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We demonstrate that subpopulations of adult human skeletal muscle-derived stem cells, myogenic endothe-
lial cells (MECs), and perivascular stem cells (PSCs) can be simultaneously purified by fluorescence-acti-
vated cell sorting (FACS) from cryopreserved human primary skeletal muscle cell cultures (cryo-hPSMCs).
For FACS isolation, we utilized a combination of cell lineage markers: the myogenic cell marker CD56, the
endothelial cell marker UEA-1 receptor (UEA-1R), and the perivascular cell marker CD146. MECs express-
ing all three cell lineage markers (CD56+UEA-1R+CD146+/CD45−) and PSCs expressing only CD146
(CD146+/CD45−CD56−UEA-1R−) were isolated by FACS. To evaluate their myogenic capacities, the sorted
cells, with and without expansion in culture, were transplanted into the cardiotoxin-injured skeletal muscles
of immunodeficient mice. The purified MECs exhibited the highest regenerative capacity in the injured
mouse muscles among all cell fractions tested, while PSCs remained superior to myoblasts and the unpurified
primary skeletal muscle cells. Our findings show that both MECs and PSCs retain their high myogenic
potentials after in vitro expansion, cryopreservation, and FACS sorting. The current study demonstrates that
myogenic stem cells are prospectively isolatable from long-term cryopreserved primary skeletal muscle cell
cultures. We emphasize the potential application of this new approach to extract therapeutic stem cells from
human muscle cells cryogenically banked for clinical purposes.

Key words: Myogenesis; Human skeletal muscle; Myogenic endothelial cells (MECs);
Perivascular stem cells (PSCs); Cell therapy

INTRODUCTION by fluorescence-activated cell sorting (FACS) from
fresh human skeletal muscle biopsies, through the use
of a combination of positive and negative cell lineageMammalian skeletal muscle harbors multiple stem/

progenitor cell populations, which can repair and/or markers (6,20). In vitro, purified MECs and PSCs dis-
played osteo-, chondro-, adipo-, and myogenic differen-regenerate injured/defective tissues such as damaged/

dystrophic skeletal muscles and ischemic hearts (1,2,5,7, tiation competence, and their high repair/regenerative
capacities were not only demonstrated in injured mouse8,10,12–19). In particular, we previously reported the

identification of two subpopulations of multipotent stem skeletal muscles but also in infarcted hearts (3,4,6,
11,20). However, it has never been documented whethercells within human skeletal muscle [i.e., myogenic endo-

thelial cells (MECs) (CD45−CD34+CD56+CD144+) and these stem cell fractions could persist and retain their
high myogenic capacities after the cryopreservationperivascular stem cells (PSCs) (CD34−CD45−CD56−

CD146+)], which exhibit multilineage mesodermal of human primary skeletal muscle cell cultures (cryo-
hPSMCs). Furthermore, MECs and PSCs have beendevelopmental potentials (6,20). These stem cell popula-

tions were specifically localized in situ within the walls shown to be superior to myoblasts for muscle regenera-
tion in previously performed studies; however, it hasof small blood vessels and can be prospectively purified

Received July 12, 2010; final acceptance July 10, 2011. Online prepub date: March 21, 2012.
1These authors provided equal contribution to this work.
Address correspondence to Johnny Huard, Ph.D., Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh School
of Medicine, 206 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, USA 15219, USA. Tel: (412) 648-2798; Fax: (412) 648-4066;
E-mail: jhuard@pitt.edu

1087



1088 ZHENG ET AL.

never been determined whether MECs isolated from Flow Cytometry and Cell Sorting
cryopreserved, culture-expanded hPSMCs possessed the To culture cryo-hPSMCs, cells were thawed and
same superior regenerative capacity. expanded for 2–6 passages. To perform flow cytometry

