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Abstract (250)  55	

The role of wildlife in the persistence and spread of livestock diseases is difficult to quantify 56	

and control. These difficulties are exacerbated when several wildlife species are potentially 57	

involved. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, has experienced an 58	

ecological shift in Michigan, with spillover from cattle leading to an endemically infected 59	

white-tailed deer (deer) population. It has potentially substantial implications for the health and 60	

well-being of both wildlife and livestock and incurs a significant economic cost to industry and 61	

government. Deer are known to act as a reservoir of infection, with evidence of M. bovis 62	

transmission to sympatric elk and cattle populations. However, the role of elk in the circulation 63	

of M. bovis is uncertain – they are few in number, but range further than deer, so may enable 64	

long distance spread. Combining Whole Genome Sequences (WGS) for M. bovis isolates from 65	

exceptionally well-observed populations of elk, deer and cattle with spatio-temporal locations, 66	

we use spatial and Bayesian phylogenetic analyses to show strong spatio-temporal admixture 67	

of M. bovis isolates. Clustering of bTB in elk and cattle suggests either intraspecies transmission 68	

within the two populations, or exposure to a common source. However, there is no support for 69	

significant pathogen transfer amongst elk and cattle, and our data are in accordance with 70	

existing evidence that interspecies transmission in Michigan is likely only maintained by deer. 71	

This study demonstrates the value of whole-genome population studies of M. bovis 72	

transmission at the wildlife-livestock interface, providing insights into bTB management in an 73	

endemic system.  74	

 75	



	 4	

Introduction  76	

Use of genomic approaches to understand disease dynamics 77	

In recent years, whole genome sequencing (WGS) technology has created an unprecedented 78	

opportunity to study microbial populations and expand the power of traditional epidemiology.  79	

It provides insights into pathogen evolution and population structure, sources of pathogen 80	

infection, reconstruction of transmission chains, and rates of geographical spread at multiple 81	

scales ( Drummond et al. 2002; Grenfell et al. 2004; Volz et al. 2009; Pybus and Rambaut 2009; 82	

Volz, Koelle, and Bedford 2013; Gire et al. 2014; Kao et al. 2014; Gardy and Loman 2018). 83	

While many studies have applied genomic approaches to understand virus evolution, the 84	

reduction in cost of WGS technologies have made feasible dense sampling of even much larger 85	

bacterial genomes. It has shown that bacterial lineages accumulate sufficient genetic variation 86	

over epidemiologically relevant timescales to generate novel insights intro transmission 87	

patterns (Biek et al. 2015). Sequence analysis tools such as Bayesian Evolutionary Analysis by 88	

Sampling Trees (BEAST) utilize the genetic variation present in sets of samples to estimate 89	

evolutionary parameters in the context of time and space (Drummond et al. 2005, 2006; 90	

Drummond and Rambaut 2007; Lemey et al. 2009). Reconstruction of pathogen genealogies 91	

from time-structured sequence data allows for the estimation of evolutionary substitution rates 92	

(molecular clock), which can be used to measure the timing of epidemiologically important 93	

events, such as epidemic outbreaks and interspecies transmission (Firth et al. 2010); they also 94	

allow us to study infectious diseases in multi-host systems and the identification of pathogen 95	

reservoirs (Heled and Drummond 2012; De Maio et al. 2015). It has been shown that ancestral 96	

state reconstruction of pathogen genealogies through phylogenetic trees is a useful tool to 97	

address this challenge (Heled and Drummond 2012). This approach allows us to estimate the 98	

probability of tree internal node states and tree branches being associated with a specific host 99	

(and as such the most likely source of infection within the sampled population), based on 100	
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relationships among the host states at the branch tips (from the sampled isolates), and has 101	

provided, for example, evidence that free-ranging elk are currently a self-sustaining brucellosis 102	

reservoir and the source of livestock infections in the Great Yellowstone Ecosystem (Kamath 103	

et al. 2016). 104	

  105	

Control of infectious diseases at the wildlife-livestock interface 106	

Infectious diseases at the wildlife-livestock interface endanger the health and well-being of 107	

wildlife and livestock. They contribute to considerable economic losses to each sector, 108	

including wildlife-related sectors such as hunting and wildlife tourism, and they also represent 109	

a potential burden to the whole ecosystem (Wiethoelter et al. 2015; Hassell et al. 2017). The 110	

livestock sector is affected through increased mortality and reduced livestock productivity, as 111	

well as indirect losses associated with cost of surveillance, decreased market values, food 112	

insecurity, and impacts on farmers’ livelihood (Dehove et al. 2012).The recreational 113	

manipulation of the natural environment to increase the density of wildlife beyond its normal 114	

carrying capacity, together with agricultural intensification and deforestation, have resulted in 115	

interactions between wildlife and livestock becoming more frequent (Jones et al. 2013; Are R. 116	

