
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No evidence for an intragenomic arms race under paternal
genome elimination in Planococcus mealybugs

Citation for published version:
García de la Filia, A, Fenn-Moltu, G & Ross, L 2019, 'No evidence for an intragenomic arms race under
paternal genome elimination in Planococcus mealybugs', Journal of Evolutionary Biology.
https://doi.org/10.1111/jeb.13431

Digital Object Identifier (DOI):
10.1111/jeb.13431

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Evolutionary Biology

Publisher Rights Statement:
This article has been accepted for publication and undergone full peer review but has not been through the
copyediting, typesetting, pagination and proofreading process, which may lead to differences between this
version and the Version of Record. Please cite this article as doi: 10.1111/jeb.13431 This article is protected by
copyright. All rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1111/jeb.13431
https://doi.org/10.1111/jeb.13431
https://www.research.ed.ac.uk/en/publications/aca6ca20-abf5-4f1f-b32b-a4bb6ab03b0c


A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/jeb.13431 

This article is protected by copyright. All rights reserved. 

MR. ANDRÉS GARCÍA DE LA FILIA (Orcid ID : 0000-0002-6010-9441) 

Article type      : Research Papers 

 

No evidence for an intragenomic arms race under paternal genome elimination 
in Planococcus mealybugs�  

 

Andrés G. de la Filia1, Gyda Fenn-Moltu1, Laura Ross1 �  

1. School of Biological Sciences, Institute of Evolutionary Biology, University of 
Edinburgh, Edinburgh, EH9 3FL, UK �  

 

Acknowledgements �  

The authors would like to thank Prof. José Carlos Franco (Universidade Te ́cnica de 
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Abstract 

Genomic conflicts arising during reproduction might play an important role in shaping the 

striking diversity of reproductive strategies across life. Among these is paternal genome 

elimination (PGE), a form of haplodiploidy which has independently evolved several 

times in arthropods. PGE males are diploid but transmit maternally-inherited 

chromosomes only, while paternal homologues are excluded from sperm. Mothers 

thereby effectively monopolize the parentage of sons, at the cost of the father’s 

reproductive success. This creates striking conflict between the sexes that could result in 

a coevolutionary arms race between paternal and maternal genomes over gene 

transmission, yet empirical evidence that such an arms race indeed takes place under 

PGE is scarce. This study addresses this by testing if PGE is complete when paternal 

genotypes are exposed to divergent maternal backgrounds in intraspecific and hybrid 

crosses of the citrus mealybug, Planococcus citri, and the closely related P. ficus. We 

determined whether males can transmit genetic information through their sons by 

tracking inheritance of two traits in a three-generation pedigree: microsatellite markers 

and sex-specific pheromone preferences. Our results suggest leakages of single 

paternal chromosomes through males occurring at a low frequency, but we find no 

evidence for transmission of paternal pheromone preferences from fathers to sons. The 

absence of differences between hybrid and intraspecific crosses in leakage rate of 

paternal alleles suggests that a coevolutionary arms race cannot be demonstrated on 

this evolutionary timescale, but we conclude that there is scope for intragenomic conflict 

between parental genomes in mealybugs. Finally, we discuss how these paternal 

escapes can occur and what these findings may reveal about the evolutionary dynamics 

of this bizarre genetic system. 

 

Keywords: Intragenomic conflict, paternal genome elimination, mealybugs, meiotic drive 
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Introduction 

Sexual reproduction is extremely variable, a result of the extraordinary diversity of 

genetic and reproductive systems that have evolved across the tree of life (Bachtrog et al., 

2014). The sources of this variability remain elusive, so understanding which forces and 

processes drive transitions between genetic systems and the emergence of complex modes 

of reproduction is an important challenge for modern evolutionary biologists. One 

evolutionary force commonly invoked is intragenomic conflict (Burt & Trivers, 2006; Ross et 

al., 2010a; Werren, 2011; Normark & Ross, 2014; Úbeda et al., 2015; Gardner & Úbeda, 

2017). Such conflict occurs when different genetic entities that coexist within individuals (e.g. 

nuclear versus cytoplasmic genes, autosomes versus sex chromosomes, mobile elements) 

disagree over transmission to future generations (Gardner & Úbeda, 2017). In sexually 

reproducing eukaryotes, an important potential source of intragenomic conflict is the parental 

origin of the haploid copies that make up a diploid genome, as they are inherited from two 

different individuals with an evolutionary interest in maximising the transmission of their own 

genes (Normark & Ross, 2014). Many alternative genetic systems emerge when mothers or 

fathers gain a transmission advantage by enhancing the transmission of the copies they 

transmit to the offspring at the expense of their partners’: for example, arrhenotoky (i.e. true 

haplodiploidy), under which mothers monopolize parentage of sons, or androgenesis, where 

fathers are the sole contributors of genetic material to both offspring sexes (Normark, 2006; 

Schwander & Oldroyd, 2016). These systems are dramatic manifestations of intragenomic 

conflict, as Mendelian laws of fair inheritance are thwarted and genes undergo different fates 

depending on the sex of the individual they find themselves in. 

 

One of the genetic systems where such conflict is particularly apparent is paternal 

genome elimination (PGE). PGE is a form of haplodiploid reproduction in which males 

develop from fertilized eggs (in contrast to arrhenotoky), but eventually lose their paternally-

inherited chromosomes and only transmit the maternal homologs to the offspring (Normark, 
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2003; Burt & Trivers, 2006). PGE has a rich evolutionary history: it has independently 

evolved at least six times in insects and once in mites (Burt & Trivers, 2006; Gardner & 

Ross, 2014; de la Filia et al., 2015; Blackmon et al., 2015). Although males of all species 

with PGE lose their paternal chromosomes, timing of loss varies between taxa. In some 

groups, paternal chromosomes are lost early in development (embryonic PGE); in others, 

males remain (mostly or completely) somatically diploid and elimination of paternal 

chromosomes is delayed until spermatogenesis, when they fail to be incorporated into active 

sperm (germline PGE). Moreover, some germline PGE taxa shut down expression of 

paternal chromosomes, which are highly condensed and therefore transcriptionally 

inactivated (Gardner & Ross, 2014). 

