas-rich springs, or diffuse
microseepage) is a common and widespread process in
petroliferous basins.43,44 To a lesser extent, saline formation

waters associated with hydrocarbons can also migrate into
near-surface environments.45 Fluid migration pathways be-
tween and among source rocks, reservoirs, and shallow
aquifers, can exist naturally (e.g., along faults of multiple
scales, or through fractured formations; Figure 1) and
identifying sources and conduits can be complex. They can
include multiple gas sources generated in the subsurface by
abiotic, thermogenic and/or microbial processes, which can be
mixed within geologic formations (source rocks or reservoirs)
or along migration pathways in the absence of any drilling or
HVHF activities.46 In addition, gases sourced from depth can
mix with microbial gases generated in shallow aquifers and
result in natural gases with hydrocarbon fingerprints of
indeterminate origin, which are further modified by trans-
formation under variable reducing/oxidizing condi-
tions.24,43,44,47,48 Salinization of freshwater aquifers by natural
migration of saline formation waters or dissolution of
evaporites is also common in many sedimentary environ-
ments.36,49 Alternatively, application of road salt in the winter,
seawater intrusion in coastal areas, and discharge of sewage
effluent can also increase the salinity in potable aquifers.50

1.3. Importance of Baseline Characterization Studies.
Distinguishing between natural pathways and sources of
hydrocarbons and associated contaminants (e.g., salinity),
historical anthropogenic activity (e.g., coal mining, conven-
tional oil, and gas), and more recent HVHF impacts requires
an understanding of the temporal and spatial hydrogeology, as
well as the use of appropriate natural geochemical and isotopic
tracers. Thus, it is essential that baseline characterization and
post-HVHF investigations in areas of proposed unconventional
energy development include a thorough assessment of natural
gas, heavier organic compounds, and saline formation water
systems, including multiple sources and mixing of gases, and
other anthropogenic sources of salinity. Currently, there are
few studies that define background characteristics of natural
gas (and other water quality indicators) in aquifers in the
context of potential environmental impacts from HVHF and
other oil and gas activities.7,18,23,24,47,51−56 In addition, little
information is typically available on other sources of fluids
unrelated to HVHF activities (e.g., gas reservoirs overlying
shale gas production zones, saline formation waters,29 soil
gases and hydrocarbon seeps) or on the migratory pathways
for the gas and salinity.
It is important to note that establishment of baseline

conditions does not necessarily represent “pristine” conditions,
but rather the conditions prior to drilling followed by HVHF
upon which impacts are evaluated. For example, there is a long
legacy of coal mining, and conventional oil and gas production
in many basins where HVHF is now occurring, as well as
underground gas storage facilities.35 Microbial gas leakage due
to natural methanogens in soil zones,57 or from anthropogeni-
cally enhanced methanogenesis due to landfill58 or nitrate
contamination plumes59 can also introduce CH4 into aquifers.
Therefore, it is essential that baseline groundwater character-
istics are established prior to HVHF activities from as many
access points as possible at multiple surface and subsurface
sites, either via existing landowner or municipal water supply
wells, or from monitoring wells in close proximity to oil and
gas wells. Previous studies reported fugitive CH4 leakage into
water supply wells within 1−3 km of Marcellus Shale gas wells
in northeastern Pennsylvania.3,13 However, due to aquifer
heterogeneities and factors controlling contaminant transport,
1−3 km may or may not be the appropriate monitoring well
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radius from unconventional gas wells in other parts of the
Appalachian Basin or in other oil/gas regions.60 Specific
recommendations on monitoring well spacing for California
and the Northern Territory of Australia are discussed in
Section 4.2.1. below.
Similar to groundwater, soils surrounding oil and gas wells,

pipelines, storage ponds, and surface waters within impacted
watersheds should be sampled prior to HVHF activities.
Repeated groundwater, surface water and soil sampling
followed by a comprehensive geochemical, isotopic and
microbial assessment, as outlined below, affords the oppor-
tunity to generate scientifically defendable baseline data, based
on which potential negative environmental impacts can be
quantitatively assessed through continued sampling and
analyses during and after HVHF activities.

2. ESTABLISHED TECHNIQUES FOR TRACING
CONTAMINATION

2.1. Fugitive Gases. Measuring natural gas concentration
(and oil, in the case of oil shale) in groundwater is essential to
define baseline conditions prior to drilling, to monitor
potential changes during HVHF and subsequent hydrocarbon
production, and when contamination is suspected. However,
gas abundance alone (e.g., ref 20) is an unreliable indicator and
additional geochemical attributes are needed as described
below. It is important to note that CH4 and heavier
hydrocarbon concentrations in aquifers can vary markedly
over time, depth, and distance due to transport, microbial, and
oxidative attenuation of natural gas plumes, and activities that
are unrelated to HVHF associated with oil and gas
production.61,62 Changes to atmospheric or hydrostatic
pressure (e.g., drought) and other disturbance (e.g., ground-
water pumping) can impact relative concentrations of
hydrocarbons.14,47,54 Therefore, it is important to undertake
appropriate spatiotemporal sampling to monitor CH4 (and
other tracers) in HVHF areas. Sampling protocols need to be
robust, repeatable and reproducible, and care must be taken to
select the most appropriate sampling techniques.16,63−65