Berentsen et al. 2014; Lavelle et al. 2016; Skuce et al. 2012; Cowie et al. 2016), creating a 117	

dynamic and bidirectional opportunity for pathogens to circulate freely within and across 118	

species (Bengis, Kock, and Fischer 2002), via direct and/or indirect routes (use of communal 119	

environment, shared resources, etc). The control of infectious diseases at the wildlife-livestock 120	

interface is particularly challenging because of the differences in disease control efforts aimed 121	

respectively at both livestock and wildlife populations (Gortazar et al. 2015; Bird and Mazet 122	

2018), as these are usually managed by different organisational entities (Miller, Farnsworth, 123	

and Malmberg 2013; Welburn 2011; Mcbeth and Shanahan 2004). 124	

 125	
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Bovine tuberculosis in a multi-host system in Michigan 126	

Michigan, USA, is one of many places worldwide where the zoonotic disease bovine 127	

tuberculosis (bTB), caused by Mycobacterium bovis, has become established in free-ranging 128	

wildlife (S D Fitzgerald and Kaneene 2013; Palmer 2013; Gortázar, Che Amat, and O’Brien 129	

2015), complicating eradication and control of the disease in cattle.  In areas where more than 130	

one sympatric wildlife species may be capable of acting as a competent reservoir, determining 131	

the roles of the different species in disease maintenance can be both difficult and important, 132	

reflecting problems found in many other systems (Haydon et al. 2002; Hlokwe, van Helden, 133	

and Michel 2014; Nugent, Gortazar, and Knowles 2015; Shury 2015). 134	

 135	

In Michigan, while white-tailed deer (Odocoileus virginianus; deer) are well-established as the 136	

primary wildlife maintenance host of bTB (Schmitt et al. 1997; O’Brien et al. 2006, 2011; 137	

Palmer 2013). In areas where they are sympatric with infected elk (Cervus elaphus nelsoni), 138	

some uncertainty remains concerning what role, if any, elk play in the epidemiology of the 139	

disease (O’Brien et al. 2008).  While elk have thus far been assumed to be spillover hosts due 140	

to the small number of M. bovis-positive animals found to date, they have proven to be capable 141	

maintenance hosts in other settings (Fanning and Edwards 1991; Rhyan et al. 1992; Shury and 142	

Bergeson 2011).  If elk were maintenance hosts in Michigan, management objectives for the 143	

population would likely need to shift from conservation for sustained use (hunting and 144	

recreational viewing) to disease control. Furthermore, if elk populations are not acting as 145	

maintenance hosts they could still play an important role in disease persistence and spread, due 146	

to their wide-ranging behaviour relative to deer (Walsh 2007). Evidence for either could entail 147	

the need for measures such as density reductions, or issuance of out-of-season shooting permits 148	

for animals in close proximity to livestock operations, and exacerbate any social and political 149	

conflicts that may exist between wildlife and agricultural interests (O’Brien, Cook, Schmitt, 150	
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and Jessup 2014).  Moreover, the resources necessary to provide bTB surveillance could 151	

escalate disproportionately (Livingstone et al. 2015). Ongoing surveillance of bTB in deer and 152	

elk populations has provided valuable information on the prevalence and spatial occurrence of 153	

bTB in areas of Michigan where the two species are sympatric. This provides an ideal 154	

background for using WGS to identify genetic clustering of isolates. This would be indicative 155	

of intraspecies transmission, potentially revealing evidence of maintenance of M. bovis in elk, 156	

and allowing for estimation of interspecies transmission rates amongst the sampled elk, deer 157	

and cattle (Bos taurus) populations (Kao et al. 2014). 158	

  159	

Objectives 160	

In this study, we evaluate the spatial and temporal dynamics of bTB amongst wildlife and 161	

livestock in the Lower Peninsula of Michigan. We use WGS to create high resolved time 162	

calibrated phylogenies and generate a robust genomic dataset with temporal, spatial and host 163	

phenotypic data. Our objectives for this study are to: i) investigate the evolutionary dynamics 164	

of M. bovis in the Michigan Lower Peninsula; ii) identify M. bovis lineages associated with host 165	

species and/or geographic locations; iii) quantify the probability M. bovis transmission between 166	

host species; and iv) gain insights into the needs of a new management program of bTB control 167	

at the wildlife-livestock interface. We present data showing three genetically distinct M. bovis 168	

clades with variable temporal, host and geographical distributions. While elk is present in two 169	

out of three clades, no evidence was found for significant transmission between cattle and elk. 170	

Our analyses are also consistent with interspecies transmission in Michigan being maintained 171	

by deer, and thus the major management focus should continue to be in controlling the disease 172	

in the endemic deer population. This study shows the value of WGS for examining bacterial 173	

pathogen transmission at the wildlife-livestock interface.  174	

 175	
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Materials and Methods 176	

1. Data. Mycobacterium bovis isolates were obtained from naturally infected wildlife (deer 177	

and elk) and livestock (cattle) tissue samples using standard isolation protocols (Parish and 178	

Stocker 2002). Wildlife management information, surveillance methods used to find infected 179	

free-ranging wildlife (through hunting and out-of-season shooting permits) and hunting 180	

territories (from where the data were collected) are described in Text S2 and elsewhere 181	