 

When considering transmission patterns of genes under PGE, it is clear why it leads 

to intragenomic conflict between maternal and paternal genomes: maternally-inherited 

alleles enjoy a transmission advantage through sons at the expense of paternally-inherited 

alleles, directly reflecting a conflict between male and female partners in which the latter 

have gained the upper hand (Bull, 1979). Such conflict is likely to unchain an evolutionary 

arms race between both sexes and, consequently, maternally- and paternally-inherited 

alleles during spermatogenesis (Herrick & Seger, 1999; Ross et al., 2010a). Once PGE has 

arisen, there is strong selection on males to evolve adaptations that will allow (all or a 

fraction of) their alleles to escape elimination when in sons. However, the success of such 

paternal adaptations is predicted to be short lived, as they will trigger the evolution of 

maternal responses to override paternal resistance and maintain complete transmission 

advantage of maternally-inherited alleles (Herrick & Seger, 1999). Since germline PGE is a 

type of whole-genome meiotic drive in which the entire maternal chromosomal complement 

drives, the dynamics of this arms race in this system are similar to other drive-suppression 

systems (Burt & Trivers, 2006; Lenormand et al., 2016; Lindholm et al., 2016). Well-known 

examples of drivers include sex-linked alleles (Tao et al. 2007a; Tao et al. 2007b; Phadnis & 
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Orr 2009), autosomal haplotypes (Schimenti 2000; Larracuente & Presgraves 2012), 

centromeric elements (Fishman & Willis 2005; Chmátal et al. 2014) and supernumerary 

chromosomes (Camacho et al. 2000). In drive-suppression systems, when one of these 

genetic entities drives (i.e. develops the ability to manipulate meiotic processes to increase 

its presence in gametes at the expense of the rest of the genome), suppressors emerge to 

restore transmission symmetry.  

 

To date, no empirical validation in support of these evolutionary scenarios under 

PGE is available. There is very scarce evidence of paternal escapes under PGE, which have 

only been conclusively shown in a single species, the human louse Pediculus humanus 

(Phthiraptera: Pediculidae) (McMeniman & Barker, 2005; de la Filia et al., 2017). Direct 

empirical evidence for a putative arms race is completely lacking. The historical dynamics of 

an arms race between maternal and paternal alleles can be revealed by assessing how 

complete PGE is in the hybrid offspring of crosses between closely related species. For 

example, cryptic sex ratio distorters often reappear in hybrids, free from the constraint 

imposed by fixed suppressors that have evolved in their original population or species to 

contain these meiotic drivers (Frank, 1991; Hurst & Pomiankowski, 1991; Hurst & Werren, 

2001; Tao et al., 2007b). Likewise, paternal adaptations against PGE could be unmasked 

when exposed to divergent maternal backgrounds. The mealybug Planococcus citri 

(Hemiptera:Pseudococcidae) is a particularly-well suited system for such an approach. In 

Planococcus mealybugs, paternal chromosomes are silenced during blastula stage in 

embryos that develop as males, although the sex determination signal remains unclear 

(Bongiorni et al., 2001). P. citri has emerged in recent years as a model organism for 

germline PGE (Brown & Nur, 1964; Bongiorni & Prantera, 2003; Khosla et al., 2006; Ross et 

al., 2010a; Prantera & Bongiorni, 2012) and hybridizes readily with other closely related 

species. A recent study by Kol-Maimon et al. (2014a) using hybrid crosses between P. citri 

and P. ficus found instances of occasional transmission of the paternal ribosomal ITS2 
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region through hybrid males, but the presence of hybrid genotypes in their parental P. citri 

population–a result of hybridization in the wild (Kol-Maimon et al., 2014b)–and differential 

amplification in males and females complicate interpretation of their findings. Conclusive 

evidence requires a larger number of independent genetic markers that allow determining 

species identity of parental genomes unambiguously. Microsatellite loci, now available as a 

diagnostic tool to distinguish between these two species (Martins et al., 2012), are a more 

suitable tool to confirm whether victory of maternal genomes is complete, or paternal 

genomes have not yet had their final say. 

 

Here, we aim to test for the existence of an evolutionary arms race between parental 

genomes in PGE species using a three-generation family study with wild-derived laboratory 

lines of P. citri and P. ficus to evaluate two key predictions: 1) that paternally-derived 

chromosomes can escape elimination in males when exposed to a maternal genomic 

background they have not coevolved with and 2) that these escapes happen at a higher rate 

in hybrid males produced in interspecific crosses between P. citri and P. ficus, than in males 

produced in intraspecific crosses. We use two strategies to detect patrilineal transmission of 

genetic material: a panel of polymorphic microsatellite markers (Martins et al., 2012) and 

male response to sex pheromones–a traceable species-specific phenotype which allows 

discriminating parental species (Kol-Maimon et al., 2014a, 2014b), as morphological 

differences are extremely difficult to observe. Our results suggest sporadic instances of 

patrilineal inheritance of microsatellite markers in both hybrid and intraspecific crosses at a 

similar frequency, but no transmission of pheromone preferences. We therefore conclude 

that there is scope for conflict between parental genomes under PGE due to incomplete 

effectiveness of the mechanism of paternal chromosome exclusion during spermatogenesis, 

but no clear indication of a recent coevolutionary arms race between parental genomes in 

these mealybug species. 
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Methods 

Experimental populations and laboratory rearing 

All the experimental crosses in this study were conducted between individuals from 

three P. citri and two P. ficus isofemale lines originated from natural populations and reared 

in the laboratory under a sib-mating regime. The three P. citri lines had undergone at least 

15 generations of sib-mating prior to these experiments. Two lines, PC_WYE3-2 and 

PC_BGOX3, derived from populations collected from English greenhouses and the third line, 

PC_CP1-2, originated from Israel. Both P. ficus lines (PF_1-1 and PF_3-1) were derived 

from Israeli populations and had undergone >8 generations of sib-mating. Mealybug lines 

were reared on sprouted potatoes placed on tissue paper in sealed containers (boxes or 

glass/plastic stock bottles) at >50% relative humidity and temperatures of 24-26°C (for P. 

citri) or 26-29°C (for P. ficus). To minimize chances of cross contamination, both species 

were kept in separate rooms. Experimental crosses were kept at 25°C and a 16h-light/8h-

dark photoperiod without humidity control. 

