

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Aluminium and fluoride in drinking water in relation to later dementia risk

Citation for published version:

Russ, T, Killin, L, Hannah, J, Batty, GD, Deary, I & Starr, J 2019, 'Aluminium and fluoride in drinking water in relation to later dementia risk', *The British Journal of Psychiatry*. https://doi.org/10.1192/bjp.2018.287

Digital Object Identifier (DOI): 10.1192/bjp.2018.287

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: The British Journal of Psychiatry

Publisher Rights Statement:

This article has been published in a revised form in The British Journal of Psychiatry, https://doi.org/10.1192/bjp.2018.287. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. ©The Royal College of Psychiatrists 2019

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Aluminium and fluoride in drinking water in relation to later dementia risk: the Scottish

Mental Survey 1932 cohort

Tom C. Russ PhD MRCPsych, Consultant Psychiatrist & Honorary Clinical Senior Lecturer^{1-5*}

Lewis O. J. Killin PhD, Postdoctoral researcher^{3,5}

Jean Hannah MSc DRCOG FRCGP, Clinical Director, NHS Greater Glasgow & Clyde Nursing Homes Medical Practice⁶

G. David Batty DSc, Professor of Epidemiology^{1, 2, 7}

Ian J. Deary PhD, Professor of Differential Psychology²

John M. Starr PhD FRCPEd, Professor of Health & Ageing^{1, 2}

- 1. Alzheimer Scotland Dementia Research Centre, University of Edinburgh
- 2. Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh
- 3. Centre for Dementia Prevention, University of Edinburgh
- 4. Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh
- 5. Scottish Neuroprogressive and Dementia Network, NHS Scotland
- 6. University of Stirling
- 7. Department of Epidemiology & Public Health, UCL

* Dr Tom Russ, Alzheimer Scotland Dementia Research Centre, University of Edinburgh,
7 George Square, Edinburgh EH8 9JZ. Tel: (0131) 650 4340. Email: <u>T.C.Russ@ed.ac.uk</u>

WORD COUNT: 3140

ABSTRACT WORD COUNT: 250

FUNDING: This work was supported by Alzheimer Scotland through the Marjorie MacBeath bequest which funded TCR's salary for one year from 2015-16.

ACKNOWLEDGEMENTS: We are grateful to David Grzybowski at the Drinking Water Quality Regulator for Scotland for providing the water data. Syntax to produce the maps in R was adapted from that posted on Timo Grossenbacher's website (<u>https://timogrossenbacher.ch/</u>).

AUTHOR CONTRIBUTIONS: TCR conceived the analysis; LOJK collected the environmental data; TCR and JH collected the health data; IJD was PI of the project which digitised the Scottish Mental Survey 1932 ledgers; GDB and JMS supervised the process of obtaining and cleaning the linked data and previous publications from this dataset; TCR analysed the data and drafted the manuscript; All authors revised the manuscript for critical content.

1 ABSTRACT

2 Background: Dementia is an important condition but its environmental risk factors are poorly 3 understood. Aluminium and fluorine in drinking water have both been linked with dementia but 4 uncertainties remain about this relationship. 5 Aims: In the largest longitudinal study in this context we set out to: (1) explore the individual effect of aluminium and fluoride in drinking water on dementia risk; and (2) with fluorine having the capacity to 6 7 increase absorption of aluminium, we also examine any synergistic influence on dementia. 8 Methods: We used Cox models to investigate the association between mean aluminium and fluoride 9 levels in drinking water at their residential location (collected 2005-2012 by the Drinking Water Quality Regulator for Scotland) with dementia in members of the Scottish Mental Survey 1932 cohort who 10 were alive in 2005. 11 12 Results: A total of 1972/6990 individuals developed dementia by the linkage date in 2012. Dementia 13 risk was raised with increasing mean aluminium levels in women (HR per SD increase 1.09, 95%CI 14 1.03-1.15; P<0.001) and men (1.12, 1.03-1.21, P=0.004). A dose-response pattern of association was 15 observed between mean fluoride levels and dementia in women (1.34, 1.28-1.41, P<0.001) and in men (1.30, 1.22-1.39, P<0.001) with dementia risk more than doubled in the highest quartile compared to 16 17 the lowest. There was no statistical interaction between aluminium and fluoride levels in relation with 18 dementia.