(O’Brien et al. 2002, 2004, 2008; MDNR1 2018; MDNR2 2018), as are the origin of cattle 182	

isolates (Tsao et al. 2014).  Because we are focusing on the potential role of elk in the 183	

transmission of bTB amongst the three species, bTB-positive deer that were spatially (within 184	

10 miles of the sampling location of an elk) and temporally close (within three years before or 185	

after the sampled elk date) to each positive elk were selected for inclusion from among the 186	

available archived isolates. The choice of these thresholds was based on the size of the elk’s 187	

home range and on the deer’s average lifespan in the wild. Different research projects in 188	

Michigan have looked at elk home range use (Ruhl 1984; Beyer 1987; Walsh 2007) and have 189	

found that home ranges of individual elk are highly variable, ranging from 2 to 100 square 190	

miles. It has been shown that there are no habitat barriers to the movement of elk that would 191	

create subpopulations, and therefore there is evidence for only a single elk group (Walsh 192	

2007). To enhance the likelihood of selecting isolates from deer that have been in contact with 193	

elk, we chose the upper end of the elk ranges and selected all deer isolates that were within a 194	

10-mile radius of each elk (encompassing a total area of ~ 314.6 square miles).	The average 195	

lifespan of captive deer is 14 years, but in the wild it is typically only two (Tullar 1983), 196	

therefore, we chose a 3-year window around each elk isolate date to improve the opportunities 197	

to capture evidence of direct contact. As we expect animals living in close spatial and 198	

temporal proximity to be more likely to share the same M. bovis strains and, should elk and 199	

deer transmit bTB freely between them, this approach would optimize the opportunities to 200	
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generate well-mixed phylogenies. Some individual elk range further than the core elk range 201	

(elk core range and hunting management units are shown in Figures 1 and S1, respectively); 202	

therefore, for the cases where isolates were available, positive deer from outlying areas 203	

marking the geographic limits of the core habitat occupied by elk were also included, making 204	

a total of 39 individuals. To contextualise these data, 78 randomly chosen samples (from 1994 205	

to 2013 that fell outside of the previous criteria) were sequenced from the archived list of 206	

infected cases. All cattle herds with bTB cases in the same area (three herds, nine individuals) 207	

were selected as were cases from two herds that were identified as breakdown sources 208	

through trace out investigations. In total we identified isolates from 5 elk, 117 deer and 12 209	

individual cattle (Figure 1). Samples from all individual species were collected in the period 210	

between 1996 and 2013. The distribution of isolates by year and species is presented in Table 211	

S1. Cattle and elk were found positive either in the same year or cattle herds were found 212	

infected 1-3 years after elk infected cases. Population size and bTB prevalence information 213	

for each host species is presented in Table S2. 	214	

 215	

2. Whole-genome sequencing and SNP analysis. DNA was collected from M. bovis cultures, 216	

libraries were prepared using NexteraXT and then sequenced on an Illumina MiSeq using 2 X 217	

250 paired end chemistry. Multiple isolates were indexed per lane, providing approximately 218	

50-100x coverage per isolate. Raw sequences were aligned to the reference genome AF2122/97 219	

(Genbank accession code PRJNA89) using a Burrows-Wheeler Aligner (BWA) (Li and Durbin 220	

2009) and Genome Analysis Toolkit 2.5.2 (GATK) (McKenna et al. 2010; DePristo et al. 2011; 221	

Van der Auwera et al. 2013). Base quality score recalibration, duplicate removal, single-222	

nucleotide polymorphism (SNP) and indel (insertion or deletion of nucleotides in the genome) 223	

discovery and genotyping were applied across all isolates using standard filtering parameters 224	

or variant quality score recalibration according to GATK Best Practices recommendations 225	
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(McKenna et al. 2010; DePristo et al. 2011; Van der Auwera et al. 2013). Sites that fell within 226	

Proline-Glutamate (PE) and Proline-Proline-Glutamate (PPE)- polymorphic CG-repetitive 227	

sequences (PGRS) were filtered, as well as SNP positions with a phred-scaled quality (QUAL) 228	

score for the alternate non-reference allele lower than 150 and allele count (AC) equal to 1 (see 229	

https://github.com/USDA-VS/snp_analysis for bioinformatics scripts and Table S3 for 230	

sequencing statistics). Integrated Genomics Viewer (IGV) was used to visually validate SNPs, 231	

and SNPs with mapping issues or alignment problems were manually filtered.  232	

 233	

3. Phylogenetic reconstruction of Mycobacterium bovis. Evolutionary relationships among 234	

M. bovis isolates were generated using a Bayesian coalescent Markov chain Monte Carlo 235	

(MCMC) analysis in BEAST 2 (Bouckaert et al. 2014). To verify the existence of temporal 236	

signal in the data, we explored the temporal structure of the sequences using the software 237	

Tempest (Rambaut et al. 2016) and performed a tip-date randomization test (Firth et al. 2010), 238	

where we looked for the absence of overlap between the 95% credible interval of the original 239	

rate estimate and any of the date-randomized datasets (Ramsden, Holmes, and Charleston 2008; 240	