 

Experimental crosses 

The same experimental cross design was followed in all the experiments in this study 

and is schematized in Fig. 1A. Males and females from different parental F0 lines were 

isolated and mated to produce F1 cohorts with divergent maternal and paternal haploid 

genomes. For hybrid crosses, we set 4 biological replicates (i.e. mating pairs) of all possible 

reciprocal combinations between two P. citri lines (PC_WYE3-2 and PC_CP1-2) and the P. 

ficus lines (PF_1-1 and PF_3-1) and raised the F1 hybrid broods until adulthood. However, 

we found extremely high levels of hybrid male mortality when crossing P. ficus females and 

P. citri males during early larval stages, so that all hybrid males from this genotype (FC 

hybrids) failed to reach reproductive maturity. This high mortality occurred in all crosses with 
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P. ficus mothers, regardless of parental lines; therefore, we could only test allele 

transmission in hybrid males from P. citri mothers (CF hybrids). When possible, we mated 4 

CF hybrid males from each F1 brood to a female from the second line of the maternal 

species (P. citri) to produce F2 offspring (Fig. 1B). A simplification of this scheme was used 

to analyse transmission of sex pheromone responses by hybrid F1 males (see below). For 

intraspecific crosses, we set 3 biological replicates of all possible reciprocal combinations 

between the three P. citri lines (Fig. 1C), raised the F1 broods until adulthood and mated F1 

males to females from the experimental line that had not been used in the F0 cross. 

 

For all experimental crosses, virgin females were isolated after becoming sexually 

differentiated (3rd instar) and kept in separate containers until reproductive maturity (>35-day 

old). Males were isolated after pupation and kept in clear glass shell vials until emergence of 

sexually mature adults. Hybrid crosses took place in 6cm-diameter glass Petri dishes with 

the aid of synthetic pheromones from the paternal species (see below) and occurrence of 

mating was visually monitored. After mating concluded, the male-female pair was transferred 

to shell vials containing a single potato sprout and sealed with cotton wool. For intraspecific 

P. citri crosses, male-female adult pairs were placed directly into shell vials. In both cases, 

the mating pair was kept in the vial for 3-5 days until egg-laying was observed. Then, males 

were immediately frozen at -20°C for genotyping and females were transferred to a new 

rearing container and left to lay eggs for at least 10 days or until death, after which they were 

removed and frozen at -20° after removal of their bottom half (to avoid genotyping of 

remaining unlaid eggs). F2 individuals were raised until they reached 2nd larval instar and 

either genotyped directly or after -20° freezing. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Microsatellite genotyping 

Total genomic DNA from F0, F1 and F2 individuals from experimental crosses was 

extracted using prepGEM Insect kit (ZyGEM, New Zealand) following the manufacturer’s 

instructions but reducing the reaction volume by 50%. F0 parents and F1 fathers were 

genotyped as described above. Females mated to F1 males were also genotyped when 

needed to resolve ambiguous genotypes. In rare cases where individuals exhibiting 

genotypes incompatible with parental alleles were observed (10 hybrid crosses and 2 

intraspecific crosses), accidental contamination was assumed and affected crosses were 

discarded. 

 

For genotyping, microsatellite primers for PCR amplification were obtained from 

Martins et al. (2012). A panel of 6 multiplexed loci (Pci-7, Pci-16, Pci-17, Pci-21, Pci-22 and 

Pci-24) was used in hybrid crosses. For intraspecific P. citri crosses, the informative locus 

panel consisted on the three loci showing intraspecific variability (Pci-7, Pci-16 and Pci-17) 

and two additional monomorphic loci (Pci-21, Pci-22) to help diagnosing genotyping success 

for each reaction (Table S1). Linkage relationships between these loci are unknown. PCR 

amplification of microsatellite loci was performed using Type-it Microsatellite PCR kit 

(QIAgen, The Netherlands) in a 10�l reaction volume containing 1�L of prepGEM reaction 

product, 5�L of 2x Master Mix, 0.25 �M of the reverse primer and 0.25 �M of each 5’ 

fluorescently-tagged forward primer. PCR reactions were performed under the following 

conditions: initial denaturation at 95°C for 5 min, 32 cycles of denaturation at 95°C for 30s, 

annealing at 55°C for 90s and extension at 72°C for 30s and a final extension step at 60°C 

for 30min. 1�l of PCR product was sent to Edinburgh Genomics for microsatellite genotyping 

on the ABI 3730 DNA Analyzer system (ThermoFisher Scientific, United Stated of America) 

with LIZ 500 as size standard. Microsatellite peaks were scored with Microsatellite Plugin 

implemented in Geneious 8.1.3 (Biomatters Ltd., New Zealand) and corrected manually. 
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Allele transmission ratios 

For each F2 family and locus, transmission ratios of F1 males were calculated as the 

proportion of maternally-derived alleles they transmitted to their offspring: i.e. number of 

occurrences in F2 families of their maternally-inherited alleles divided by total number of F2 

genotypes. A transmission ratio of 1 is indicative of complete PGE, while 0.5 denotes 

Mendelian transmission. For each ratio, an exact binomial test to detect significant 

deviations from Mendelian expectations was performed in R 3.2.4 (R Development Core 

Team). To correct for multiple testing, adjusted q-values were computed using the one-stage 

false discovery rate approach with FDR<1% as significance threshold. When possible, 

transmission ratios for F1 females were also estimated to confirm Mendelian transmission by 

calculating the proportion of one of the two alleles (chosen at random) at heterozygous 

maternal loci passed on to the F2 offspring. 

 

Sex pheromone response analysis 

Interspecific crosses to produce F1 hybrid males were conducted as described 

above, but using a single line from each species only (PC_WYE3-2 and PF_1-1). Due to 

high mortality of F1 hybrid males with P. ficus mothers (FC hybrids), only males from 

PC_WYE3-2 mothers and PF_1-1 fathers (CF hybrids) could be used to produce F2 broods. 

10 F0 interspecific crosses were carried out to produce F1 hybrid broods, from which 20-30 

males were isolated and mated to a female from the maternal line (PC_WYE3-2) to produce 

F2s (CF x C), which were raised until adulthood. Intraspecific crosses to produce broods of 

pure P. citri and P. ficus males were conducted in an identical way. 
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Male response trials to both P. citri and P. ficus sex pheromones were conducted for 

F0 and F2 males. Synthetic pheromones were provided by Prof. Jocelyn Millar (University of 

California Riverside) and diluted in pure ethanol to a concentration of 10ng/�l. The synthetic 

P. citri pheronome (C-phe) used in this experiment is the pure RR enantiomer of the single 

component (S+)-cis-(1R)-3-isopropenyl-2,2-imethylcyclobutanemethanol acetate (Bierl-

Leonhardt et al., 1981), while as P. ficus pheromone (F-phe) we used the racemic 

component (S)-lavandulyl senecioate (Hinkens et al., 2001).  