Analysis of the stable natural abundance carbon (δ13C) and
hydrogen (δ2H) isotope ratios of CH4 (C1) and higher chain
hydrocarbons (C2+) in addition to their molecular ratios are a
necessary but often insufficient step toward distinguishing
sources of many natural gases.66−70 Interpretations of gas
isotope signatures commonly rely on empirically derived
“fingerprinting” diagrams based on CH4 to C2+ (C1/C2+) ratios
versus δ13C of CH4 (referred to as “Bernard diagrams” (Figure
2a);66) or plots of δ2H versus δ13C of CH4 (called “Schoell
diagrams”;67) (Figure 2b). The empirical data used to build
some of these interpretive models are often based on
thermogenic gas data from a limited number of basins with
conventional oil and gas occurrences and microbial gas data
from near-surface environments (e.g., wetlands and marine
sediments), which may not be useful in all geographic cases
nor fully applicable to unconventional energy resources.71 Due
to the increasing sensitivity of analytical instrumentation for
chemical and C and H isotopic analyses, and to the increasing
size of a global gas isotope database, the historically distinctive
graphical regimes of “microbial”, “thermogenic” and “abiotic”
gases now overlap substantially (Figure 2), rendering single-
tracer (e.g., only hydrocarbons) isotopic characterization of gas
samples problematic in many hydrogeological settings.46,72

Mixing of variable gas sources with potentially different

isotopic signatures in the subsurface is common and adds a
further potential complication.7,23,24,37

The role of secondary processes, such as migration and
microbial oxidation of hydrocarbons can further alter initial gas
isotope values and C1/C2+ ratios,73,74 obfuscating the source
of the gas. This is especially true for both unconventional
reservoirs and groundwater systems, where 13C-depleted
microbial CH4 is often continuously being introduced to the
system (via in situ methanogenesis in aquifer zones, coal
seams, or from other underlying geologic formations57),
possibly overprinting fugitive gas signatures. Methanogenic
environments often contain a mixture of archaea (e.g.,
acetoclastic and hydrogenotrophic methanogens) that use

Figure 2. Traditional hydrocarbon gas isotope fingerprinting
approaches for determining sources of natural gas in hydrocarbon
reservoirs and near-surface environments. (A) “Bernard diagram”
showing ratio of methane (C1) to higher chain hydrocarbons (C2+)
versus carbon stable isotope value of methane in microbial,
thermogenic and abiotic gases.72 (B) “Schoell diagram” showing
range of hydrogen versus carbon stable isotope values of methane for
the multiple sources of natural gas,67 modified from refs 46 and 112.
Separate fields are shown for microbial gas generated via hydro-
genotrophic methanogenesis (MH), acetate fermentation (MF), and
methanogenesis in evaporitic environments (ME).112 The consid-
erable overlap in the C and H stable isotope values of methane for
microbial versus thermogenic and/or abiotic gas sources, and multiple
physical, chemical and biological processes that modify the initial gas
composition (i.e., ratio of methane to higher chain hydrocarbons) and
isotope signatures (shown in black lines) can make it challenging to
identify the source of contamination in near-surface environments.
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different carbon substrates and impart different C isotope
fractionations leading to different δ13C−CH4 values (Figure
2b).71 Removal of CH4 via aerobic or anaerobic microbial
oxidation imparts a strong 13C-enrichment in the remaining
CH4 and can sometimes be identified by unusually high δ13C
values and concomitant H2S contamination in case that
methane oxidation is coupled with bacterial sulfate reduction.75

At baseline conditions, C2 concentrations in shallow aquifers
are typically low (<0.1 mol %),57 and C3 is rarely detected
(e.g., ref 52). The presence of these higher chain hydrocarbons
in groundwater may indicate the introduction of thermogenic
gases; however, there is evidence that C2 can be generated by
microbial processes57,76 though typically with much higher C1/
C2+ ratios than for thermogenic gas sources. In addition, gas
diffusion can sometimes cause migrated thermogenic or
microbial gases (C1−C5+) to have lower δ13C and δ2H values
and higher C1/C2+ ratios than the initial gas source45,77−79

though this is typically only observed in low permeability rocks
such as shales. Differential solubility and adsorption during gas
advection along more permeable rocks and fractures can
increase C1/C2+ ratios.80 The net result is that migrated
hydrocarbons, such as ones that have naturally seeped into
shallow aquifers, may have higher C1/C2+ ratios and
measurable decreases in δ13C−CH4 values compared to the
original reservoir gas composition (Figure 2a).16,81 In light of
these multiple processes, it is important to interpret CH4
isotopic signatures in context with more traditional lines of
evidence, including molecular and isotopic compositions of C2
and C3, and gases up to C5 (the pentane series), production
history and geologic context. With the addition of emerging
techniques discussed below, this information can provide more
insight and sensitivity and specificity to establishing source
attribution of fugitive gases.
2.2. Produced Waters. Measuring total dissolved solids

and major ion chemistry readily identifies the increase of
salinity in fresh groundwater, but these methods alone cannot
reliably distinguish between different sources of salinity.50 For
example, saline groundwater derived from road salt dissolution
versus leakage (natural or anthropogenic) of basinal brines or
mixing with sewage effluent or drilling fluids can all be
dominated Na and Cl, but their δ18O values may be distinct.
Major ion chemistry and water stable isotope ratios (δ18O and
δ2H) may not be able to distinguish between basinal brines
from particular geologic formations with great specificity, as
most basinal brines are Na−Cl or Ca−Cl type waters derived
from evaporated paleoseawater and modified by water-rock-
microbial reactions over geologic time scales (e.g., ref 82).
Further analysis, including trace ions, dissolved organic
composition (DOC), radionuclides, and various isotopes of
these minor components can be effective additional tracers.
Injected HVHF fluids are typically composed of local

freshwater (including groundwater) and increasingly also saline
groundwater sources mixed with sand and added chemicals.83