Duffy and Holmes 2009; Firth et al. 2010; Duchêne et al. 2015) (see Text S1 for analysis 241	

description). We used a marginal likelihood estimation (MLE) model selection approach (path 242	

sampling (Lartillot and Philippe 2006)) to determine the best-fit nucleotide substitution, clock 243	

and demographic models. Two nucleotide substitution models (Hasegawa, Kishino and Yano 244	

(HKY, (Hasegawa, Kishino, and Yano 1985)), and General Time Reversible (GTR, (Tavare 245	

1986)) that were both supported by the Bayesian information criteria model selection 246	

jModeltest 2 (Darriba et al. 2012)) were chosen for model selection. Four molecular clock 247	

models (strict, relaxed normal, relaxed exponential, and random local) were evaluated in 248	

combination with three coalescent demographic models (constant population size (Drummond 249	

et al. 2002; Kingman 1982), Bayesian skyline (Drummond et al. 2005), and Bayesian extended 250	
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skyline (Heled and Drummond 2008)). Model performance was evaluated by MLE based on 251	

the average of two runs of path sampling and paired comparisons (of all models to the first 252	

combination: HKY, constant population size and strict clock) of marginal likelihoods using 253	

Bayes Factor (Kass and Raftery 1995). The best-fit model combination was: HKY nucleotide 254	

substitution model with a gamma-distributed rate variation (which enables the evolutionary rate 255	

to vary amongst sites), the uncorrelated exponential relaxed clock model (which allows each 256	

branch of the phylogenetic tree to have its own evolutionary rate), and an extended Bayesian 257	

skyline model (which estimates the demographic function directly from sequence data without 258	

the requirement of pre-choosing the model dimensionality). Two independent MCMC analyses 259	

were run for 100 million generations and posterior distributions were sampled every 10,000 260	

generations. Model parameters were assessed for convergence and satisfactory effective sample 261	

sizes (>200) in Tracer V1.6 (Rambaut et al. 2014). These runs were combined in LogCombiner 262	

v2.4.8 (Drummond and Rambaut 2007) where trees were subsampled as well, and a maximum 263	

credibility tree was estimated (after discarding the first 10% of trees as a burn-in) using 264	

TreeAnnotator v2.2.0 (Drummond and Rambaut 2007). We estimated the overall M. bovis 265	

evolutionary rate and the Most Recent Common Ancestor (MRCA) dates for all individual 266	

clades. In this study, we defined a phylogenetic clade as a cluster of individual isolates that was 267	

evolutionary distinct from other clusters and also highly supported (≥0.95).  268	

 269	

4. Spatial and genetic distances between isolates. To illustrate the spatial distribution of each 270	

phylogenetic clade, the spatial positions of each isolate were plotted and a convex hull (i.e. the 271	

smallest polygon incorporating a given set of points) was drawn around each estimated clade. 272	

To check how clades are distinctively clustered in space, the (Euclidean) spatial distances 273	

between isolates in the estimated and randomly generated clades were computed. For every pair 274	

of clades being compared, 1,000 random points were chosen from each, and spatial distances 275	
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were computed per random pairs of isolates. This analysis was repeated for the random 276	

(permuted) clade assignments and plotted for all clade pairwise comparisons. A k-means 277	

analysis was also performed to identify four spatial clusters of isolates. If the clades are 278	

distinctively clustered in space, then there will be a large overlap between the spatial positions 279	

of these clusters and of the estimated clades. The minimum spatial and genetic (number of 280	

different sites between sequences) distances were computed between each pair of isolates and 281	

separated by host species interaction. The spatial analyses were implemented in R (RCoreTeam 282	

2014) and used the packages maps (Becker and Wilks 2016), maptools (Bivand and Lewin-283	

Koh 2017), and rgeos (Bivand and Rundel 2017), while the genetic analysis used the R package 284	

ape (Paradis, Claude, and Strimmer 2004). 285	

 286	

5. Ancestral state host reconstruction using discrete traits. Host species were modelled as a 287	

discrete trait over the M. bovis genealogy by ancestral state inference using Discrete Ancestral 288	

Trait Mapping (DATM) in BEAST 2 (Bouckaert et al. 2014). This approach allowed us to 289	

estimate the probability of internal node states and branches being associated with a specific 290	

host (and as such the most likely source of infection within the sampled M. bovis population in 291	

elk, deer or cattle), based on relationships among the host states at the branch tips (from the 292	

sampled isolates). Host state posterior probabilities (PP) were reported for ancestral nodes up 293	

to the most recent common ancestor. All nodes were annotated with their PP values. The three-294	

state analysis (elk=5, deer=117, and cattle=12) estimated over time the posterior probability 295	

that a pathogen transition rate between a particular pair of discrete host states was positive. If 296	

this probability is high, then the data strongly support a model (evaluated by Bayes’ factors) in 297	

which a direct pathogen transition between that particular pair of host species can occur. 298	

Similarly, the relative transition rate between that pair of host species was also computed. Two 299	

MCMC analyses were run for 100 million generations, sampling every 10,000 generations. The 300	
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BEAST output was analysed using the Tracer v1.6 program (Rambaut et al. 2014). The 301	

phylogenetic trees produced by BEAST were subsampled in LogCombiner and annotated using 302	