 

Males were isolated after pupation and kept in shell vials until adulthood. Trials were 

conducted 24h after adults had emerged from their cocoons in 6cm-diameter glass Petri dish 

arenas. These arenas contained two 1cm2 filter paper squares set on opposite sides of the 

plate, which were randomly infused with either 10ng of pheromone or 1�l of pure ethanol (as 

control). Each male was placed in the centre of the arena and its responses to both 

pheromone and control papers were recorded for 15min. Time of contact with pheromone 

and control was defined as the number of seconds during which the male had any part of his 

body touching each filter paper. After 15min, the male was taken back to the shell vial for 

5min and then transferred to a second area containing the other pheromone. Time to first 

contact with pheromone (number of seconds until a male arrived at the pheromone paper for 

the first time since start of trial) was also recorded. Trials were blind regarding identity and 

genotype of the males and the order of exposure to both pheromones was assigned 

randomly for each male. 

 

Analysis of pheromone response data was performed in R 3.2.4 (R Development 

Core Team). To analyse total contact times, we corrected for time spent on the control paper 

during trials by subtracting the number of seconds males were in contact with the control 

from the number of seconds in contact with the pheromone in each trial. Negative values of 
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this corrected measurement (i.e. when a male spent more time on the control paper than the 

pheromone) were given a value of 0, as we considered that these males did not show a true 

pheromone response. We fitted a series of mixed models using the ‘lme4’ R package (Bates 

et al. 2015) to test whether patterns of pheromone response differ between the three groups 

of males included in this study (P. citri, P. ficus and CF x C F2 offspring). First, we fitted a 

binomial GLMM to test for differences in the frequency of responding males to both 

pheromones across genotypes. Then, we fitted two linear mixed models to further explore 

two additional aspects of behaviour of responding males: intensity of attraction (total time in 

contact with pheromones) and speed of response (time to first contact). In all three models, 

we included pheromone, genotype and their interaction as fixed effects. We also included 

order of exposure to both pheromones as an additional fixed effect and male ID as a random 

effect. We used likelihood ratio tests to assess significance of fixed effects and Tukey post 

hoc comparisons to test for differences between pairs of genotypes using the ‘multcomp’ R 

package (Hothorn et al. 2008). 

 

Species confirmation and primer mapping 

In order to confirm species identity of the PC_WYE3-2 and PF_1-1 lines used in the 

sex pheromone response experiment, we retrieved the 28S–D2, ITS2, COI–region 2 and 

COI–LCO sequences from the genome assemblies generated from both lines by our 

research group (PCITRI.V1 and PFICUS.V0, publicly available in http://mealybase.org). To 

obtain these sequences, we blasted the P. citri sequences for those regions obtained by 

Malausa et al. (2011) against both assemblies using the BLAST tool in http://mealybug.org 

with default settings. The best matches from each species were then compared to GenBank 

sequences using the NCBI BLAST tool (http://blast.ncbi.nlm.nih.gov). To reveal the extent of 

genome coverage of our microsatellite panel, we mapped all loci against both genome 

assemblies. All forward and reverse primer sequences were blasted against PCITRI.V1 and 

PFICUS.V0 using the BLAST tool in mealybug.org with default settings. 
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Results 

Microsatellite panel optimization 

We initially tested Pci-6, Pci-7, Pci-14, Pci-16, Pci-17, Pci-21, Pci-22 and Pci-24 from 

Martins et al. (2012) for amplification in all experimental lines. All markers successfully 

amplified in the three P. citri lines, while Pci-6 and Pci-14 failed to amplify in P. ficus. Since 

these two loci were found to be monomorphic in our P. citri lines, they were discarded for 

further genotyping. 

 

A list of the alleles amplified in both species is provided in Table S1. BLAST 

searches revealed that all markers are located within different scaffolds in both genome 

assemblies. Pci-16, Pci-17, Pci-21, Pci-22 and Pci-24 were found to be optimal diagnostic 

markers for hybrid crosses due to the presence of species-specific alleles. Pci-7 was also 

included in the genotyping panel for hybrid crosses due to its high allelic richness, even 

when alleles were shared between both species. For intraspecific crosses, only Pci-7, Pci-16 

and Pci-17 were found to be polymorphic within the P. citri lines examined in this study.  

 

Allele transmission in hybrid crosses 

In order to test allele transmission in hybrid males, we initially aimed to conduct all 

reciprocal crosses between both P. citri and P. ficus lines. However, we found extreme sex-

specific mortality in crosses with P. ficus mothers and P. citri fathers: hybrid males from 

these crosses (FC hybrids) consistently failed to reach adulthood, regardless of parental 

lines or raising conditions. We set at least 4 replicates of each FC cross from all possible 

combinations (PF_1-1 and PF_3-1 mothers x PC_WYE3-2 and PC_CP1-2 fathers) and only 

obtained three adult males, none of which managed to successfully mate to produce F2 

broods. Therefore, all hybrid males that survived to adulthood and fathered F2 broods in this 
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study derive from CF crosses (PC_WYE3-2 and PC_CP1-2 mothers x PF_1-1 and PF_3-1 

fathers). 

All F0 P. citri mothers and P. ficus fathers were genotyped to confirm the presence of 

alleles specific to both species at the diagnostic markers (Pci-16, Pci-17, Pci-21, Pci-22 and 

Pci-24) and to determine their Pci-7 genotypes. All F1 broods were genotyped after mating 

to confirm expected genotypes in case of parental homozygosity and to determine their 

genotypes at those loci they were heterozygous for in one or both F0 parents. In all cases of 

parental heterozygosity, F1 genotypes adjusted to expected patterns of PGE transmission: 

heterozygous F0 males transmitted one allele only (that of maternal origin) to all genotyped 

F1 males, while heterozygous F0 females transmitted both. Rarely (10 hybrid crosses), 

genotyping of F1 hybrid males unexpectedly revealed P. citri alleles only. This was 

interpreted as instances of females having mated prior to isolation or accidental 

contamination of F1 hybrid bottles with males from the maternal species and led to 

discarding of whole affected broods. 