Conclusions: Higher levels of aluminium and fluoride were related to dementia risk in a population of
 men and women who consumed relatively low drinking water levels of both.

21 Declaration of interest: none.

3

22 INTRODUCTION

23 Dementia is a major, growing public health problem and, with disappointing results from treatment-24 orientated studies, identifying risk factors for primary prevention is key.(1) Whereas genetic risk and lifestyle factors are important in the development of dementia, there is evidence that environmental 25 26 factors may also play a role.(2-5) One potentially important environmental risk factor is drinking water quality. Aluminium can occur naturally in water but is also widely used in water treatment, including in 27 28 Scotland.(6, 7) Aluminium has a wide variety of neurotoxic effects and there is some evidence supporting aluminium influencing β -amyloid oligomerization;(8) it has not been linked with other 29 30 health outcomes.(7) In terms of epidemiological evidence, only one longitudinal study has investigated aluminium in drinking water and dementia,(9) though a number of cross-sectional studies - many small 31 in size - make up a complex literature:(4) seven studies found a positive association between aluminium 32 levels in drinking water and dementia and five found no association or conflicting findings. 33 34 Furthermore, fluorine can increase aluminium absorption from drinking water since aluminium fluoride has greater bioavailability.(10) Fluoride occurs naturally in water and is not added in Scotland.(6) High 35 levels of fluoride affects skeletal tissues and possible links with cancer have been identified but low 36 levels of intake protect against dental caries.(7) Accordingly, the present study aims to explore the 37 38 association between aluminium and fluoride levels in drinking water with dementia in a large 39 longitudinal study in Scotland where such levels are below levels considered acceptable according to guidelines (mean aluminium level in Scotland 37.4µg/L compared to regulatory limits in Scotland 40 <200µg/L; mean fluoride [F] level in Scotland 53.4µg/L compared to WHO fluorine [F] guideline 41 value $<1500\mu g/L$). This is the largest longitudinal study on the topic to date and the first to explore 42 aluminium and fluoride together. 43

44

45 METHODS

46 Study sample

47 This study used data from the Scottish Mental Survey 1932 (SMS1932); in this almost all people born in 48 1921 and at School in Scotland in June 1932 took part in a comprehensive national intelligence test at mean age 11 years as previously described in detail(11) 5.6% of participants did not take part in the test 49 because they were absent from school but were still recorded in the test ledgers without a test score. 50 51 The intelligence test was the Moray House Test no. 12 from which an IQ score was derived, corrected 52 for age in days at the time of testing. Participants have been passively followed up into later life using 53 anonymised probabilistic record linkage to hospital admissions and death certificate data, as described 54 in detail in a previous report.(2) Approximately 43% of the 86,250 test participants (apart from those 55 living in the counties of Angus, Fife, and Wigtown; SMS1932 ledgers for these locations have been lost) were identified in later life. Dementia cases were identified by any mention of codes 290.0 to 290.4, 56 57 290.8, 290.9, 291.1, 291.2, 294.1, 294.2, 294.8, 294.9, and 331.0 to 331.9 for ICD-9 and codes F00-58 F05.1, F09, G30, and G31 for ICD-10 recorded on electronic medical records or death certificates after 59 2004. A subsample was also identified from primary care records, specifically the Greater Glasgow & 60 Clyde Nursing Homes Medical Practice which exclusively treated residents of nursing homes. An 61 individual's residential location (postcode sector) was recorded from the record which first mentioned dementia for those who developed this condition. For those who did not develop dementia, their 62 63 residential location at the first record after the age of 60 years (the earliest possible due to the electronic medical records) which may have been at death. We excluded individuals who died before the exposure 64 65 period which began in 2005. This study received ethical approval from the Scotland A Research Ethics 66 Committee (10/S1103/6). Collecting individual informed consent from participants was not feasible.