TreeAnnotator v2.2.0 (Drummond and Rambaut 2007), and the maximum clade credibility tree 303	

was visualized using the FigTree v1.3.1 program (Drummond and Rambaut 2007). The 304	

estimated posterior probabilities of support of transitions between pairs of host species were 305	

plotted for all cases. For the cases where the probability was high, providing strong evidence 306	

of direct transition between a particular pair of host species, the mean posterior probability of 307	

rate changes was presented.  308	

 309	

6. Phylogenetic tip-host species, down-sampling and extra-elk permutation tests. To 310	

validate the results associated with host state interactions where our models support pathogen 311	

transitions between particular pairs of host states, we performed three phylogenetic tests: a) a 312	

phylogenetic tip-host species permutation to investigate the extent of pathogen genetic signal 313	

in the host populations, b) a down-sampling test to study the impact of different numbers of 314	

isolates in host species interactions, and c) a phylogenetic tip-elk permutation test to check the 315	

impact of extra elk in host species interactions. In a) this test involved generating 10 new 316	

randomized data sets by permutation of sampled host species, performing DATM analysis for 317	

each new file with the same settings as section 5, and comparing parameter estimates 318	

(probability of pathogen transition between host species) obtained with the initial data set versus 319	

the randomized ones. In b) to test the influence of the uneven number of isolates per host species 320	

on the results of our analysis, we generated four types of data sets with a different number of 321	

sampled host species each (chosen randomly): Subsample A corresponds to 10 data sets of 5 322	

elk (all elk isolates), with 5 random samples from each of the available cattle and deer isolates; 323	

subsample B corresponds to 10 data sets of 5 elk, 12 cattle (all cattle isolates) and 12 deer 324	

randomly sampled from the 117 deer isolates available; subsample C corresponds to 10 data 325	
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sets of 5 elk, 12 cattle, and 36 deer randomly sampled from the 117 deer isolates available; and 326	

subsample D corresponds to 10 data sets of 5 elk, 12 cattle, and 76 deer randomly sampled from 327	

the 117 deer isolates available. New DATM analyses with the same setting as section 5 were 328	

performed for each one of the 10 files of each data set type. Parameter estimates from the 10 329	

analyses in each dataset were combined and compared with the original data. These results were 330	

shown in boxplots. In c) to identify the effect of under-representation of infected elk in the 331	

dynamics of the disease, we have extended our analyses with simulations of 1 and 2 extra elk 332	

in the population. We focused on the clades where we have elk and cattle isolates (clades 1-3) 333	

and added n elk to our dataset (by randomly replacing the host species labels of n deer by n 334	

elk). We repeated this analysis 10 times for n=1 and n=2 (testing the effect of having 6 and 7 335	

elk) and computed the probability of support for pathogen transition between each hot species. 336	

We compared the results to the original one (with 5 elk). 337	

 338	

Results 339	

1. Phylogenetic reconstruction of Mycobacterium bovis. Whole-genome sequencing of the 340	

134 M. bovis isolates sampled between 1996 and 2013 from multiple hosts (deer, elk and cattle) 341	

identified 391 SNPs. An analysis using Tempest supported by tip-date randomization test 342	

support the existence of a strong temporal signal in the data (see Text S1 and Figure S2). The 343	

time-measured phylogeny, estimated under an uncorrelated relaxed exponential  clock and an 344	

extended skyline demographic model using BEAST 2 (Figure S3, Table S4), shows three major 345	

clades (Figure 2). None of the clades could be distinguished from the others solely by the 346	

sampling time of its isolates, nor the area from where they were sampled (Figures 2-3). The 347	

spatial distribution of the different clades overlapped with each other to the point where there 348	

was no difference between spatial distances calculated between isolates from different clades 349	

when these were correctly or randomly assigned (Figure 3A-B). Furthermore, there was no 350	
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visible relationship (Figure 3-C) between the spatial pattern generated by the three clusters 351	

(identified by within group sum of squares in k-means, Figure 3-D) and the one generated by 352	

the three clades. These results suggest that different lineages have been co-circulating in the 353	

sampled area. The mean evolutionary rate of M. bovis was estimated to be 0.37 substitutions 354	

per genome per year (95% HPD: 0.24-0.51 substitutions per genome per year) (Figure S4), 355	

which is consistent with previous M. bovis studies in other settings and with other wildlife hosts 356	

(Biek et al. 2012; Trewby et al. 2016; Crispell et al. 2017). 357	

 358	

2. Investigation of interspecies transmission. The ancestral host state reconstruction showed 359	

that multiple host species were distributed within the different clades, indicative of interspecies 360	

transmission (except in clade 3 where deer are the only species present, Figure 4). The 361	

clustering patterns of host species observed in clade 2 indicate a strong probability of 362	

intraspecies transmission of bTB in the sampled cattle population, while the individual clusters 363	

of two elk and two cattle isolates suggest either there are intraspecies transmission events of 364	

bTB in the sampled elk and cattle populations, or the infection in each species is due to other 365	

common sources. The wide distribution of deer over all the clades suggests that intraspecies 366	

transmission is occurring in the sampled deer population and that deer also play an important 367	

role in the transmission to other species. State transitions between deer and cattle, and deer and 368	

elk were shown to have strong support (PP=0.996 and 0.989, Table 1), but the transition 369	

between cattle and elk was poorly supported (PP=0.391, Table 1). When compared to all 370	

isolates, cattle and elk isolates were never the closest genetically or spatially to each other 371	