After drilling and HVHF is completed, wells are dewatered to
produce oil/gas and recover HVHF fluids, although much of
the HVHF fluids remain within the formation.84 The initial
flowback waters are relatively dilute, similar in composition to
the HVHF fluids; however, salinities quickly increase after a
few days of production. The increase in salinity of produced
waters is primarily from mixing of HVHF fluids with ambient
saline formation waters released from shale fractures and pore
spaces as a result of HVHF, or from connectivity with adjacent
formations.84,85

Measurement of minor element concentrations (i.e., Br, Li,
B, I), dissolved carbon species (TC, TIC, TOC), stable
isotopes of water and dissolved components (δ18O, δ2H, δ13C,
δ7Li, δ11B, δ34S), and radiogenic isotopes (87Sr/86Sr,
228Ra/226Ra, 129I/I), coupled with major ion chemistry can all
help to distinguish various sources of salinity in produced
waters and identify potential contamination in shallow aquifers,
soils, or surface waters related to HVHF.7,39,86−89 Analysis of
other geochemical parameters, such as naturally occurring
radioactivity (e.g., Ra, 222Rn), ammonium, trace metals, and
specific organic compounds, (often in high concentrations in
HVHF produced waters), are also important for monitoring
water quality impacts,36,39,42 particularly for the BTEX group
(benzene, toluene, ethlylbenzene, and xylene).90

In addition to determining the extent of saline water
contamination of shallow aquifers from surface spills or
subsurface HVHF leakage, it can be important to identify
which formation the saline fluid is coming from in order to
attribute and mitigate HVHF contamination or leakage issues.
Radiogenic strontium (87Sr/86Sr) isotopes have been used to
differentiate fluids from specific formations in the Appalachian
Basin and are particularly sensitive tracers for fluid
mixing.36,39,91−93 For example, formation waters from the
Marcellus Shale are relatively unradiogenic compared to brines
from overlying Upper Devonian shales and Pennsylvanian
coalbeds. Therefore, less than ∼0.001% of Marcellus Shale
brine would need to be introduced into shallow groundwater
to detect a significant shift in 87Sr/86Sr ratios.36,94 However, if
there is future oil/gas production from other formations in the
area with similar Sr isotope ratios (e.g., Utica Shale,
Appalachian Basin;36), Sr isotopes may become a nonunique
tracer of fluid sources. In such cases, other tracers, such as Ra,
Li, B, and/or I isotopes may be employed. The Marcellus Shale
is highly radioactive (up to 18,000 picocuries/L of total
radium) with relatively low 228Ra/226Ra compared to other oil/
gas producing formations within the Appalachian Basin.95

Iodine isotopes (129I/I) and I/Br ratios of Marcellus Shale
formation waters are also distinct compared to other geologic
formations and shallow groundwater in the Appalachian
Basin86,91 and investigating these tracers in other basins
could be of value. Li and B isotopes, combined with Li/Cl and
B/Cl ratios, show promise for identifying HVHF fluids that
have reacted with clay-rich formations, such as organic-rich
shales.7,39,87

Determining the apparent age of groundwater in HVHF
impacted shallow aquifers is an important consideration for
characterizing fluid mixing and hydrogeologic conditions, the
time scales of processes and systems response to remediation,
and potential dispersion of any contamination related to
HVHF fluids and oil/gas production. Well-established isotopic
techniques for groundwater “dating” include 14C, 3H, 3H/3He,
SF6,

36Cl, and 4He,96,97 while the analyses of 4He and other
radiogenic noble gases (e.g., 21Ne*, 40Ar*, 129,134,136Xe) have
recently been developed as promising tracers of older
geological fluids in the crystalline basement.98

2.3. Organic Chemicals in Formation Water and
HVHF additives. Characterization of volatile organic analytes
(VOA) and water-soluble organics is another important
approach to define the impacts of HVHF fluids. The exact
mixture of chemicals used for HVHF can be proprietary, but
increasingly the chemistry of these compounds are being
disclosed (e.g., FracFocus database (www.fracfocus.org) or
may be mandatory in some jurisdictions (e.g., Western
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Australia; Department of Mines Chemical Disclosures, 2013).
The chemical composition of the additives varies to some
extent based on the local geology (mineralogy, formation water
chemistry, porosity, permeability, etc.), and the occurrence of
some chemicals in combination may nonetheless serve as an
indicator of HVHF activities as described below.
Based on FracFocus reports, more than 70% of all HVHF

operations use short chain alcohols (methanol, ethanol,
isopropanol) and petroleum hydrocarbons (similar to those
in the formation water). More than 50% employ ethoxylated
alcohols and nonylphenols, about 30% use persulfate or
peroxodisulfate, whereas greater than 50% report using organic
acids. Other frequently reported chemical HVHF additives
include (polyalkoxylated) amines, quaternary ammonium
compounds as clay stabilizers, complexing agents for scale

and iron control, as well as biocides.83 In addition to the
HVHF additives, petroleum hydrocarbon blends of short and
longer chain alkanes, cycloalkanes and aromatic hydrocarbons
are often naturally present in formation waters in oil/gas
reservoirs in varying concentrations.3,4,99,100 The range of
compounds depends on the thermal maturity, source, and
depositional environment of the organic matter, and any
secondary effects (e.g., biodegradation of oil, water washing,
evaporation, secondary migration, etc.). When HVHF
additives act on these natural compounds in saline ground-
water, halogenated substances may form which may be
additional indicator compounds of HVHF activities.101−103