In order to identify and purify MECs and PSCs by analysis, cells were trypsinized, washed, and incubated
FACS from in vitro expanded cryo-hPSMCs, we with anti-human monoclonal antibodies/ligands: CD45-
employed a collection of cell lineage markers reported allophycocyanin-cyanine 7 (APC-Cy7), CD56-phycoer-
in our previous studies, including the hematopoietic cell ythrin-Cy7 (PE-Cy7), CD34-APC (all from Becton
marker CD45, the myogenic cell marker CD56 (neural Dickinson), CD146-fluorescein isothiocyanate (FITC;
cell adhesion molecule; N-CAM), the perivascular cell Serotec), UEA-1-PE (Biomeda), von Willebrand factor
marker CD146 (melanoma cell adhesion molecule; M- (vWF)-FITC (US Biology), kinase insert domain recep-
CAM/Mel-CAM/MUC18), and the endothelial cell tor (also known as vascular endothelial growth factor
marker UEA-1 receptor (Ulex europaeus agglutinin I receptor 2; VEGFR2) KDR-APC (R&D Systems), and
receptor, UEA-1R) (6,20,21). UEA-1R was chosen as a CD144-PE (Beckman Coulter). Negative control sam-
substitute marker for CD34 and CD144 because these ples received equivalent amounts of isotype-matched
two endothelial cell markers are frequently lost during fluorophore-conjugated antibodies. For FACS puri-
long-term culture whereas UEA-1 maintains consistent fication, cells were incubated with CD45-APC-Cy7,
reactivity within endothelial cell lineage cultures CD56-PE-Cy7, CD146-FITC, UEA-1-PE, and with 7-
(20,21). We hypothesized that MECs and PSCs (with amino-actinomycin D for dead cell exclusion. Sorted
and without culture expansion), purified from cryo- subpopulations were collected for immediate transplan-
hPSMCs, retain their superior myogenic potential and tation or transiently expanded in appropriate conditions
exhibit a greater regeneration capacity of skeletal myo- as previously described (6,20).
fibers when compared to myoblasts.

Immunocytochemistry
MATERIALS AND METHODS For immunocytochemistry, cells were cytospun onto

glass slides, fixed, and incubated with 10% serum. TheHuman Muscle Biopsies and Animal Usage
following primary antibodies were used to detect cell

In total, nine independent human skeletal muscle
lineage markers, including myogenic cell markers,

biopsies, from four female and five male donors (age
CD56 (BD) and desmin (Sigma); perivascular cell mark-

range 4–75, mean 28), were used to obtain human pri-
ers, α-smooth muscle actin (Abcam) and CD146 (Cay-

mary skeletal muscle cells (hPSMCs). The procurement
man Chemical); endothelial cell markers/ligands, CD144

of human skeletal muscle biopsies from the National
(Sigma), vWF (DAKO), CD34 (Novocastra), and biotin-

Disease Research Interchange (NDRI) was approved by
ylated UEA-1 (Vector), followed by incubation with

the Institutional Review Board at the University of Pitts-
biotinylated secondary antibodies and/or Cy3-conju-

burgh Medical Center (UPMC). All the animal research
gated streptavidin (Sigma). Slides were observed and

experiments performed in this study were approved by
photographed on an epifluorescence microscope system

the Animal Research and Care Committee at the Chil-
(Nikon Eclipse E800).

dren’s Hospital of Pittsburgh of UPMC (Protocol #34-05)
and the University of Pittsburgh (Protocol #0810310-B2). Myogenesis In Vivo

To investigate whether the myogenic capacities of the
Cell Isolation and Cryopreservation cells were preserved, after cryopreservation, purified

MECs, PSCs, myoblasts (Myos), endothelial cells (ECs),The human skeletal muscle biopsies were placed in
Hank’s Balanced Salt Solution (HBSS, Invitrogen) and and unpurified muscle cells, without in vitro expansion,

from six independent hPSMC samples were used fortransferred to the laboratory on ice. Briefly, tissues were
finely minced and serially digested with 0.2% colla- intramuscular injection. The newly sorted cells, on aver-

age, 11.8 ± 5.8 × 104 CD56+ Myo cells, 7.3 ± 4.4 × 104genase type XI, 0.25% dispase, and 0.1% trypsin, as
previously described (20,21). Dispersed single cell sus- CD146+ PSCs, 4.5 ± 2.6 × 104 UEA-1R+ ECs, and 2.9 ±

1.7 × 104 CD56+UEA-1R+CD146+ MECs as well as 30 ×pensions were cultured in complete medium containing
DMEM supplemented with 10% fetal bovine serum 104 corresponding unsorted cells, were resuspended in