67

68 Environmental data

Water quality data were obtained from the Drinking Water Quality Regulator for Scotland (DWQR) for the years 2005 to 2014. The DWQR is responsible for regulating public water supplied by Scottish Water. Prior to the establishment of Scottish Water in 2002, the responsibility for monitoring water quality was the responsibility of separate local authorities. Aluminium and fluoride levels in drinking water (micrograms per litre) were extracted from the database. 74 Sampling sites were identified by longitude and latitude and were widely distributed across Scotland, 75 particularly where the population is more concentrated (Supplementary Figure 1). Of 50,378 76 aluminium and 15,808 fluoride sampling sites, the location of the site was missing for 1128 and 556 77 locations, respectively. These sites were assigned the location from the closest row above in the 78 database. Supplementary Table 1 shows the number of sampling sites for aluminium and fluoride in 79 each year (2005-2012) and summarises the levels of these substances in drinking water in Scotland. 80 We used the idw() function from the gstat package for R for Windows version 3.4.3 to interpolate values for aluminium and fluoride using Inverse Distance Weighting across a spatial grid with spacing 81 82 of 0.1 degrees of longitude or latitude for each year separately. This allowed us to estimate values for areas where no measurements had been made. The mean values for each grid area within every 83 postcode sector in Scotland were then calculated (again for each year separately) which were assigned to 84 85 each individual based on their residential location. We used each individual's age to create dummy 86 variables indicating whether they were alive for any of each of the years from 2005 to 2012. These 87 dummy variables were then used to calculate a 'personal' mean value for aluminium and fluoride using 88 only data from the years in which the individual was alive to be exposed. For example, an individual who died at the age of 88 would have been alive in the years 2005 to 2009 inclusive; data from 2010-89 90 2012 would be ignored for this person. These 'personal' mean values were standardised and centred on zero such that a unit increase indicated one standard deviation increase in the original scale (10.0µg/L 91 92 for aluminium and 16.0mg/L for fluoride). We also calculated quartiles of aluminium and fluoride values to allow us to examine the shape of any association identified. 93

94

95 Socioeconomic data

96 In order to account for socioeconomic position, we obtained Scottish Index of Multiple Deprivation 97 (SIMD) which provides a relative measure of deprivation by small area (datazone, of which there are 98 6505 in Scotland in the 2012 data we used) and incorporates the following domains: employment; 99 income; health; education, skills and training; geographic access to services; crime; and housing.(12) 100 Each individual was assigned a rank based on the datazone in which they lived, either at the time

101 dementia was first mentioned or the first record after the age of 60 years.

102

103 Statistical modelling

104 After confirming that the proportional hazards assumption was valid using the cox.zph() function from the survival package in R (all P>0.1), we constructed Cox proportional hazards models for the 105 106 association between aluminium and fluoride levels in drinking water with dementia in men and women 107 separately. Age in years over the age of 84 was the timescale and all models were additionally adjusted 108 for age-11 IQ since this has also been linked with dementia risk in this cohort.(13) We made the decision to analyse separately by gender – despite preliminary analyses suggesting there was no 109 110 statistical interaction by sex (P>0.5) - because of evidence that the pattern of geographical variation in 111 dementia risk varies between men and women (Supplementary Figure 2).(2) We conducted a 112 sensitivity analysis, additionally adjusting the above models for SIMD rank. We additionally constructed 113 a joint model investigating for a statistical interaction between aluminium and fluoride. Maps were 114 produced in R using the ggplot2 package.

115

116 **RESULTS**

The sample comprised 19,272 men and 18,325 women, but 4408 men and 3446 women were missing 117 118 residential location in later life. Men were overrepresented in those missing residential location 119 $(\chi_1 = 93.8, P < 0.001)$ but, while statistically significant due to the large sample size, individuals with 120 missing residential location scored only 0.9 IQ points lower than those who had location data (P<0.001). Given the known effect size of IQ in relation to dementia, a difference of 0.06 standard 121 122 deviations is unlikely to be important.(13) A further 9536 men and 7984 women died before the monitoring period began in 2005, and 2600 men and 2633 women were missing childhood IQ. This 123 124 resulted in an analytic sample of 2728 men and 4262 women alive in 2005 of whom 622 men and 1350 125 women were identified as having subsequently developed dementia. All participants were approximately 126 84 years old at the start of the exposure period and were followed up for a mean of 2.7 (SD 2.1, range127 0-7) years.

Levels of aluminium and fluoride in drinking water derived from DWQR data are shown in Supplementary Table 1 and Figure 1. Mean aluminium levels in drinking water in participants were 37.4μ g/L (SD 10.0, range 10.5-92.8) and mean fluoride levels were 53.4μ g/L (SD 16.0, range 23.8-181.1).