In the event of leakage (e.g., mobilization of natural gas,
saline formation waters, or HVHF fluids) organic geochemical
and isotopic analysis of these species can be used to identify

Figure 3. Emerging approaches for better characterizing natural or fugitive gas sources, transport mechanisms, and ultimate fate in near-surface
environments. (A) High-resolution depth profile example of methane concentration and isotopic signature through Quaternary deposits and
Cretaceous shales in the Williston Basin, modified from.78 The red circles represent gas samples collected and analyzed during mud-logging using
an in-line methane isotope analyzer, while the blue diamonds are discrete samples collected during mug-gas logging and later analyzed in the
laboratory. (B) Clumped isotope of methane (Δ18) values and corresponding, inferred paleotemperature of formation versus C stable isotope of
methane values, for gas samples from known microbial, thermogenic, and mixed microbial-thermogenic fields.105−107,111,135−137 (C) Noble gas
signatures of dissolved gases in shallow groundwater overlying an area of shale gas production in the Appalachian Basin showing mixing between
shallow microbial gas, and gases derived from the Marcellus Shale and overlying conventional gas reservoirs, modified from refs 7 and 24.
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the zones from which the natural gas or heavier hydrocarbons
may originate.3,4 Standard methods such as gas chromatog-
raphy (GC) or GC-mass spectrometry (GC−MS) of isolated
organics from oil, gas, or formation water samples are routine
and can be employed to understand provenance. The advent of
comprehensive two-dimensional gas chromatography- mass
spectrometry (GC×GC−MS) of isolated fractions can provide
additional information, and this method has become
increasingly available in academic and service-based laborato-
ries.3,4 Lighter hydrocarbons (i.e., volatile and often toxic
species of these substances, such as BTEX compounds) can
also be identified by routine analysis of VOA by GC−MS.
Obtaining baseline analyses from shallow aquifers, HVHF
target formations, and available boreholes prior to drilling, and
from the well to be stimulated (before commencing HVHF
stimulation) would provide highly applicable baseline
information and is recommended as a vital step, as many of
these substances are naturally occurring and may have
additional anthropogenic sources. A method that has also
become routine is GC-isotope ratio-MS, which can provide
further information by measuring stable carbon and hydrogen
isotope values for difference chemicals, typically n-alkanes. In
addition, the application of high-resolution or ultrahigh-
resolution mass spectrometry can provide value insight into
complex mixtures of organic contaminants (e.g., napthenic
acids) found in potentially impacted groundwater.3,101,104

Ongoing advances in new analytical methods can be
incorporated in future evaluations, and may indicate that
there could be a place for archiving samples appropriately for
future investigations if required.

3. EMERGING METHODS TO ASSESS HVHF IMPACTS
Several new chemical and isotopic approaches have recently
been developed and/or applied and are particularly promising
for identifying sources of fluids and their migration
mechanisms and pathways from deep reservoirs to shallow
aquifers and the atmosphere in situations where the traditional
tracers produce ambiguous results. Clumped isotopes of CH4
and noble gases show promise for more definitively
distinguishing sources of natural gas (i.e., microbial from
thermogenic and abiotic), removal via various oxidation
pathways, and fingerprinting gases from specific oil/gas
reservoirs based on their formation temperatures.105−107

High-resolution molecular and isotopic profiles of hydro-
carbons obtained during oil/gas drilling provide information
about potential gas sources and fingerprints, particularly from
intermediate gas-bearing zones between target reservoirs and
shallow aquifers.78 Advanced microbiological techniques allow
characterization of microbial communities responsible for CH4
generation and hydrocarbon oxidation, and their response to
introduction of HVHF fluids. Development of laser-based
approaches for measuring noble gas radionuclides in ground-
water provides more robust residence time constraints for
potentially HVHF-impacted aquifers.108 More broadly, these
emerging approaches may be applied to other subsurface
extraction and storage issues, including new frontiers of energy
and renewable alternatives (e.g., subsurface storage of H2,
anthropogenic CO2, and/or nuclear waste).
3.1. High-Resolution Gas Profiles. A key prerequisite for

identifying sources of fugitive gas leakage associated with
HVHF is the high-resolution determination of concentrations
and C (and H) isotopic compositions of hydrocarbon gases
from the surface to the target reservoir. This can be achieved

by using continuous mud-gas logging techniques and/or
discrete, high-resolution, gas, core, or cuttings samples
followed by chemical and isotopic analyses either in the field
or the laboratory. During mud-gas logging, hydrocarbon
concentrations are measured in real time on gases released
from drilling fluids during rotary drilling using a field gas
chromatograph (GC). Mud gas concentrations can be
corrected for rate of drilling, volume of drill fluid, and amount
of atmospheric air contamination to generate in situ dissolved
gas profiles.45,64,78 Recently, new laser-based technologies have
been applied to measure real-time δ13C−CH4 values during
mud gas logging, providing continuous gas isotope data.78 In
addition, a GC infrared isotope ratio technique has been
designed to measure δ13C values of C1−C3 gases during mud-
gas logging. Despite the utility of these data, high-resolution
δ13C−C1−3 and in situ concentration depth profiles are not
routinely collected in the oil and gas industry. Broader
application of this approach would provide both key baseline
data on gas source(s) as well as identify sweet-spots for
hydrocarbon production, and have the potential to later
identify the depth from which fugitive gas leakage or natural
seepage may occur (Figure 3a).109 Sample collection is routine
with mud-gas logging; limitations to this approach would be
the cost of gas isotope analyses, which are going down with
development and refinement of laser-based approaches. The
cost of these analyses is relatively insignificant compared to the
cost of drilling oil and gas wells. The average completion cost
for an on-shore unconventional oil or natural gas well in the
United States was $2.9 to 5.6 million in 2016.110