 

From each F1 brood, 4 hybrid males were mated to father 4 F2 families each (with 

two exceptions: 5 males for W3-1 and 3 males from C3-4), yielding 64 F2 families (Fig. 1B, 

Appendix S2). We found that 63/64 F1 hybrid fathers showed complete PGE (Fig. 2A): they 

only transmitted maternally-derived alleles to the F2 at all loci and no grandpaternal (i.e. P. 

ficus) alleles were found in the genepool of the F2 broods they fathered. The only exception 

was W1-4_1 (Table S2): one of the F2 individuals sired by this male was found to have a 

grandpaternal P. ficus allele at two loci (Pci-17 and Pci-22). The other loci in this individual 

showed maternally-inherited F1 alleles only, as expected under PGE. The remaining 11 

genotyped individuals fathered by W1-4_1 received his maternal alleles only at these loci. 
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In total, 356 transmission ratios across all males and loci were estimated (at least 5 

for each male at the 5 inter-species diagnostic loci and an additional one at Pci-7 for 36 

males which were also heterozygous at that locus) (Appendix S3). 354 of these ratios, all 

except for these two exceptions mentioned before, had a value of 1, indicating complete 

PGE. Assuming equal probability of transmission of paternal alleles across all loci, we 

obtained an estimation of frequency of paternal escapes of 0.0007-0.0201 (95% CI). Even 

though we did not genotype females mated to F1, it was also possible to estimate maternal 

transmission ratios when a P. citri allele different from the one transmitted by the F1 father 

was observed in F2 families. These cases were indicative of maternal heterozygosity and 

allowed us to determine whether F1 females transmitted alleles in a Mendelian way, as 

expected in a PGE system. We could thus estimate 27 transmission ratios for F1 females, 

none of which deviated significantly from Mendelian expectations (exact binomial test, q-

value>0.01). 

 

Allele transmission in intraspecific crosses 

For intraspecific crosses, three biological replicates were set for each possible cross. 

However, only one replicate with PC_WYE3-2 mothers and PC_BGOX-3 father could be 

successfully raised into adulthood. For each F1 brood, between 3 and 5 males were mated 

to produce F2 broods. In total, we obtained transmission patterns for 65 F1 males at one 

informative locus at least (Fig. 2B, Appendix S4). Of these, 3 F1 males showed allele 

transmission patterns consistent with incomplete paternal genome elimination (Table S2). F2 

genotypes were consistent with BW_2_3 and BC1_3 transmitting a paternal allele once, 

both at the Pci-7 locus, and CB_3_1 passing on paternal alleles to a same F2 individual at 

the Pci-7 and Pci-17 loci. We validated all these exceptions by re-genotyping individuals 

showing escaped alleles. However, we could not genotype the PC_WYE3-2 female that was 

mated to CB3_1, which opens the possibility that the seemingly paternal allele that would 
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have been transmitted by this male to one of their offspring actually derives from the F1 

mother. Since the hypothesis of Mendelian inheritance for the putatively escaped allele at 

that locus cannot be rejected (11 F2 individuals, q-value=0.013), this escape cannot be 

unambiguously confirmed. 

 

 Overall, 144/148 transmission ratios across all males and loci were consistent with 

complete PGE (Appendix S5). As in hybrid crosses, we also estimated 21 transmission 

ratios for F1 mothers, none of which significantly departed from Mendelian expectations (q-

value>0.01). The frequency of paternal escapes in intraspecific crosses, again assuming 

equal rates across all three loci, was estimated to be 0.0074-0.0678 (95% CI). This value 

was not significantly different to the estimation obtained for hybrid crosses (Pearson's �2 test 

with Monte Carlo simulation, p=0.065). 

 

Combining data from hybrid and intraspecific males, we obtained a common 

estimation of frequency of paternal escapes of 0.0044-0.0257 (95% CI). In total, 4 of 1,548 

genotyped F2 individuals between hybrid and intraspecific crosses exhibited grandpaternal 

alleles at one or two loci. In all these escapes, it is unclear whether both parental copies 

were incorporated into sperm or whether the escaped paternal allele replaced the maternal 

copy. The allele transmitted to the F2 offspring by their mother and the maternally-inherited 

in the F1 father were the same in all cases, so that triploid microsatellite peaks evidencing 

transmission of both parental homologs could not be found. 
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Response to sex pheromones 

To test whether F1 hybrid males can transmit paternal pheromone preferences to 

their offspring, we tested and compared response patterns to both C-phe (P. citri) and F-phe 

(P. ficus) pheromones between groups of pure males from both species and F2 offspring of 

CF fathers and P. citri mothers. Under complete PGE, CF males should always transmit P. 

citri (i.e. maternal) pheromone preferences to their sons and therefore males from F2 broods 

should exhibit identical pheromone responses to pure P. citri males. 

 

As expected, we found that most pure species males showed a response toward 

their conspecific pheromone (86.3% of P. citri males responded to C-phe and 80.1% of P. 

ficus males responded to F-phe), but we also found strong cross-attraction to the 

pheromone from the other species (47.1% of P. citri males were attracted to F-phe and 

53.8% of P. ficus males to C-phe). The F2 offspring of CF fathers crossed to P. citri mothers 

showed similar responses to P. citri males: 82.7% of them were attracted to C-phe, while 

56.5% responded to F-phe. (Fig. 3A). Attraction to both pheromones was shown by 41.2% of 

P. citri males and 53.8% of P. ficus males, while 7.8% and 19.2% failed to respond to either 

pheromone respectively. The frequencies of F2 males that showed response to both 

pheromones (49.3%) and lack of response to either (10.1%) were similar to P. citri males 

(Fig. 3B). 

 

A series of mixed models were used to test for differences in sex pheromone 

response patterns across the three different genotypes (Table S3). First, we fitted a binomial 

mixed model to detect significant differences in proportion of males from each genotype that 

responded to C-phe and F-phe. We found a significant effect of the interaction between 
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genotype and pheromone (LR8,6=20.59, p<0.001). The order in which males were exposed 

to the pheromones did not have an effect on response (LR8,7=0, p=0.997). Male identity, 

fitted as a random effect, explained 18.56% of the variance in response (�2
ID=0.1856). Post 

hoc comparisons revealed significant differences in pheromone response between 

intraspecific males from both species: P. citri males showed stronger response to C-phe 

than P. ficus males (Z=-2.856, p = 0.047) but, conversely, P. ficus males were not more 

strongly attracted to their own pheromone than P. citri males (Z=2.669, p=0.079). 

Comparisons between how these two genotypes responded to both pheromones revealed a 

similar pattern: P. citri males were more attracted to C-phe than to F-phe (Z=-3.933, 

p=0.001), but there was no significant difference in attraction to either pheromone in P. ficus 

males (Z=2.120, p=0.2701). We found no significant difference in response to either 

pheromone between P. citri males and F2 males (C-phe: Z=-0.374, p=0.9990; F-phe: 

Z=1.269, p=0.7961). 