Table 1 and Figure 2 show the results of the Cox proportional hazards models. Higher mean 132 aluminium levels in drinking water were associated with an increased risk of dementia in women 133 (adjusted HR per SD increase, 95% CI 1.09, 1.03, 1.15, P<0.001) and men (1.12, 1.03, 1.21, P=0.004). 134 135 Dementia risk was increased in all quartiles compared to the lowest but Figure 2 suggests no doseresponse pattern of association. Higher mean fluoride levels in drinking water were associated with an 136 increased risk of dementia in women (1.34, 1.28, 1.41, P<0.001) and men (1.30, 1.22, 1.39, P<0.001) in 137 138 a stepwise pattern. Dementia risk was more than doubled in this highest fluoride quartile compared to the lowest. Similar to our previous report linking early life cognition with dementia, the aluminium-139 140 adjusted HR of dementia per one SD decrease in age 11 IQ was 1.10 (95% CI 1.04, 1.16) in women and 1.00 (0.92, 1.08) in men.(14) Living in the most deprived 15% of areas (in late-middle-age or later life) 141 142 was not associated with an increased risk of dementia compared to the least deprived 85% in women 143 (aluminium-adjusted HR 0.99, 0.86, 1.14; P=0.89) or men (0.93, 0.75, 1.16; 0.53). Adjusting for SIMD rank in addition to age 11 IQ did not alter our conclusions (Supplementary Table 2). There was no 144 statistical interaction between aluminium and fluoride levels when both were included in a model 145 146 together.

147

148 **DISCUSSION**

We observed an association between the mean levels of aluminium and fluoride in drinking water and risk of dementia in women and men but found no evidence for an interaction between the two. The pattern of association was different with evidence of a dose-response association for fluoride in women

8

152 and men but a flatter association of raised risk in all quartiles compared to the lowest quartile of

153 aluminium concentrations. Further adjusting for area-level deprivation did not affect our results.

154

155 **Comparison with other literature**

156 The link between aluminium and dementia has a long and controversial history. The WHO has stated that "[0]n the whole, the positive relationship between aluminium in drinking-water and AD, which 157 was demonstrated in several epidemiological studies, cannot be totally dismissed."(7) This report 158 highlighted confounding and aluminium intake from other sources (aluminium from drinking water is 159 160 only about 5% of total intake) as being important factors not frequently dealt with in the literature. We recently reviewed the literature on environmental risk factors for dementia, including aluminium in a 161 162 variety of forms.(4) This review identified one cohort study and 12 cross-sectional analyses 163 investigating the relationship between aluminium in drinking water and dementia. The only study 164 assigned a high quality rating (1925 participants) found that consumption of aluminium in drinking 165 water in excess of 0.1 mg per day doubled an individual's risk of dementia (N=461) and tripled their risk of Alzheimer's dementia (N=364).(9) With 6990 participants, of whom 1972 developed dementia, 166 our study is substantially larger. The remaining studies – all cross-sectional – showed varying results 167 168 (seven positive, five no effect) but a trend was noted larger studies more likely to observe a positive 169 association between aluminium levels and dementia risk. The four studies identified in the review which examined occupational exposure to aluminium were generally small and gave mixed results. Accidental 170 171 contamination of drinking water with aluminium sulphate caused cerebral dysfunction which adds weight to the possibility that lower levels of aluminium may carry a health risk.(15) 172 173 Only one study was identified which investigated the association between fluoride and dementia.(16)

This cross-sectional US study linked annual county-level incidence of dementia (calculated from 160 hospital case records) to fluoride concentrations in public water supplies. In contrast to the direction of our findings, the county with the highest levels of fluoride in drinking water (4.18mg/L) had the lowest annual incidence of dementia.

- 178 The levels of both aluminium and fluoride measured in Scotland are relatively low in comparison to
- 179 the guidelines set by the WHO. Therefore, the fact that we nevertheless observed a dose-response

180 association between aluminium and fluoride levels in drinking water and dementia risk which was not

181 explained by childhood IQ or area-level deprivation is particularly interesting. This suggests that there
182 may be no safe levels of these substances when it comes to dementia risk.