(Figures S5-6).  372	

 373	

3. Phylogenetic tip-host species, down-sampling and extra-elk permutation tests. To check 374	

the veracity of our results we performed host-tip randomization, down-sampling and additional 375	
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elk analyses. Figure 5 shows that the estimated interactions between deer and elk, and cattle 376	

and elk with the real data (presented by stars) differ from the ones estimated with the 377	

randomized data sets (presented by boxplots), with the exception of the estimated interactions 378	

between cattle and deer from the real and random data sets, which overlap with each other. This 379	

overlap suggests that pathogen migration between these two species is consistent with it being 380	

a random process. If this is the case, then increases of bTB in cattle may simply be attributable 381	

to increases in deer population densities and infection levels. The sensitivity analyses to show 382	

the effect of sample size (of each host species) on the interspecies interaction, show that this 383	

measure only influences our results under extreme down-sampling (dataset A). However, with 384	

lesser but still substantial down-sampling of data (B, C and D; which have variations in sample 385	

size for each host species), our analyses show a similar pattern to the original data: strong 386	

support for interactions between deer and cattle and deer and elk, and low support for 387	

interactions between cattle and elk (Figure 6, Table 1). Finally, the addition of 1 or 2 “elk” 388	

samples to our pool of isolates (by replacing deer isolates) were shown to be insufficient to 389	

change our results (Figure S7).  390	

 391	

Discussion 392	

This analysis is one of the few genomic studies examining bacterial transmission at the wildlife-393	

livestock interface (Kamath et al. 2016) in the United States and highlights the important role 394	

that genomics and phylodynamic approaches play in improving our understanding of fine scale 395	

transmission patterns. Using M. bovis genomic data from different host species with a time 396	

frame of 17 years, we showed that, even with a slow, highly variable substitution rate, WGS 397	

has remarkable power to identify the likely roles of different host species in the transmission 398	

dynamics of endemically circulating diseases, independent of other epidemiological evidence. 399	

However, with chronic diseases such as bTB (months to years to show signs of infection), we 400	



	 17	

have to consider the possibility of infections that were missed during testing, and that we could 401	

be underestimating the amount of transmission. Furthermore, any interpretation of the results 402	

should take into consideration the assumptions and limitations of the data and models used in 403	

the study. DATMs assume sampling numbers are informative of the underlying prevalence of 404	

the disease in different hosts. We have a low sampling number of isolates from elk and cattle 405	

and a large number from deer, however, we present information on population sizes and number 406	

of sampled and infected cases for each species, demonstrating that our samples are related to 407	

the underlying levels of the disease for each host species. Furthermore, the sampling effort in 408	

the elk is very high given the proportion of individuals tested relative to the total population 409	

size. These models also assume homogeneous mixing in the underlying sampled population, 410	

which was addressed by choosing high number of random deer isolates. However, for future 411	

studies with structured populations, the adoption of methods like the Bayesian Structured 412	

Coalescent Approximation (BASTA) (De Maio et al. 2015), which relaxes that assumption, 413	

might be more suitable. Michigan has an unprecedent surveillance system for elk – since their 414	

introduction to the state in 1918, they have been heavily managed to ensure a healthy and stable 415	

population size (~800 individuals) (MDNR3, n.d.) but even with such a system a few infected 416	

cases might have been missed. We showed that even if infected elk were under sampled by 417	

40% compared to deer (i.e. two more infected elk), the additional interactions do not alter the 418	

key conclusion; however additional analysis would be needed to determine how many more elk 419	

would be needed to see an effect. Spatial analyses show that even with the addition of a large 420	

random sample of infected deer, disease transmission events occur at small spatial scales with 421	

circulation of distinct strains. The spatial overlap of the clades supports the idea that the 422	

pathogen population is well mixed (at this scale). Furthermore, M. bovis’ low and variable 423	

substitution rates can sometimes challenge accurate estimations of evolutionary rates. Our 424	

estimates of M. bovis evolutionary rate for this sampled population is similar with the ones 425	
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found in other studies with different organisms (Biek et al. 2012; Trewby et al. 2016; Crispell 426	

et al. 2017).  427	

 428	

Our results suggest that in the Michigan bTB endemic situation to date, elk so far are unlikely 429	

to be a maintenance reservoir. The lack of support of pathogen transition between elk and cattle 430	

also suggest that elk do not have an active role in the transmission of M. bovis infections to the 431	

neighbouring livestock populations. These genomic findings support conclusions based on 432	

previously reported pathologic and epidemiologic data (O’Brien et al. 2006, 2008).  Overall, 433	

the topology of the M. bovis phylogeny indicated the existence of interspecies transmission 434	

events, with the presence of multiple host species interspersed within clades. Deer isolates were 435	

found in all 3 clades, showing that in our selection of isolates there is higher genetic diversity 436	

circulating in this host population than in any other, adding to the accumulated evidence from 437	

previous ecological studies that deer are a significant source of bTB in livestock and other 438	

wildlife species. However, the clustering of isolates by host species suggest the majority 439	

of transmission events were occurring either within species, or from a common source, 440	