20 µl of HBSS and used for transplantation.(FBS), 10% horse serum, 1% chicken embryo extract,
and 1% penicillin/streptomycin (all from Invitrogen). To precisely measure the myogenic-regenerative

capacity of each stem/progenitor cell subpopulation,After expansion, cells were cryopreserved at passages
2–8 in medium consisting of 50% complete culture newly sorted MECs, PSCs, and Myo cells were expanded

in culture for 1–2 passages. Fifty thousand cells frommedium and 50% freezing medium (80% FBS + 20%
dimethyl sulfoxide) and stored in liquid nitrogen (21). each subpopulation as well as 5 × 104 corresponding
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unsorted cells were trypsinized, washed, and resus- previously defined subpopulations by multicolor flow
cytometry, based on their expression of hematopoieticpended in 20 µl of phosphate-buffered saline (PBS).

Four individual animal experiments were performed, (CD45), myogenic (CD56), endothelial (UEA-1R), and
perivascular (CD146) cell lineage markers (6,20). Afterwith each using cell populations purified from a single

FACS sort of one independent cryo-hPSMC culture. exclusion of CD45+ cells, four distinct cell fractions
were identified, including myoblasts (Myo) (CD56+/Cells were injected into a single site of the gastrocne-

mius muscles of severe combined immunodeficient CD45−CD146−UEA-1R−), endothelial cells (ECs) (UEA-
1R+/CD45−CD56−CD146−), perivascular stem cells(SCID) mice that were injured 24 h before by injecting

1 µg of cardiotoxin in 20 µl of HBSS. The untreated (PSCs) (CD146+/CD45−CD56−UEA-1R−), and myogenic
endothelial cells (MECs), which expressed all threegroup received sham injections of 20 µl of HBSS or

PBS only. Treated muscles were collected 2 weeks post- markers (CD56+UEA-1R+CD146+/CD45−). Long-term
cultured cryo-hPSMCs included 22.58 ± 6.32% Myo,injection for immunohistochemical analyses. Anti-

human spectrin was used to identify human cell-derived 0.58 ± 0.23% ECs, 5.92 ± 4.66% PSCs, and 1.16 ± 0.19%
MECs (Fig. 2). These four cell subsets were subse-skeletal myofibers in the mouse muscles. In order to

quantitatively evaluate the myogenic regenerative capac- quently fractionated by FACS, and on average we were
able to recover the following number of each cell type:ity of each subpopulation, the number of human spec-

trin-positive skeletal myofibers was averaged from six 25.61 ± 9.16 × 104 CD56+ Myo, 13.28 ± 7.37 × 104 UEA-
1R+ ECs, 33.54 ± 20.53 × 104 CD146+ PSCs, and 3.84 ±randomly selected sections at the site of injection in

each specimen and presented as the regenerative index 0.96 × 104 CD56+UEA-1R+CD146+ MECs (Fig. 2).
(per section).

Statistical Analysis Purified Myogenic Stem/Progenitor Cells Retain High
Data were summarized as average ± SE. Statistical Myogenic Potentials In Vivo

comparison between the groups (purified cells after To evaluate whether the myogenic capacity was pre-
expansion in vitro) was performed using one-way served after cryopreservation, all sorted cells were
ANOVA with a 95% confidence interval. Bonferroni immediately transplanted (without culture expansion)
pairwise multiple comparison test was performed for into the cardiotoxin-injured gastrocnemius muscles of
ANOVA post hoc analysis. Statistical analyses were SCID mice (n = 6 per cell fraction). Unpurified muscle
performed with SigmaStat software. cells and HBSS injections were employed as treated and

untreated controls, respectively. Mouse muscles wereRESULTS
harvested 2 weeks postinjection, cryosectioned, andHeterogenous Cell Composition of Human Primary
examined by immunohistochemistry to detect muscleSkeletal Muscle Cell Cultures (hPSMCs) After
fiber regeneration. An antibody against human spectrin,Cryopreservation and Long-Term Expansion
a myofiber cytoskeletal protein, was used to identifyAfter expansion, the cryopreserved hPSMCs (cryo-
human cell-derived skeletal myofibers in the tissue sec-hPSMCs) were examined by immunocytochemistry for
tions. All of the newly purified cell fractions regeneratedcell surface marker expression. The majority of cryo-
human spectrin-positive myofibers in the injured mousehPSMCs expressed desmin and CD56, and to a lesser
skeletal muscles; however, the purified fractions appearedextent, CD146 (Fig. 1). Only a fraction of cells
to regenerate a greater number of muscle fibers than theexpressed α-SMA, CD144, vWF, or UEA-1R. As pre-
unpurified cryo-hPSMCs (Fig. 3A). As expected, a lackdicted, the cultured human cryo-hPSMCs lacked CD34
of spectrin-expressing muscle fibers was observed in theexpression. After excluding CD45+ hematopoietic cells
HBSS-injected muscles (Fig. 3A).(0.2 ± 0.1%), flow cytometry analysis quantitatively