183 The mechanisms of aluminium-related neurotoxicicty are multiple and complex but oxidative stress184 has been highlighted as being of particular importance.(17)

185

186 Limitations and strengths of the present study

There are a number of limitations to the present study which must be borne in mind, several of which have been discussed previously.(2, 13) First, the linkage to electronic medical and mortality records was incomplete because of emigration, death before the start of the electronic records, and the probabilistic methodology used – less than half of the original 87,498 participants in the SMS1932 were identified in later life (43%). However, this compares favourably with the response in similar studies, for example 56% in CFAS-II.(18) Comparing IQ scores – the only baseline data available – in those who were traced and those who were not revealed only trivial differences.

194 Second, the dementia outcome is open to criticism. It was not feasible to follow up thousands of 195 participants across the whole of Scotland and so 'passive' anonymised follow up using record linkage 196 was used. However, this relies on the accuracy and completeness of the records used and we have 197 examined this in these Scottish data. The mortality data alone miss approximately 28% of people with a robust diagnosis of dementia from a tertiary-referral memory clinic(19) and the hospital admission data 198 199 miss about 46% of people with a robust dementia diagnosis agreed by consensus.(20) In the former 200 study, there were also no differences in area-level deprivation or premorbid IQ (estimated by the National Adult Reading Test) at baseline between people who had dementia correctly recorded and 201 202 those who did not (unpublished results available from the author on request) suggesting that there was no bias in reporting related to socioeconomic position or intelligence. Combining multiple sources, as 203 204 in the present study, will reduce the chance of missing individuals.(2) Furthermore, when examining

associations between putative risk factors and outcomes, missing some cases should not alter an
observed association and, indeed, this is the approach to follow up being taken by the N=500,000 UK
Biobank study.(21) However, this methodology does not easily allow disaggregation of dementia into
the individual diseases which cause this syndrome – Alzheimer's dementia, vascular dementia, dementia
with Lewy bodies, etc. – since so many records use generic dementia codes rather than disease-specific
ones.

211 Third, water data were only available for the period 2005-2012. Thus, the sample who had survived to the start of the exposure period was substantially reduced from baseline. The sample sites were 212 distributed widely across Scotland (Supplementary Figure 1) and the number of sites was 213 approximately constant each year (Supplementary Table 1). The spatial interpolation used to estimate 214 215 values for areas where no measurement occurred introduces uncertainty but, in fact, few participants 216 would live far from a sampling site since samples were co-terminous with areas of population density. 217 Related to this exposure period is that we know nothing of the participants' exposure to drinking water 218 prior to 2005, i.e. for the first 84 years of their lives. It seems reasonable to assume a low level of exposure to aluminium and fluoride during this period, but we cannot provide further justification for 219 220 this assumption. Given that neurodegeneration starts decades before the clinical onset of dementia 221 symptoms, it may be exposure many years before dementia diagnosis that is important, but we have no information about this. 222

Fourth, levels of aluminium and fluoride in drinking water vary substantially over the exposure 223 224 period (Supplementary Table 1, Supplementary Figure 3). Aluminium levels show a general decline over the whole period. Indeed, this fact, combined with our findings, might suggest that a decline in 225 226 levels of aluminium in drinking water could be a further partial explanation for the decrease in 227 dementia rates observed in Europe and North America.(22) Fluoride levels are higher at the start and end of the exposure period; the mean value represents a cumulative exposure but the variability of 228 229 measurements over time highlights a limitation of the present analyses. Within postcode sectors, there was similar variation. The within-area correlation between 2005 and 2012 values is r=0.49 (P<0.001) 230 231 for aluminium and r=0.012 (P<0.001) for fluoride. In addition, participants were only located at one

11

point in time and it was assumed that they did not move during the study period, which may not be valid. However, our study was longitudinal in design which is more robust than a cross-sectional study, particularly when considering Bradford Hill's temporality criterion when considering whether the observed association might be causal.

Finally, a criticism of much of the literature in this area is a lack of consideration of confounding. 236 There were very few data recorded at baseline in the SMS1932. We adjusted for childhood IQ since this 237 238 has previously been linked with dementia.(13, 23-25) Furthermore, higher fluoride concentrations in water have been linked with lower childhood intelligence in multiple studies.(26) We were additionally 239 240 able to adjust models for SIMD to take into account relative deprivation, albeit at an area-level. On the other hand, the fact that this is a narrow age cohort - all born in 1921 - means that the sample will be 241 more homogenous than a broader aged sample. For example, there will be no cohort effects 242 243 complicating our findings.