3.2. Clumped Isotopes of Hydrocarbons. A recent
innovation in CH4 isotope geochemistry is the use of clumped
isotopes of CH4 and other hydrocarbons. Clumped CH4
isotopes are the rare isotopic species that contain two heavy
isotopes from among the heavy carbon isotope (13C) and the
heavy hydrogen isotope (2H, or D) and form highly stable
bonds (e.g., 13CH3D,

12CH2D2). The presence of multiple
heavy isotopes makes the bond more stable, locking in the
thermal conditions at the time of formation (up to at least
∼250 °C)a principle that provides a quantitative geo-
thermometer for CH4 in certain caseswith the potential to
pinpoint specific gas reservoirs based on thermal maturation
and burial histories of source rocks in basins(Figure
3b).105−107,111,112

New research on 13CH3D (the least rare clumped CH4
isotopologue) demonstrated the applicability of the geo-
thermometer approach for a variety of thermogenic gas fields,
and for coalbed CH4 and gas hydrates.107,112 In addition,
theoretical, field and laboratory measurements have demon-
strated that information from clumped CH4 isotopes extends
beyond temperature estimates.105−107 These insights are 2-
fold. On the one hand, 13CH3D data have demonstrated that
kinetic isotope effects may override equilibrium effects (e.g., in
the case of microbial methanogenesis) and thereby provide
information on rates and timing of methanogenesis as well as
insight into ambient environmental conditions (in particular
regarding associated water, or H2 concentrations).105,106

Furthermore, other clumped isotopes (e.g., 12CH2D2) provide
insight about reaction kinetics, CH4 oxidation, transport, and
in particular, better resolution of gas mixing.107 Extension of
the clumped isotope approach to propane is in an exploratory
stage, but may provide additional insight into effects of
biodegradation in thermogenic reservoirs.113 Information
gleaned from clumped isotopes (e.g., pathways, mixing, and
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temperature of gas formation) may help overcome some of the
uncertainties with traditional gas isotope fingerprinting
approaches (Section 2.1). Laboratory culturing experiments
and broader application of clumped isotopes in different
subsurface environments are needed to better interpret
clumped isotope results, such as equilibrium versus kinetic
isotope effects. Development of laser-based approaches will
reduce costs for clumped isotope analysis of methane and
likely make this technique more widely accessible. At this stage
there are no commercial laboratories offering clumped isotopes
of methane analysis.
3.3. Microbiological Techniques for Characterizing

Community Response. New, rapid and relatively inex-
pensive microbial sequencing techniques have opened the
possibility of using DNA profiling to document stray gas and/
or fluid exposure in an aquifer.114 The entire DNA in an
aquifer sample (metagenomics), or sections of Bacterial or
Archaeal DNA (e.g., 16S rRNA gene unique to each group),
can be targeted to characterize in situ microbial commun-
ities.115 Genes most highly expressed under certain redox
conditions (metatranscriptomics) or amino acids produced
due to gene expression (metaproteomics) can also be detected
and monitored to investigate microbial community responses
to environmental changes (e.g., introduction of fugitive gases
or HVHF fluids). In addition, shifts in microbial cell numbers
and population structure can be monitored by fluorescence-
based techniques including fluorescent in situ hybridization
(FISH), flow cytometry and fluorescence-activated cell sorting
(FACS).116−118 Natural abundance stable isotope (13C) and
radiocarbon (14C) analyses of microbial biomarkers, such as
phospholipid fatty acids (PFLAs) can also provide insights into
microbial carbon cycling and hydrocarbon biodegrada-
tion.119,120

In CH4-containing shallow groundwater, these techniques
are applied to detect methanogenic, and/or methanotrophic
microorganisms responsible for in situ microbial CH4
production or CH4 oxidation, respectively. Since microbial
activity can alter groundwater geochemistry and the δ13C and
δ2H values of hydrocarbon gas compounds, microbiological
analyses can support or clarify geochemical and isotopic
indicators (including clumped isotopes) of biogeochemical
CH4 cycling and redox conditions in groundwater.54 This
approach has been successfully applied for research purposes
where groundwater samples were collected for analysis,54 and
for monitoring laboratory-scale CH4 contamination experi-
ments. However, it is not yet fully integrated for in situ field
applications particularly due to the time required and multiple
steps involved to extract and sequence DNA, as well as to
analyze the data generated. Nevertheless, with recent advance-
ments regarding the emergence of hand-held DNA sequencers,
it may be possible to apply these techniques directly at a
contaminated site in the near future.
3.4. Noble Gas Tracers of Fluid Sources and Trans-

port Mechanisms. Noble gases are inert, conservative, and
naturally occurring tracers that can provide unique insight into
subsurface fluid (gas, liquid hydrocarbons, and water) sources
and transport mechanisms, although to date they have not
been widely applied in HVHF studies. Noble gases have three
sources: (i) the atmosphere, usually introduced into subsurface
systems dissolved in meteoric water (groundwater or marine
pore fluids); (ii) radiogenic noble gases produced by natural
radioactive decay processes in the subsurface; and (iii) noble
gases sourced from magmatic fluids. The isotopic composition

of each of these noble gas sources is distinct, well-defined, and
quantifiable, hence analysis of noble gas isotopes can
quantitatively resolve each of these inputs.121