 

Second, a linear mixed model was fitted to test whether there was any difference 

across genotypes in intensity of attraction, represented by total time spent by responding 

males in contact with the sex pheromones (Fig. 3C). Again, we found a significant interaction 

between genotype and pheromone (LR9,7=13.443, p=0.012) and no effect of order of 

exposure (LR9,8=0.1931, p=0.6603). The proportion of the variance explained by male 

identity was estimated to be 11% (�2
ID=0.3996). Post hoc comparisons revealed that both P. 

citri and F2 responsive males spent more time in contact with C-phe than F-phe (Z=2.120, 

p<0.001 and Z=-5.120, p<0.001), but P. ficus males did not show a significant difference in 

contact time with either pheromone (Z=0.766, p=0.972). No significant differences in contact 

time with either C-phe nor F-phe were found between P. citri and F2 males. 
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Finally, a second linear mixed model was used to test for differences in speed of 

response across genotypes (Fig. 3d). In contrast with previous models, we did not find any 

significant difference in time to first contact with the pheromones across the three 

genotypes: there was no significant effect of an interaction between genotype and 

pheromone (LR9,7 = 3.8853, p=0.1433). Again, order of exposure to pheromones had no 

significant effect either (LR9,8 = 0.9010, p=0.3425). Male identity explained 19% of the 

variance (�2
ID=0.5528). Together, these models revealed no difference between P. citri and 

F2 males, indicating that CF males were not able to transmit paternal pheromone 

preferences to their offspring. 

 

Discussion 

Paternal genome elimination is a genetic system characterised by whole-genome 

meiotic drive of maternally-inherited chromosomes in males at the expense of paternally-

inherited homologs. Because of this extreme deviation from fair Mendelian inheritance, PGE 

is expected to generate intragenomic conflict between maternal and paternal haploid 

genomes within males. The evolutionary success of PGE, which has independently emerged 

several times in Arthropoda and is estimated to be present in over 10,000 species (Burt & 

Trivers, 2006; Gardner & Ross, 2014; de la Filia et al., 2015), suggests that this conflict has 

been irrevocably resolved in favour of maternal genomes. Yet this notion seems difficult to 

reconcile with the dramatic differences in timing of elimination and degree of expression of 

paternal chromosomes observed not only across PGE origins, but also between closely 

related species (Normark, 2003; Ross et al., 2010a). Verbal models have predicted a 

coevolutionary arms race between parental genomes under PGE, triggered by strong 

selection on the paternal genome to escape elimination and subsequent maternal 

counteradaptations (Herrick & Seger, 1999; Burt & Trivers, 2006; Ross et al., 2010a). In this 

study, we aimed to determine whether there is scope for such an arms race by confronting 

independently-evolving maternal and paternal genomes within males produced in hybrid and 
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intraspecific crosses. We tracked the inheritance of both a genotypic (microsatellite markers) 

and a phenotypic trait (sex pheromone response) to determine if these males exhibited 

incomplete PGE consistent with a mismatch between parental genomes. The results of 

these experiments suggest that elimination of paternally-derived chromosomes is not 

completely effective, implying scope for intragenomic conflict, but do not offer enough 

evidence to infer the existence of an arms race between parental genomes. 

 

Detectable instances of transmission of paternal chromosomes through males but no 

evidence of a coevolutionary arms race between parental genomes 

F2 genotypes consistent with escapes of paternal alleles could be found in both 

hybrid and intraspecific males. Although these escapes were relatively few, they are far from 

negligible considering the limitations of a classical microsatellite approach with a limited 

number of diagnostic markers. We genotyped up to 12 F2 offspring per cross, less than 5% 

of the average number of eggs laid by P. citri females in experimental conditions (300-500 

eggs) (Myers, 1932; Ross et al., 2010b). Also, we could only use three informative markers 

for intraspecific crosses, which falls short of covering the haploid complement of these 

species (n=5) (Hughes-Schrader, 1948). Even so, we could detect escapes at a frequency of 

0.4-2.5%, which is substantial at the population scale. If anything, our study is likely to 

underestimate escapes due to partial genome coverage and low offspring number that can 

be feasibly genotyped with such a design. As for the existence of a coevolutionary arms race 

between parental genomes in mealybugs, these results are inconclusive. We did not find a 

higher frequency of escapes in hybrids than in intraspecific males, which would be indirect 

evidence for historical coevolution of paternal and maternal genomes. Also, for such an 

arms race to occur, the ability of paternal alleles to escape elimination must be heritable. 

The experimental design does not allow determining whether escapes are accidental or if 
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there is a heritable component to incomplete PGE, which would require a larger multi-

generational crossing design. 

The observed leakages of paternal alleles cannot be explained by recombination, 

since meiosis is achiasmatic in mealybug males (Bongiorni et al. 2004), so it must be 

attributed to transmission of entire paternal chromosomes. Our results cannot reveal 

whether escaped paternal chromosomes are transmitted in addition to their maternal 

homologs or by replacing them, but indicate that leakages do not involve the complete 

paternally-inherited set: even when half of the males exhibiting incomplete PGE transmitted 

a paternal allele at more than one locus at once, only maternal copies were transmitted at 

other informative loci. This indicates that paternal escapes can involve one or more 

chromosomes at the same time (our genome assemblies are not complete enough to assign 

markers to chromosomes and linkage relationships between markers are unknown, so loci 

affected by paternal transmission simultaneously could be situated on the same 

chromosome), but not all. We did not find a clear pattern across loci suggesting differences 

in likelihood to escape elimination either: most paternal escapes were found at Pci-7, but our 

detection power was highest for this locus.  