244

245 Implications

Aluminium is widely used in water treatment to reduce organic matter and to improve other water 246 parameters and is also influenced by water acidity.(7) Low fluoride levels in drinking water are 247 248 beneficial for teeth but high levels are harmful.(7) Thus, both these substances are widely present in drinking water, albeit at levels considered acceptable. However, our findings suggest that even these 249 250 relatively low levels of aluminium and fluoride are associated with deleterious effects on dementia risk 251 which should be weighed against their beneficial uses. We must be circumspect in the conclusions we 252 draw from the present study, not least because only limited account could be taken of potential 253 confounders. However, this is clearly an area which deserves further investigation, given the substantial 254 and growing global public health impact of dementia.

12

REFERENCES

1. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 390(10113): 2673-734.

2. Russ TC, Gatz M, Pedersen NL, Hannah J, Wyper G, Batty GD, et al. Geographical variation in dementia: examining the role of environmental factors in Sweden and Scotland. Epidemiology. 2015; 26(2): 263-70.

3. Mokry LE, Ross S, Morris JA, Manousaki D, Forgetta V, Richards JB. Genetically decreased vitamin D and risk of Alzheimer disease. Neurology. 2016; 87(24): 2567-74.

4. Killin LO, Starr JM, Shiue IJ, Russ TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr. 2016; 16(1): 175.

5. Cacciottolo M, Wang X, Driscoll I, Woodward N, Saffari A, Reyes J, et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Translational Psychiatry. 2017; 7: e1022.

6. Scottish Water. Your water quality explained. Scottish Water, 2018.

7. WHO. Guidelines for drinking-water quality, fourth edition. World Health Organization, 2011.

8. Kawahara M, Kato-Negishi M. Link between Aluminum and the Pathogenesis of Alzheimer's Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. International Journal of Alzheimer's Disease. 2011; 2011: 276393.

9. Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues J-F. Aluminum and silica in drinking water and the risk of Alzheimer's disease or cognitive decline: findings from 15-year followup of the PAQUID cohort. Am J Epidemiol. 2008; 169(4): 489-96.

10. Lubkowska A, Zyluk B, Chlubeka D. Interactions between fluorine and aluminum. Fluoride. 2002; 35(2): 73-7.

11. Deary IJ, Whalley LJ, Starr JM. A Lifetime of Intelligence: Follow-Up Studies of the Scottish Mental Surveys of 1932 and 1947. American Psychological Association, 2009.

12. SIMD 2012 Technical notes. Scottish Government, 2012.

13. Doubal FN, Ali M, Batty GD, Charidimou A, Eriksdotter M, Hofmann-Apitius M, et al. Big data and data repurposing - using existing data to answer new questions in vascular dementia research. BMC Neurol. 2017; 17(1): 72.

 Russ TC, Hannah J, Batty GD, Booth CC, Deary IJ, Starr JM. Childhood Cognitive Ability and Incident Dementia: The 1932 Scottish Mental Survey Cohort into their 10th Decade. Epidemiology. 2017; 28(3): 361-4.

15. Altmann P, Cunningham J, Dhanesha U, Ballard M, Thompson J, Marsh F. Disturbance of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: retrospective study of the Camelford water incident. BMJ. 1999; 319(7213): 807-11.

16. Still CN, Kelley P. On the incidence of primary degenerative dementia vs. water fluoride content in South Carolina. Neurotoxicology. 1980; 1(4): 125-31.

17. Verstraeten SV, Aimo L, Oteiza PI. Aluminium and lead: molecular mechanisms of brain toxicity. Archives of Toxicology. 2008; 82(11): 789-802.

18. Matthews FE, Arthur A, Barnes LE, Bond J, Jagger C, Robinson L, et al. A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet. 2013; 382(9902): 1405-12.

19. Russ TC, Batty GD, Starr JM. Cognitive and behavioural predictors of survival in Alzheimer disease: results from a sample of treated patients in a tertiary-referral memory clinic. Int J Geriatr Psychiatry. 2012; 27(8): 844-53.