(exposure to the sampled deer population or other intermediate hosts (Lavelle et al. 2016)), or 441	

both. For the Michigan elk population, if any of the clustering is due to intraspecies 442	

transmission, this is a new and epidemiologically significant finding. If the clustering of 443	

infected elk noted in Clade 2 of our study is due to elk-to-elk transmission, it may be that 444	

transmission has not yet reached a sufficient threshold for self-maintenance. That said, if 445	

intraspecies transmission has occurred at all it should serve as warning to state wildlife 446	

managers of the necessity of preventing further introductions of M. bovis into that valuable 447	

population. Thus, human-caused aggregations (such as recreational feed and bait sites intended 448	

for deer) that act as sources of indirect contact between elk and deer must not be allowed to 449	

occur.  450	
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 451	

In Canada, wild elk have proven to be competent maintenance hosts for bTB (Manitoba 452	

Agriculture Department, n.d.; Shury and Bergeson 2011; Shury 2015). Reasons why elk in 453	

Canada are maintenance hosts and in Michigan they seem not to be, are not clear, however, are 454	

likely to be related to different population sizes, densities, social behaviour and home ranges. 455	

In Canada, populations are likely to be larger and denser and composed of multiple groups, 456	

while in Michigan they are smaller, and without structured groups and they only overlap slightly 457	

with the deer endemic area (Walsh 2007; Shury and Bergeson 2011; Shury 2015). Other factors 458	

such as management practices, historical facts of bTB (especially, how long the area has been 459	

infected), habitat quality, and opportunities to have inter- and intra- species contact may also 460	

play a role in the persistence of M. bovis in these populations. 461	

 462	

We also demonstrated via DATM, and genetic and spatial isolate pairwise comparisons, that 463	

there is very low support for transition events between elk and cattle. This might be due to the 464	

fact that the elk population is an order of magnitude smaller than the deer population, which 465	

may decrease the probability of contact with livestock. In addition, much of the core elk range 466	

in Michigan is composed of publicly-owned lands that are relatively remote from livestock 467	

operations. These findings suggest that bTB eradication efforts in the elk population are 468	

currently unnecessary due to the low probability of spillover to cattle, and that the major focus 469	

should continue to be in controlling the disease in the endemic deer population. However, 470	

should the elk population increase, this could enhance their role in the maintenance of bTB in 471	

Michigan. Furthermore, the possibility of other species acting as intermediate hosts and being 472	

involved in the transmission of M. bovis to the cattle population remains possible.  Other 473	

spillover hosts including black bear (Ursus americanus), bobcat (Felis rufus) coyote (Canis 474	

latrans), red fox (Vulpes vulpes), raccoons (Procyon lotor), and opossums (Didelphis 475	
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virginiana) have been shown to be bTB spillovers in this area (Bruning-Fann et al. 2001; Walter 476	

et al. 2013; A. R. Berentsen et al. 2011). It could be though direct contact (however unlikely 477	

(Scott D. Fitzgerald et al. 2003)), or through environment contamination. Both raccoons and 478	

opossums are found to share communal dens resulting in increased interaction when resources 479	

are abundant such as around feed stockpiled for livestock (Palmer, Waters, and Whipple 2002; 480	

Atwood et al. 2009), and when they have a chance, they use the same stored feed, water sources, 481	

and feed being consumed by cattle (Bruning-Fann et al. 2001; Atwood et al. 2009; Walter et al. 482	

2013), increasing the chances of contamination. More studies on these populations would help 483	

to understand their contribution to the spread of bTB.  484	

 485	

In Michigan, bTB has been a concern of management by both wildlife and agriculture agencies 486	

for two decades.  Prospects for eradication are uncertain, and the ongoing costs of disease 487	

management necessitate the use of innovative methods to inform management decisions. By 488	

providing insights into reservoir status and the likelihood of interspecies transmission, genomic 489	

analyses such as this supplement traditional epidemiologic and pathologic data, advancing 490	

efficient and effective use of both bTB surveillance and control resources. 491	

 492	

Data Accessibility 493	

The raw sequence files (FASTQ) were submitted to the NCBI Sequence Read Archive under 494	

the Bioproject accession number: PRJNA251692.  The individual isolates can be accessed 495	

under the following Biosample accession numbers: SAMN07339977 - SAMN07340029	and	496	

SAMN10254813 – SAMN10254893.	Information	about	metadata associated to each isolate 497	

is in Table S3. The R scripts used for this publication are freely available on the following 498	

Github link: https://github.com/lsalvador/WGS_Michigan_Project. 499	

 500	
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Tables and Figures 528	
 529	

Host species 
interaction 

Estimated posterior 
probability of 

transition between 
host species 
(symmetric) 

Estimated absolute 
transition between 

host species 
(event/genome/year) 