However, due to the low number of F2 individuals found to receive a paternal allele in 

this study, these escapes must be interpreted with caution. Although the experiments 

presented in this chapter were carried out in controlled conditions in the laboratory, reducing 

chances of misassignment of individuals, other factors could account for the presence of 

seemingly escaped alleles in the offspring. The frequency of F2 genotypes with an escaped 

allele found in this study is in the order of 10
-3

, which falls within the range of typical error 

rates in microsatellite studies (Pompanon et al. 2005; Hoffman & Amos 2005; Guichoux et 

al. 2011) and higher frequency SSR mutation rates (Ellegren 2000). Common causes of 

reproducible error, such as null alleles or allelic dropout (Dakin & Avise 2004), can be 

confidently excluded, as all escapes resulted in heterozygous genotypes. However, of 
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particular concern in our methodology could be cross-contamination between samples, since 

DNA extractions were performed in 96-well plates instead of individual tubes. For hybrid 

crosses, though, the reappearance of diagnostic P. ficus alleles in a single individual cannot 

be explained by contamination, since all other individuals in the same plate exclusively 

carried P. citri alleles transmitted by their hybrid fathers and their P. citri mothers; also, two 

simultaneous mutations to P. ficus alleles affecting the maternal P. citri genome in a F1 

hybrid would be extremely unlikely. However, independent assessment of paternal escapes 

through more robust SNP-based parentage methods, yielding a much higher number of 

traceable markers (Elshire et al., 2011; Kaiser et al., 2017), would offer a superior evaluation 

of paternal chromosome leakages and provide information on their distribution in the 

genome, which cannot be inferred with this microsatellite panel. In combination with a 

deeper pedigree, this approach would facilitate exploring heritability of paternal escapes in 

mealybugs and increase our power to examine the coevolutionary dynamics between 

maternally- and paternally-inherited genomes.  

 

A likely cause of transmission of paternal chromosomes: sporadic failure of meiotic parent-

of-origin discrimination mechanisms  

 A complete understanding of PGE at the molecular level is still lacking, although 

available data provides some clues on how paternal chromosome leakages might occur. 

Mealybug spermatogenesis has been studied extensively and the sequence of events and 

timing of paternal genome elimination are well described (Hughes-Schrader, 1948; Bongiorni 

et al., 2004; 2009). In mealybugs, meiosis follows an inverted sequence (Chandra, 1962; 

Viera et al., 2008) and segregation of parental homologs is delayed until anaphase II, which 

involves a monopolar spindle that only interacts with the euchromatic maternal set. Only the 

spermatids carrying maternal chromosomes progress to complete sperm maturation, while 

spermatid nuclei containing the paternal set, which lags behind in anaphase II, degenerate 

(Bongiorni et al., 2004). How can paternal chromosomes escape this fate? Several lines of 
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evidence suggest that escapees must undergo a reversal of heterochromatinization to allow 

attachment of the monopolar spindle. In the mealybug Pseudococcus viburni, paternally-

inherited material that loses its condensed state during meiosis (either supernumerary B 

chromosomes or irradiation damaged autosomes) segregate into active sperm with the 

maternal complement (Nur, 1962; Brown & Nur, 1964; Nur, 1970). Moreover, due to the 

holocentric nature of mealybug chromosomes (i.e. they lack a localised centromere) 

(Schrader, 1935; Wrensch et al., 1994), partial lack of heterochromatinization can be 

sufficient for spindle attachment: translocated chromosomes with both euchromatinized 

maternal and condensed paternal segments have been shown to migrate preferentially with 

the maternal set (Nur, 1970). If reversal of heterochromatinization is necessary for paternal 

replacement of maternal chromosomes, either mutations or sporadic failures (or 

manipulation by the paternal genome) of the epigenetic machinery that codes parent-of-

origin chromosome information in mealybugs during spermatogenesis, such as DNA 

methylation levels (Bongiorni et al., 1999) or histone modifications (Khosla et al., 2006; 

Prantera & Bongiorni, 2012)—which undergo extensive reorganization during meiosis 

(Bongiorni et al., 2009)—, could be responsible for paternal leakages. 

 

Transmission of sex pheromone preferences through CF hybrids confirms PGE 

We found no evidence of transmission of paternal sex pheromone preferences 

through males. An important difference between our study and previous work on pheromone 

response that complicated the predicted outcome of this experiment is cross-attraction to C-

phe shown by half of the tested P. ficus males, which does not occur in wild populations 

(Kol-Maimon et al., 2014b) and had only been reported before as a rare event in laboratory 

conditions (Kol-Maimon et al., 2010). The reasons for this cross-attraction are unclear and 

cannot be attributed to contamination of P. ficus experimental cultures with P. citri males, as 

we routinely genotyped P. ficus individuals used in trials with our diagnostic microsatellite 

panel and, additionally, confirmed the species identify of the PF_1-1 line using common 
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barcoding regions (Table S4). Nevertheless, our statistical analysis did not detect 

differences in different components of pheromone response between male offspring of CF 

hybrids and the grandmaternal species, P. citri. The genetic architecture of sex pheromone 

response remains unexplored in mealybugs, yet in other insect species such as moths and 

Drosophila the specificity of male pheromone response has been shown to be controlled by 

single genes or several tightly linked loci (Roelofs et al., 1987; Löfstedt, 1993; Kurtovic et al., 

2007; Gould et al., 2010). If this is also the case in mealybugs, leakages of paternal 

chromosomes could be sufficient for transmission of the genetic toolkit involved in 

pheromone response to F2 males, but expression of preference would be dependent on 

overriding silencing of paternal chromosomes. 

Patrilineal inheritance of sex pheromone preferences was previously reported by 

(Kol-Maimon et al., 2014b) in an analogous experimental setup using FC males. We were 

unable to raise viable FC males and could only test sex pheromone response in F2 broods 

fathered in the reciprocal cross, and since their study did not explore paternal transmission 

through CF hybrids, both studies may be complementary and suggest a parental species 

effect in PGE failure, with P. citri alleles being more prone to be expressed in a P. ficus 

maternal background than vice versa. Taken together, these two studies reveal differences 

in the ability of reciprocal hybrid mealybug males to transmit and express paternal 

preferences, which most likely depend on asymmetric interactions between the genomes of 

these species in a hybrid background. This is further supported by the strong differences in 

mortality of reciprocal hybrid males found in this and, to a lesser magnitude, previous studies 

(Rotundo & Tremblay, 1982; Tranfaglia & Tremblay, 1982). Early condensation of paternal 

chromosomes during male development should prevent the expression of paternal alleles, 

as shown by inheritance studies of phenotypic markers in P. citri, which are expressed in 

males when maternally-inherited only and regardless of dominance (Brown & Nur, 1964; 

Brown & Wiegmann, 1969). Since maternal genomes are responsible for maintaining 

paternal chromosomes silencing in mealybugs (Brown & Nur, 1964; Ross et al., 2010a), a 
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convincing explanation for the reproducible failure of FC matings to produce viable sons 

would be maternal P. ficus backgrounds failing to silence paternal P. citri genomes, leading 

to expression of harmful Dobzhansky-Muller incompatibilities between parental genomes 

(Orr, 1996; Johnson, 2010). Several experiments can be suggested to test this hypothesis: 

for instance, comparing patterns of paternal chromosome heterochromatization in reciprocal 

hybrid males during progressive developmental stages, to determine whether loss of 

silencing in FC males coincides with timing of mortality, or directly determine degree of 

paternal chromosome expression in reciprocal hybrids via allele-specific qPCR or RNA-

sequencing. 