Distinguishing between anthropogenic-induced deep fluid
input into near-surface groundwater and natural migration
pathways will inevitably depend upon the nature, timing, and
location of HVHF activity and local temporal and geological
context. Atmospheric and radiogenic noble gases each impart
critical information about these various factors. For example,
because natural variations in atmospheric noble gases
incorporated into crustal fluids are relatively minor and
fractionate only by well-constrained physical mechanisms
(e.g., diffusion, phase partitioning), they provide a key
reference point for determining the additional amounts of
radiogenic noble gases, and 4He in particular, that might be in
excess of that introduced during natural recharge of meteoric
water or gas−water interactions.
In combination, atmospheric and radiogenic noble gases

permit mean residence time estimations of groundwater, pore
fluids, and hydrocarbon gases.96 For old groundwater, where
the rate of 4He accumulation in the water is known, excess 4He
provides information about the mean residence time of the
groundwater.96 In near-surface aquifers, concentrations of
excess 4He are generally low compared to fluids deeper in
sedimentary basins (e.g., saline formation waters, hydrocarbons
released by HVHF and conventional oil and gas deposits).
Localized deep fluid contributions to shallow water systems
can be identified from anomalous 4He groundwater concen-
trations, and by correlation with other indicators such as Br or
dissolved hydrocarbon gases.22,24,122 This can aid in the
deconvolution of mixing between shallow microbial gases
(4He-poor),7,14,24 the effects of hydrocarbon oxidation,7,24 and
mechanisms of hydrocarbon transport to shallow aquifers and
surficial seeps (Figure 3c).4,7,14,24

The relative abundance of atmospheric noble gases also
records information about the relative proportions of natural
gas and water (dissolved vs free-gas migration, supersatura-
tion), the extent of gas−water interactions (e.g., stripping
during fugitive gas transport), and the length-scale and
mechanism of fluid transport to a potentially impacted
aquifer.4,7,13,14,33,123 For example, near-surface aquifers that
are equilibrated with a free (deeper) gas (or oil) phase will
contain concentrations of atmosphere-derived noble gases
lower than those predicted based on recharge alone.7,14,33,124

Wider application of noble gases in hydrocarbon systems
and overlying aquifers is needed to better characterize sources
of fluids and migration pathways in instances of contamination.
Additional research is also needed to better characterize noble
gases in produced waters, which have only recently been
measured,125 versus more common measurements of noble
gases in produced gases. Analytical technology for measuring
noble gases has greatly improved over the last ∼5 years with
introduction of automated sample processing lines, improved
mass spectrometer stability, and multicollection methods
improving sample throughput and analytical precision, while
reducing analytical costs.

3.5. Dating Groundwater by ATTA. Development of a
new laser-based atom counting method called ATTA (Atom
Trap Trace Analysis) has made it feasible to analyze isotope
tracers 85Kr (half-life t1/2 = 10.7 years), 39Ar (t1/2 = 269 years),
and 81Kr (t1/2 = 230,000 years) in order to determine the mean
residence time of HVHF-associated groundwater and trace its
flow pathways, with each isotope covering a distinct age range
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around the respective half-life.108 Combined with 14C (t1/2 =
5700 years), the tracers together cover an age range from a few
years to 1.3 million years. They may also aid the calibration of
the 4He flux method,126 which can extend the range beyond
1.3 million years. Being chemically inert, the noble gas tracers
have well-determined, near uniform distributions in the
atmosphere, and relatively simple transport processes under-
ground. For the latest generation of ATTA Instruments, each
analysis requires a sample of 10−40 L of water. Dating takes
three steps: (1) sampling is usually performed at the well with
a membrane-contactor-based gas collector; (2) the extracted
gas is brought back to the lab and chemically purified; (3) the
purified krypton or argon is injected into the ATTA apparatus
for isotope analysis. Additional research is needed to reduce
sample volumes to be able to “date” pore waters from core
materials, low permeability formations, fractures, etc. Advances
are also being made to reduce sample analysis time.

4. A PHASED ANALYTICAL PROGRAM TO IDENTIFY
POTENTIAL CONTAMINATION

Given the wide range of naturally occurring tracers and
contaminants discussed above, and related emerging techni-
ques for identification, it may be difficult for industry and
regulatory authorities to assess which analyses could provide
the most effective and appropriate baseline and ongoing
information prior to, during, and after HVHF operations. It is

impractical and expensive to prescribe or undertake the full
suite of available analyses on all samples in a given jurisdiction,
and it may be unclear which analyses would aid a progressive
investigation in a case of contamination. A key goal of this
paper is to provide guidance and a strategic roadmap through
the use of these various approaches and techniques, as often
cases may be quite site-specific.