To quantitatively measure the myogenic regenerativeconfirmed the presence of cells with diverse expressions
capacity of each purified stem/progenitor cell popula-of cell lineage makers by cryo-hPSMCs: 77.1 ± 5.7%
tion, newly sorted MECs, PSCs, and Myo cells wereCD56+, 66.9 ± 8.1% CD146+, 11.2 ± 2.5% UEA-1R+,
transiently expanded in culture for 1–2 passages. Fifty0.3 ± 0.1% CD144+, 0.1% vWF+, and null expression of
thousand cells from each of the subpopulations as wellCD34 and KDR (Fig. 1B). The number of cryo-hPSMCs
as 5 × 104 corresponding unsorted cells were trans-positive for CD56, CD146, or UEA-1R decreased dra-
planted into the same type of muscle injury modelmatically after passage 10 (Fig. 1C).
described above (n = 4 per cell fraction). Phosphate-

Isolation of Myogenic Stem/Progenitor Cells buffered saline (PBS) injections were used as negative
From Cryo-hPSMCs controls. ECs were not included in this experiment due

to their unstable phenotype in culture. Quantitative anal-After revealing the heterogeneous nature of cryo-
hPSMCs, we analyzed these cells for the existence of yses revealed that the myogenic regenerative index,
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Figure 1. Expression of cell lineage markers by cryopreserved human primary skeletal muscle cells (cryo-hPSMCs). (A) Immuno-
cytochemistry revealed the expression of various cell lineage markers (light gray) by cryo-hPSMCs after expansion. Nuclei were
stained with DAPI (dark gray). (B) Flow cytometry analysis quantitatively confirmed the diverse cell composition of cryo-hPSMCs.
(C) The number of cryo-hPSMCs positive for CD56, CD146, or UEA-1R decreased when cells were cultured beyond passage 10.
Scale bars: 100 µm.

indicated by the average number of human spectrin-pos- models, suggesting the advantage of isolating stem cells
for therapeutic purposes (6,10,13,20). More recent dataitive skeletal myofibers per muscle section, was 166.3 ±

19.2 for the MECs, 90.1 ± 8.0 for the PSCs, 45.7 ± 6.2 have shown that there is a functional heterogeneity in
myogenesis even among the muscle precursor cellfor the myoblasts (Myo), and 28.7 ± 8.4 for the unsorted

muscle cells (Unsort) (Fig. 3B). The MECs exhibited pool (2).
In the present study, we demonstrated that even afterthe highest regeneration index of all four cell fractions

tested (p < 0.005) (Fig. 3B) and the PSCs regenerated in vitro expansion and cryopreservation, primary human
muscle cell cultures include various subpopulations, asmore myofibers than the Myo (p > 0.05) and the Unsort

(p = 0.017) groups (Fig. 3B). Although the purified indicated by expression of diverse cell lineage markers.
Using a modified collection of cell lineage markersmyoblasts displayed a trend of higher myogenic capacity

than the unsorted cells, no statistically significant differ- (CD45, CD56, CD146, and UEA-1R), we identified and
purified to homogeneity four distinct cell populationsence was observed (p > 0.05) (Fig. 3B).
from cryo-hPSMCs, including two stem cell subpopula-

DISCUSSION tions: PSCs (CD146+/CD45−CD56−UEA-1R−) and MECs
(CD56+CD146+UEA-1R+/CD45−) (6,20,21). Newly sortedSkeletal muscle is known to possess multiple stem/

progenitor cell populations that are associated with mus- MECs, PSCs, ECs, and Myo cells were immediately
transplanted into the cardiotoxin-injured skeletal mus-cle development, maintenance, and regeneration (13,18).