Strength of support 
by Bayes’ factor 

(BF > 3: well supported 
BF > 10: very strong 

support) 

Cattle-Deer 0.996 0.012 28.37 

Cattle-Elk 0.391 0.011 0.073 

Deer-Elk 0.989 0.011 10.24 

Table 1. Evidence of pathogen transition between host species. Results from a discrete ancestral 530	
trait mapping analysis.  531	

 532	
Figure 1. Study area in northeastern Lower Peninsula of Michigan, USA with locations of 533	
bovine tuberculosis positive animals. Positive samples from deer that were spatially and 534	
temporally close to each positive elk and from the margins of the occupied elk range were 535	
selected for inclusion from among available archived isolates (39). This dataset was extended 536	
with 78 more positive deer samples randomly chosen from the available archived isolates. 537	
Positive cattle herds in the same area (9) were also selected together with trace backs of infected 538	
individuals from other herds (3). In total isolates from 5 elk (from 2000 to 2006), 117 deer 539	
(from 1996 to 2013) and 12 individual cattle (from 2000 to 2009) from 3 neighbouring herds 540	
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and 2 other herds identified by trace backs. The isolates were sampled from 8 counties: 541	
Montmorency, Presque Isle, Otsego, Oscoda, Alpena, Alcona, Emmet and Antrim. Isolates that 542	
were collected from the same host species in the same location are overlapped in the figure. 543	
 544	
 545	

 546	
 547	
Figure 2. Time-calibrated maximum clade credibility tree of Mycobacterium bovis isolates. 548	
Four M. bovis clades (C1-C3) were identified through Bayesian phylogenetic analyses of 117 549	
M. bovis isolates sampled between 1996 and 2013 under an uncorrelated relaxed exponential 550	
clock and extended skyline demographic model. Posterior support for major nodes is shown 551	
with grey bars indicating the 95% highest posterior density  intervals for node date estimates. 552	
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 553	
Figure 3. Spatial analysis of Mycobacterium bovis isolates.  A. Spatial analysis of distribution 554	
of M. bovis clades identified by Bayesian phylogenetic analysis.  Each polygon represents the 555	
minimum convex polygon of the sampled locations of the isolates of each clade. B. 556	
Comparison of spatial distances between estimated and permuted clades. For every pair of 557	
clades being compared we have randomly selected 1000 isolates from each. For each random pair 558	
of isolates we calculated the spatial distance between them. This analysis was repeated with 559	
random (permuted) clade assignments. C. K-means analysis with 3 clusters (represented by 560	
symbols) versus 3 clades (represented by colors). D. Optimal number of clusters estimated by 561	
within group sum of squares (distances between individuals within each cluster). The optimal 562	
number of clusters will be the number after which within cluster differences become minimal; 563	
here this occurs after ~ 3 clusters. 564	
 565	
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 566	
 567	
Figure 4. Ancestral host state reconstruction over the Mycobacterium bovis phylogeny. 568	
Maximum credibility tree was estimated under a model of symmetric host species transitions. 569	
Host state posterior probabilities (PP) are reported for ancestral nodes up to the most recent 570	
common ancestor. All nodes have PP values above 0.95 and only one (with PP=0.73) is 571	
annotated. Host species are represented by squares with the following colour labels (cattle=red, 572	
deer=green, elk=blue).  573	
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 574	

 575	
Figure 5. Comparison of the estimated posterior support of direct host species transition 576	
between permuted and observed data. The estimated posterior mean probability of each host 577	
species interaction is the posterior probability that a particular transition rate is positive. If this 578	
probability is high, the data strongly support a model in which there is direct pathogen transition 579	
between that particular pair of host species. The posterior means were estimated via a Discrete 580	
Ancestral Trait Mapping performed in BEAST v2. The ‘Permuted data’ correspond to the 581	
posterior means of 10 BEAST runs of each interaction after permuting the host species labels 582	
each time. The ‘Observed data’ correspond to the posterior mean of each interaction using the 583	
observed data.  584	
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 585	
Figure 6. Comparison of the estimated posterior support of direct host species transition 586	
between subsampled and observed data. The estimated posterior mean probability of each 587	
interaction is the posterior probability that a particular transition rate is positive. If this 588	
probability is high, then the data strongly support a model in which there is direct pathogen 589	
transition between that particular pair of host species. The posterior means were estimated via 590	
a Discrete Ancestral Trait Mapping performed in BEAST v2. The ‘Subsampled data’ 591	
correspond to three subsets of 10 files where the different isolates found in each species were 592	
randomly chosen to be part of the new data set. Subsample A corresponds to isolates sampled 593	
from five elk (‘Elk’), five randomly chosen cattle (‘Cattle’), and five randomly chosen deer 594	
(‘Deer’); Subsample B corresponds to isolates sampled from five elk, nine cattle, and nine 595	
randomly chosen deer; and Subsample C corresponds to isolates sampled from five elk, nine 596	
cattle, and twenty four randomly chosen deer. The ‘All data’ correspond to the posterior mean 597	
of each host species interaction output by one DATM analysis using all of the observed data, 598	
which consists of five elk, twelve cattle, and 117 deer.   599	
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