4.1. Practical Application. Looking to parallel industries
such as Carbon Capture and Storage, where risk-based
assessment has emerged as a successful regulatory ap-
proach,127,128 many jurisdictions have taken a risk-based
approach for conducting baseline evaluations or environmental
risk assessments and investigations to reduce environmental
hazards from HVHF.129,130 Broadly speaking, this means that a
proponent of a project and the regulator would be focused
primarily on the features of a site, license, or permit area that
could result in a loss of containment of HVHF fluids, produced
waters, or natural gas. This risk-based approach is strongly
informed by the development of geological models (both static
and dynamic) particular to the area of investigation, which is
part of a defined license or permitted area.
Thus, the first step is to build a conceptual model of

hydrogeology, geochemistry, and gases; all fluid analyses and
inferred flow pathways and cross-connections are rooted in a
holistic understanding of the physical and chemical framework
of the geological and hydrological architecture. A suite of
analytical and investigatory techniques of fluids, as reviewed

Figure 4. Recommended phased analytical approach for groundwater monitoring prior to the onset of high-volume hydraulic fracturing (HVHF)
operations, during HVHF and oil/gas operations, in the case of suspected contamination, and for the most advanced investigations in the cases of
multiple sources of contamination. Analyses move from simple, routine and low-cost ($) to more detailed, expensive ($$−$$$) and specialized
ones on an as-needed basis. Analytical costs generally range between < $50 USD ($), $50−250 USD ($$), and > $250 USD ($$$). The techniques
and phased analytical approach can be broadly applied to other subsurface resource development (e.g., groundwater resources) and storage issues
(e.g., CO2 sequestration, nuclear waste isolation, H2 storage).
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here, are then available. However, how does a regulatory
authority assess what baseline information is necessary to be
acquired in advance of drilling, HVHF stimulation, and oil and
gas production? Which analyses should be specified to a
developer that may aid a progressive investigation in the event
of an incident? In the section below, we try to address these
questions and propose a staged analytical approach or
workflow for how organizations might conduct a range of
evaluations related to HVHF and oil and gas activities.
4.2. Phased Analytical Approach. We propose the

following phased approach for conducting hydrogeological,
microbiological, and geochemical evaluations to provide
essential, but fit-for-purpose scientific data: baseline informa-
tion obtained “pre-drilling”; “during drilling, during and soon
after HVHF”, “routine operation (oil and gas production)”,
and “post-closure of oil/gas operations”; in the case of
“suspected contamination”; and for the “most advanced
investigation” (Figure 4). This phased approach moves from
simple, routine and low-cost analyses to more detailed,
expensive and specialized ones on an as-needed basis, where
problem-specific detailed investigations may require more
experience and greater expertise.
Figure 4 includes the most widely used and practicable

methodologies currently available, many of which have come
from traditional industry practices in defining potential
reserves and would in many cases be part of an overall
evaluation phase. Knowledge of the geologic context, including
hydrogeologic, structural, stratigraphic and lithologic (e.g.,
porosity, permeability, TOC, thermal maturity) factors of the
target reservoir and overlying formations, and production
history are a critical corollary for a thorough interpretation of
geochemical and isotopic data−and the two are iterative. For
example, a hydrogeologic, structural and stratigraphic con-
ceptual model is essential for effective planning purposes of
both drilling and oil and gas exploration leading to HVHF, and
for the execution of a geochemical characterization (or tracer)
program. The results of the tracer program will test and
provide the quantitative basis for confirmation or further
revision of the conceptual model and improve the resource
evaluation of a prospective area.
To assess potential environmental impacts of HVHF using

best practice requires three components:

(1) Baseline sampling of shallow groundwater and chemical
and isotopic characterization of groundwater in the
vicinity of operations prior to HVHF. Good accuracy
and precision is important as case-study experience with
CO2 tracking shows that subsequent legalistic challenges
will probe the limits of reliability.131,132

(2) For a subset of oil/gas wells drilled, mud-gas logs from
the surface to the production zone can characterize
natural gas occurrences throughout the intermediate
zone between the target oil/gas formation and shallow
aquifers;

(3) After HVHF, the flowback and produced waters and gas
should be collected, and chemically and isotopically
characterized over time.

Taken together, the data provide a degree of assurance to
the operator, regulator and community that any future
contamination or impact can be effectively assessed and
sources attributed and apportioned, and strategic mitigation
and remediation plans can be put in place if necessary.

4.2.1. Routine Baseline Characterization. For baseline
characterization, local groundwater (monitoring and/or
domestic wells, springs) and existing oil/gas wells can be
sampled in the vicinity of proposed HVHF activities, including
lateral reaches of deviated HVHF boreholes. Characterization
or prior knowledge of regional groundwater flow is important
to design adequate well sampling plans both up- and down-
gradient of proposed HVHF activities, including availability
and construction of domestic wells. This baseline data on
groundwater would ideally be combined with independent
geophysical surveying to detect faults and fractures; and more
complex analysis of regional rock stress at the affected depths−
to enable prediction of seismic hazard and fracture direction
and extent.
There are currently no federal regulations in place in the

United States for routine baseline sampling prior to HVHF
activities, except in cases where diesel fuel is injected for
HVHF. However, individual states may have their own
monitoring requirements. For example, since 2015, the
California State Water Resources Control Board has required
groundwater monitoring in areas of oil and gas well
stimulation.133 Domestic well owners in California can request
water quality testing by the state, before and after HVHF, if
their well is within 457 m of an unconventional oil or gas
well.60