Upon purification, muscle stem/progenitor cells in gen- cles of SCID mice to examine the preservation of their
myogenic potential after FACS, all of which regeneratederal display more robust myogenic regenerative capaci-

ties than unpurified muscle cells in animal disease human spectrin-positive myofibers in the injured mouse
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skeletal muscles. Quantitative analyses using sorted sub- populations from banked human skeletal muscle cells,
highlighting a new technology to further enhance thepopulations that were minimally expanded in culture

showed that the MECs displayed the highest muscle availability and efficacy of cell-mediated therapies (9).
regenerative capacity among all cell subsets tested, and ACKNOWLEDGMENTS: This work was supported in part by
the PSCs were superior to myoblasts and unpurified grants to J.H from the National Institutes of Health (R01

DE013420-09) and the Department of Defense (W81XWH-09-cryo-hPSMCs.
1-0658) and from the William F. and Jean W. DonaldsonThese results were consistent with our previous
Endowed Chair at the Children’s Hospital of Pittsburgh, theobservations from injections of cells isolated from fresh
Henry J. Mankin Endowed Chair for Orthopaedic Research at

skeletal muscle biopsies (6,20). Taken together, our University of Pittsburgh, and by a grant to B.P. from the
results suggest the presence of distinct subpopulations National Institutes of Health (R21 HL083057-01A2). The

authors also wish to thank Allison Logar for her excellentof highly myogenic stem/progenitor cells within culture-
technical assistance on the flow cytometry and the cell sortingexpanded, cryopreserved hPSMCs and support the feasi-
and James H. Cummins for his editorial assistance in thebility of further purifying stem cell fractions from these
preparation of this manuscript. The following author contribu-

unpurified cryopreserved human cells. Most impor- tions are recognized: conception and design, collection and/or
tantly, these findings infer the practicability of pros- assembly of data, data analysis and interpretation, manuscript

writing (B.Z.); conception and design, collection and/orpective isolation of myogenic stem/progenitor cell

Figure 2. Identification and purification of myogenic stem cells within cryo-hPSMCs. After excluding CD45+ hematopoietic cells,
CD45− cells were separated based on CD56 expression. CD56+ and CD56− populations were further gated on UEA-1R by CD146
to identify and/or sort four distinct cell populations: myogenic endothelial cells (MECs) (CD56+UEA-1R+CD146+/CD45−),
myoblasts (Myos) (CD56+/CD45−CD146−UEA-1R−), perivascular stem cells (PSCs) (CD146+/CD45−CD56−UEA-1R−), and endothe-
lial cells (ECs) (UEA-1R+/CD45−CD56−CD146−). The purities of the sorted populations were 90.73 ± 4.82%, 92.94 ± 1.23%,
93.86 ± 1.72, and 94.9 ± 0.64, respectively. Immunocytochemistry confirmed the expression of key cell lineage makers by freshly
sorted cells: UEA-1R, CD146, and/or CD56. Nuclei were stained blue with DAPI. Scale bars: 100 µm; CD56/UEA-1R double
staining: 20 µm.
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Figure 3. Comparison of myogenic regenerative capacities in vivo. (A) Representative pictures of regenerating human spectrin-
positive myofibers in cardiotoxin-injured mouse skeletal muscles transplanted with newly sorted cell fractions from a single donor-
derived cryo-hPSMC culture, including myogenic endothelial cells (MECs), perivascular stem cells (PSCs), endothelial cells (ECs),
and myoblasts (Myos). Unsorted cryo-hPSMCs (Unsort) and HBSS were injected as treated and untreated controls respectively.
Original magnification: 200×; scale bars: 50 µm. (B) Quantitative analyses of the myogenic regenerative capacities of sorted stem/
progenitor cell populations. Fifty thousand cells from each cell fraction that was minimally expanded in culture were injected.
Quantitative analyses of spectrin-positive human skeletal myofibers on tissue sections revealed that MECs mediated the highest
myogenic regeneration among all four cell fractions tested (*p < 0.001 vs. Myo and Unsort; †p = 0.004 vs. PSC). Injection of PSCs
regenerated more human myofibers than injections of Myos (p > 0.05) and Unsort (#p = 0.017). Finally, Myos displayed a trend of
higher myogenic capacity than Unsort, but no significant difference was observed (p > 0.05).
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