20. Russ TC, Parra MA, Lim AE, Law E, Connelly PJ, Starr JM. Prediction of general hospital admission in people with dementia: cohort study. Br J Psychiatry. 2015; 206(2): 153-9.

21. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine. 2015; 12(3): e1001779.

22. Wu Y-T, Fratiglioni L, Matthews FE, Lobo A, Breteler MM, Skoog I, et al. Dementia in western Europe: epidemiological evidence and implications for policy making. Lancet Neurology. 2016; 15(1): 116-24.

23. Calvin CM, Batty GD, Der G, Brett CE, Taylor A, Pattie A, et al. Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ. 2017; 357: j2708.

24. McGurn B, Deary IJ, Starr JM. Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology. 2008; 71(14): 1051-6.

25. Whalley LJ, Starr JM, Athawes R, Hunter D, Pattie A, Deary IJ. Childhood mental ability and dementia. Neurology. 2000; 55(10): 1455-9.

26. Duan Q, Jiao J, Chen X, Wang X. Association between water fluoride and the level of children's intelligence: a dose–response meta-analysis. Public Health. 2018; 154: 87-97.

TABLE 1. Adjusted hazard ratios and accompanying 95% confidence intervals for the association between mean aluminium and fluoride levels in drinking water and dementia in men and women: the Scottish Mental Survey 1932 cohort

	NTa	Domontia N	Hazard	ratio ^b (95%	HR ^b (95% CI)	D		
	IN	Demenua IN	Q1 (low)	Q2	Q3	Q4 (high)	per SD increase	P _{trend}
Aluminium								
Women	4262	1350	1 (ref.)	1.37 (1.17, 1.60)	1.30 (1.11, 1.51)	1.41 (1.20, 1.64)	1.09 (1.03, 1.15)	< 0.001
Men	2728	622	1 (ref.)	1.28 (1.01, 1.61)	1.25 (0.99, 1.57)	1.48 (1.18, 1.85)	1.12 (1.03, 1.21)	0.004
Fluoride								
Women	4262	1350	1 (ref.)	0.92 (0.79, 1.07)	1.15 (0.99, 1.34)	2.32 (2.01, 2.68)	1.34 (1.28, 1.41)	< 0.001
Men	2728	622	1 (ref.)	1.05 (0.84, 1.32)	1.49 (1.19, 1.86)	2.65 (2.14, 3.29)	1.30 (1.22, 1.39)	< 0.001

^a SMS1932 participants who survived to 2005 (the start of the exposure period) ^b Hazard ratio adjusted for age 11 mental ability

Cut points for aluminium quartiles were 30.8, 35.5, and $41.1 \mu g/L$ Cut points for fluoride quartiles were 44.4, 48.7, and $56.3\mu g/L$

FIGURE 1. Maps indicating mean levels of aluminium (left) and fluoride (right) in drinking water in Scotland 2005-2012: the Scottish Mental Survey 1932 cohort

Lower panel shows an enlarged view of the Central Belt of Scotland including Glasgow and Edinburgh

FIGURE 2. IQ-adjusted hazard ratios and accompanying 95% confidence intervals for the association between mean aluminium and fluoride levels in drinking water and dementia in men and women: the Scottish Mental Survey 1932 cohort

SUPPLEMENTARY TABLE 1. Number of samples and mean concentrations of aluminium and fluoride in drinking water sampling sites in Scotland

	2005	2006	2007	2008	2009	2010	2011	2012	Overall
Aluminium									
N samples	5285	5367	5356	5273	5232	5197	5062	5096	41868
Mean (sd)	39.2 (44.3)	38.5 (31.7)	38.9 (75.8)	34.0 (29.0)	31.5 (25.5)	31.4 (26.9)	31.3 (28.8)	28.5 (19.6)	34.2 (39.4)
Range	4-1549	2-874	2-5096	4-860	4-878	4-747	4-781	9-222	2-5096
Quartiles	22, 32, 46	22, 32, 47	22, 32, 46	18, 28, 42	81, 26, 39	17, 24, 39	16, 25, 38	16, 23, 35	18, 28, 42
Fluoride									
N samples	1715	1771	1738	1672	1652	1624	1576	1556	13304
Mean (sd)	68.2 (62.7)	44.2 (46.8)	43.6 (35.6)	38.7 (48.6)	36.7 (36.1)	60.0 (37.7)	64.5 (67.2)	80.6 (126.4)	54.2 (65.0)
Range	10-1060	10-1320	10-390	10-1200	10-540	40-610	40-1200	40-2030	10-2030
Quartiles	30, 60, 100	20, 40, 50	20, 30, 50	20, 30, 40	20, 30, 40	40, 50, 70	40, 40, 70	40, 40, 50	30, 40, 60