In the UK, basic analyses (major ion chemistry and CH4
abundance) relevant to establishment of baseline conditions
are undertaken and compiled by the British Geological Survey,
and CH4 in groundwater is monitored for 12 months before
HVHF. Monitoring of groundwater chemistry is not required,
although declaration of all HVHF fluid ingredients is
compulsory, along with close monitoring of seismicity induced
during operations. If challenges occur during or after HVHF
operations, the developer may be requested by the Regulator
to make additional or advanced analyses at their own expense.
Or, in the case of a court-based legal challenge, the developer
will need to defend their position, and the State or individual
organization may provide much more advanced geochemical
information on a case-by-case need.
In Australia, several states and territories have enacted

moratoria to enable formal evaluations of the impacts of
HVHF onshore. The “Scientific Inquiry into Hydraulic
Fracturing in the Northern Territory”, reported in March
2018, resulted in 135 recommendations. One recommendation
included in the introduction of Strategic Regional Environ-
mental and Baseline Assessment (SREBA) to obtain relevant
predevelopment baseline information. The committee recom-
mended “comprehensive regional baseline datasets are
essential to underpin modelling of the possible impacts of
any new industry and to inform the site-specific quantitative
risk assessments that are being conducted by industry and
being submitted to regulators for assessment”.134 Groundwater
monitoring within 10−20 m of planned shale gas wells or well
pads, prior to and especially during HVHF, was recommended
using multilevel monitoring wells that penetrate the full depth
of potable aquifers.134

The costs of establishing baseline knowledge will vary
depending on the geographic location of the HVHF activity,
such that it might be borne by the operator/producer
conducting the drilling operations possibly under the
conditions of the petroleum license, or the State, as an
environmental protection service to incumbent citizens,
businesses or Natural Capital. In the case of the Northern
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Territory, companies have worked with state government to
support regional baseline surveys in key areas of interest.
In the case of baseline characterization, a range of routine

analyses of water and gas (Figure 4) are commercially available
at reasonable cost and provide fundamental information about
the environmental conditions, including sources of gas, water,
solutes, and carbon-bearing compounds, providing baseline
information. Many of these more routine methods will also be
applicable to the postclosure monitoring activities in cases
where no unintended releases occurred during HVHF activities
(i.e., the highest risk point in the lifecycle of a HVHF
stimulated well) and operation.
4.2.2. Additional Pre-HVHF Baseline Analyses. If boreholes

are drilled to investigate shale hydrocarbons, they typically
undergo detailed data acquisition during the drilling phase,
including wireline geophysical logging, mud gas logging (from
surface to total depth), flowback fluids from initial production
and produced waters and gas. For added robustness in
characterization of multiple sources of natural gas in the
subsurface, besides gases in target unconventional reservoirs,
and potential sources of hydrocarbons in shallow aquifers, we
recommend analyzing mud gases for gas composition and δ13C
of CH4 and C2+ with depth from the near-surface through
intermediate zones to target formations (Figure 4).
Characterization of volatile and nonvolatile organics can also

help identify sources of organic compounds that may be of
concern to human health or the environment. While some of
these analyses need to be conducted within specific time
periods for some regulatory reporting (e.g., organic samples
that may be subject to degradation), water and gas samples can
also be archived for some later analyses for targeted
investigations (as described below) or analyzed in the future
as new techniques are developed (e.g., clumped isotopes of
higher chain hydrocarbons). For example, natural gas and
noble gas samples may be archived for years if stored in
gastight cannisters or copper tubes, respectively. These
investigations may be conducted in areas of special interest
from an environmental or social perspective, to provide
assurance to stakeholders prior to engaging in operations.
4.2.3. Targeted Investigations. In the case of suspected

contamination of shallow groundwater, characterization of
additional natural tracers can be considered, as outlined in the
middle column in Figure 4. These include the application of
multiple tracers that are, in most cases, widely available
geochemical and isotopic techniques. These can be used in
targeted investigations to provide more quantitative differ-
entiation of sources and transport of natural or HVHF-related
fluids, and may help resolve issues, such as source attribution
or apportionment, or define the need for further investigations.
Some of these analytical methods may only be relevant in
specific geologic environments. For example, analysis of
NORMs would only be relevant in environments containing
radioactive shales or where mobilization of in situ naturally
occurring radioactive material might be present. Most of these
techniques can be obtained from commercial laboratories,
though in some locations, they may only be found at research
institutions, as the methods transition from research-based to
routine, commercial application. While more expensive on a
per sample basis than more routine analyses, it is important to
view the cost of these more innovative techniques in the
context of overall investigation costs. If a limited number of
targeted analyses can reduce risk and uncertainty by ruling out

potential sources of contamination and/or pathways of
contaminant movement, the overall cost savings may be large.

4.2.4. Emerging Opportunities for New Techniques. The
emerging opportunities outlined in the third column in Figure
4 are highly sophisticated approaches (e.g., microbiological
characterization) and in some cases at the frontiers of research
development (e.g., clumped isotopes of hydrocarbons; 81Kr
and 39Ar by ATTA). These methods are particularly promising
for determining the residence time of fluids in groundwater
systems and identifying the sources (natural or anthropogenic)
and fate of hydrocarbons in shallow aquifers. Yet, they are not
likely to be included in state/province or federally regulated
monitoring programs at this stage, as they are not available at
commercial laboratories and require more complex interpre-
tation.

5. BROADER APPLICATION

An improved understanding of the behavior and applicability
of natural tracers of hydrocarbons, salinity, and organics
associated with HVHF fluids in the environment will aid
scientific and regulatory evaluation of natural systems prior to
HVHF, in monitoring during and after HVHF, and in
investigation of alleged HVHF incidents, leakage or spills. It
may also aid countries or states/provinces in their decision to
retain, impose, or lift moratoria on HVHF. In addition, the
techniques and phased analytical program outlined in this
paper can be applied to other subsurface exploration and
development issues, such as extraction of fresh and brackish
water resources, in situ mining, long-term storage of
anthropogenic waste products (e.g., produced waters, CO2,
spent nuclear fuel), and shorter-term storage of alternative
energy sources (e.g., natural gas, H2).
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