 

Can paternal genome escapes challenge PGE? 

PGE has a long and successful evolutionary history. The broad taxonomic 

distribution of PGE in arthropods and its presence in very large, species-rich groups—e.g. 

scale insects (Hemiptera) (Gullan & Cook, 2007), gall midges (Diptera) (Espírito-Santo & 

Fernandes, 2007), lice (Psocodea) (Li et al., 2015)—suggest a very evolutionary stable 

mode of reproduction. However, a closer look at its distribution in certain groups such as 

scale insects—by far the most speciose and diverse group arising from a single PGE origin 

(Gardner & Ross, 2014)—reveals recurrent transitions between different forms of PGE 

(early/late elimination of paternal chromosomes, somatic silencing), which might be the 

outcome of underlying turmoil between paternal and maternal genomes. For example, the 

evolution of more complex forms of PGE in which some or all paternal chromosomes are 

eliminated earlier than in the ancestral system present in mealybugs has been interpreted as 

the outcome of maternal moves to obliterate resistance of paternal alleles during 

spermatogenesis (Herrick & Seger, 1999). Also, PGE has independently reverted to 

diplodiploidy at least twice in the family Eriococcidae (Nur, 1980; Normark, 2003; Ross et al., 

2010a) These reversions show that paternal responses to PGE can evolve and become 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

successful, but are these cases exceptional or an extreme manifestation of incomplete 

maternal control inherent to PGE systems? 

 

Paternal escapes are difficult to detect and study due to their infrequent occurrence 

and the low sensitivity and high error rates of methodologies used to uncover them. For 

example, possible events of paternal transmission in a germline PGE species, the coffee 

borer beetle Hypothenemus hampei (Coleoptera: Scolytidae), could either not be 

distinguished from misclassification of individuals exhibiting genotypes incompatible with 

PGE or were dismissed (Borsa & Kjellberg, 1996; Borsa & Coustau, 1996). The first clear 

demonstration of paternal transmission through males was obtained in another germline 

PGE species, the human louse Pediculus humanus (McMeniman & Barker, 2005; de la Filia 

et al., 2017). Planococcus mealybugs (Kol-Maimon et al., 2014b, this study) would be the 

second confirmed case of patrilineal inheritance, as the results of both these studies 

suggest. A comparison between these two cases of paternal leakage brings out some 

interesting considerations. First, the mode of paternal escape appears to be the same, via 

replacement of maternal homologues in sperm. Second, human louse and mealybugs both 

have the most basal form of PGE, where paternal chromosomes are not destroyed prior to 

spermatogenesis and undergo meiosis with their maternal counterparts, unlike in more 

evolved forms of PGE (Ross et al., 2010a), thus potentially creating more scope for paternal 

resistance adaptations to evolve. Furthermore, paternal escapes are more frequent in both 

head and body lice than in mealybugs, which could be related to the apparent lack of 

paternal chromosome heterochromatinization in P. humanus (de la Filia et al., 2017) if the 

hypothesis of paternal silencing as an evolutionary maternal response to paternal resistance 

(Herrick & Seger, 1999) is correct. 
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However, these observations remain anecdotal until more cases of incomplete PGE 

are reported and evidence can be drawn from their phylogenetic distribution and 

comparisons between the different manifestations of this genetic system. Here, we have 

obtained inheritance patterns that suggest sporadic patrilineal inheritance in mealybugs and 

a solid ground to fully explore the dynamics of an evolutionary arms race between parental 

alleles under PGE in future broader studies using Planococcus or other mealybug species. 

Other germline PGE species with or without paternal chromosome silencing that can be 

easily bred in the laboratory, such as the coffee borer beetle, book lice (Hodson et al., 2017) 

or sciarid flies, are promising candidates for inheritance studies aimed at determining 

whether paternal chromosome escapes that can challenge maternal control in basal PGE 

taxa are the norm rather than the exception. 

 

Supporting Information 

Appendix S1. Supplementary tables 

Appendix S2. Hybrid F1 males and F2 offspring genotypes 

Appendix S3. Transmission ratios for hybrid F1 males 

Appendix S4. Intraspecific F1 males and F2 offspring genotypes 

Appendix S5. Transmission ratios for intraspecific F1 males 
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Figure legends 

Figure 1. Schematic diagram of crossing design. For both hybrid and intraspecific crosses, a 

female (circle) from an isofemale line with AA genotype at a given locus was mated to a 

male (square) from a different line (BB) to produce an F1 brood with AB genotype. F1 males 

from these broods were mated to a female (CC) to produce F2 broods. F1 male 

transmission ratios were calculated as frequency of maternal allele A in the F2 offspring. 

Under complete PGE, only AC genotypes are expected in the F2 offspring, so the presence 

of BC individuals reveals escapes of paternal alleles through F1 males. (B) Hybrid crosses 

and genotypes of F1 broods. 4 biological replicates were produced for each F0 cross. The 

number of hybrid males from each F1 brood mated to produce F2 families is indicated in 

brackets. (C) Intraspecific P. citri crosses and genotypes of F1 broods. 3 biological replicates 

were produced for each F0 cross, except for WB crosses. The number of hybrid males from 

each F1 brood mated to produce F2s is indicated in brackets. 

Figure 2. Paternal allele transmission ratios for F1 males in hybrid (A) and intraspecific P. 

citri crosses (B). F1 males are labelled as follows: the first two characters denote F0 

maternal and paternal genotypes, followed by a number corresponding to the F0 cross and a 

second number indicating the identity of the male: e.g. C1-1_1 refers to the first F1 male 

deriving from the first PC_CP1-2 x PF_1-1 F0 cross. Each data point represents a F1 male 

allele transmission ratio for a single informative marker. The number of successfully 

genotyped individuals for each F2 family originated by the F1 male is indicated in brackets. 

Figure 3. Male response to sex pheromones. 3A, percentage of males from each genotype 

exhibiting responses to both C-phe and F-phe. 3B, number of males exhibiting attraction to 

both pheromones, either or none. 3C, number of seconds spent by responding males in 

contact to both pheromones. 3D, time to first contact of responding males. Error bars 

represent standard errors (binomial standard error in panel 3A). Number of males exhibiting 

pheromone response from each genotype is shown above error bars in 3C and 3D. 
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