2005-2012: the Scottish Mental Survey 1932 cohort

SUPPLEMENTARY TABLE 2. Adjusted hazard ratios and accompanying 95% confidence intervals for the association between mean aluminium and

	NTa	Dementia N	Hazard	ratio ^b (95%	HR ^b (95% CI)	р			
	IN	Dementia IN	Q1 (low)	Q2	Q3	Q4 (high)	per SD increase	F _{trend}	
Aluminium									
Women: IQ	4262	1350	1 (ref.)	1.37 (1.17, 1.60)	1.30 (1.11, 1.51)	1.41 (1.20, 1.64)	1.09 (1.03, 1.15)	< 0.001	
Women: IQ and SIMD	4079	1345	1 (ref.)	1.30 (1.11, 1.52)	1.20 (1.03, 1.41)	1.37 (1.17, 1.60)	1.08 (1.03, 1.14)	0.002	
Men: IQ	2728	622	1 (ref.)	1.28 (1.01, 1.61)	1.25 (0.99, 1.57)	1.48 (1.18, 1.85)	1.12 (1.03, 1.21)	0.004	
Men: IQ and SIMD	2576	619	1 (ref.)	1.22 (0.96, 1.54)	1.17 (0.93, 1.49)	1.42 (1.14, 1.78)	1.10 (1.01, 1.19)	0.014	
Fluoride									
Women: IQ	4262	1350	1 (ref.)	0.92 (0.79, 1.07)	1.15 (0.99, 1.34)	2.32 (2.01, 2.68)	1.34 (1.28, 1.41)	< 0.001	
Women: IQ and SIMD	4079	1345	1 (ref.)	0.88 (0.76, 1.02)	1.11 (0.95, 1.29)	2.18 (1.89, 2.53)	1.32 (1.26, 1.38)	< 0.001	
Men: IQ	2728	622	1 (ref.)	1.05 (0.84, 1.32)	1.49 (1.19, 1.86)	2.65 (2.14, 3.29)	1.30 (1.22, 1.39)	< 0.001	
Men: IQ and SIMD	2576	619	1 (ref.)	1.01 (0.80, 1.27)	1.46 (1.16, 1.83)	2.48 (2.00, 3.08)	1.28 (1.20, 1.37)	< 0.001	

fluoride levels in drinking water and dementia in men and women: the Scottish Mental Survey 1932 cohort

^a SMS1932 participants who survived to 2005 (the start of the exposure period)

^b Hazard ratio adjusted for age 11 mental ability (IQ) or age 11 mental ability and SIMD rank (IQ + SIMD)

Cut points for aluminium quartiles were 30.8, 35.5, and $41.1 \mu g/L$ Cut points for fluoride quartiles were 44.4, 48.7, and $56.3 \mu g/L$ **SUPPLEMENTARY FIGURE 1.** Location of aluminium (left) and fluoride (right) sampling sites in Scottish Drinking Water Quality Regulator data 2005-2012: the Scottish Mental Survey 1932 cohort

Postcode areas are shown in different shades of grey

SUPPLEMENTARY FIGURE 2. Odds ratio of dementia in the SMS1932 cohort by adult location

Lower panel shows an enlarged view of the Central Belt of Scotland including Glasgow and Edinburgh

Adapted from Russ TC, Gatz M, Pedersen NL, Hannah J, Wyper G, Batty GD, et al. Geographical variation in dementia: examining the role of environmental factors in Sweden and Scotland. Epidemiology 2015 26(2): 263-70

SUPPLEMENTARY FIGURE 3. Trends in aluminium and fluoride concentrations in drinking water in Scotland from 2005-2012: the Scottish Mental Survey 1932 cohort

