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Abstract: Introduction

Many consequences of cerebrovascular disease are identifiable by magnetic
resonance imaging (MRI), but variation in methods limits multicenter studies and
pooling of data. The European Union Joint Programme on Neurodegenerative
Diseases (JPND) funded the Harmonizing Brain Imaging Methods for Vascular
Contributions to Neurodegeneration (HARNESS) initiative, with a focus on cerebral
small vessel disease.

Methods

Surveys, teleconferences, and an in-person workshop were used to identify gaps in
knowledge and to develop tools for harmonizing imaging and analysis.

Results

A framework for neuroimaging biomarker development was developed based on
validating repeatability and reproducibility, biological principles, and feasibility of
implementation. The status of current MRI biomarkers was reviewed. A website was
created at www.harness-neuroimaging.org with acquisition protocols, a software
database, rating scales and case report forms, and a deidentified MRI repository.

Conclusions

The HARNESS initiative provides resources to reduce variability in measurement in
MRI studies of cerebral small vessel disease.
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ABSTRACT 

Introduction: Many consequences of cerebrovascular disease are identifiable by magnetic 

resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of 

data. The European Union Joint Programme on Neurodegenerative Diseases (JPND) funded 

the Harmonizing Brain Imaging Methods for Vascular Contributions to Neurodegeneration 

(HARNESS) initiative, with a focus on cerebral small vessel disease. 

Methods: Surveys, teleconferences, and an in-person workshop were used to identify gaps in 

knowledge and to develop tools for harmonizing imaging and analysis. 

Results: A framework for neuroimaging biomarker development was developed based on 

validating repeatability and reproducibility, biological principles, and feasibility of 

implementation. The status of current MRI biomarkers was reviewed. A website was created 

at www.harness-neuroimaging.org with acquisition protocols, a software database, rating 

scales and case report forms, and a deidentified MRI repository.  

Conclusions: The HARNESS initiative provides resources to reduce variability in 

measurement in MRI studies of cerebral small vessel disease. 

 

 

INTRODUCTION 

Vascular disease contributes to more than half of dementia cases, often in conjunction with 

Alzheimer’s disease pathology1. Most of the vascular brain injury is caused by cerebral small 

vessel disease (cSVD)2, which often goes clinically unrecognized until revealed by brain 

imaging. cSVD is strongly associated with cognitive impairment and future risk for cognitive 

decline and dementia3,4. One of the challenging but intriguing aspects of research in this field 

is that cSVD has diverse manifestations, including brain infarcts, lacunes, white matter 

hyperintensity (WMH) of presumed vascular origin, perivascular spaces, and microbleeds5. 
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Additionally, several promising new imaging biomarkers are emerging for the diagnosis and 

monitoring of patients, as well as for studies into etiology and pathophysiology6,7. 

The Standards for Reporting Vascular Changes on Neuroimaging (STRIVE)5 were an 

important first step to harmonize neuroimaging assessment of cSVD. Terms and definitions 

for common cSVD lesion types, reporting standards, and suggestions for acquisition 

protocols were provided, and are now commonly used in research practice. However, 

STRIVE did not address pathways for developing and validating new biomarkers, nor did it 

address sources of variability in measurement, which should be minimized to enhance the 

ability to detect biological differences in multicenter and longitudinal studies. 

To fully realize the potential of neuroimaging biomarkers of cSVD for use in larger 

scale, multicenter studies including clinical trials with cSVD endpoints, we created the 

Harmonizing Brain Imaging Methods for Vascular Contributions to Neurodegeneration 

(HARNESS) initiative. This initiative builds on the work of STRIVE by defining a 

framework for developing neuroimaging biomarkers of cSVD, reviewing the status of 

emerging neuroimaging biomarkers in this field, and developing and implementing 

standardized acquisition protocols and web-based repositories to facilitate multi-center 

research.  

 

METHODS 

HARNESS Group Composition 

HARNESS was funded by the international Joint Programme for Neurodegenerative Diseases 

initiative to address neuroimaging biomarkers in neurodegeneration and dementia. The 

HARNESS members were invited to participate based on contributions cSVD research 

including their participation in STRIVE, and to provide a balance of input from different 

geographic regions and research disciplines. HARNESS included 70 members from 29 
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institutions in 11 countries, representing disciplines including radiology, biomedical 

engineering, clinical trials, computer science, epidemiology, medical biophysics, neurology, 

stroke medicine and psychiatry. Members were surveyed to identify important needs for 

harmonizing neuroimaging methods for cSVD, and then subdivided into 11 working groups 

of 6-12 participants representing a range of disciplines, cSVD interests and location, to 

address these needs. The initiative commenced in July 2016 and culminated in an in-person 

conference in June 2017. Where appropriate, working groups identified relevant papers 

through literature searches, expert knowledge, and hand searching articles from reference 

lists, but formal systematic reviews and creation of evidence tables were considered out of 

scope.   

 

RESULTS 

Neuroimaging Biomarker Framework for cSVD 

We adopted the definition of a biomarker used by the Biomarkers Definitions Working 

Group8: “a characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention”. Inherent to this definition is that biomarkers may have different clinical 

purposes including diagnosis, prognosis, monitoring, and measuring treatment response. 

Biomarkers have been used as surrogate endpoints for clinical trials, meaning that the 

biomarker substitutes for or represents a manifestation of the clinical endpoint, when the 

biomarker is expected to predict “clinical benefit or harm based on epidemiologic, 

therapeutic, pathophysiologic, or other scientific evidence”9. This might be considered the 

highest level of qualification for a biomarker. However, biomarkers have other important 

uses for investigation, diagnosis, and monitoring of disease even if they do not predict 

treatment response. 
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Validation is required to determine whether a biomarker can be considered fit for a 

specific purpose. Some regulatory authorities, such as the U.S. Food and Drug 

Administration (FDA), define a formal process of biomarker qualification for use in 

evaluating therapeutics10. To our knowledge, no biomarker of cSVD, including WMH, 

lacunes, or microbleeds, has yet been submitted to and qualified by the US FDA for use in 

clinical trials, although they have been used as secondary endpoints in imaging substudies11. 

Qualification of an imaging marker that can be used as a trial endpoint would greatly 

accelerate the development of therapies for cSVD by improving selection criteria, reducing 

the size and cost of a trial and increasing the specificity of the outcome. 

To facilitate validation of cSVD biomarkers we present a framework for 

neuroimaging biomarker development in Figure 1, adapted from consensus recommendations 

from the European Society of Radiology12 and for development of imaging biomarkers for 

oncology13. Validation has technical aspects (e.g., can the same measurement be reproduced 

reliably on the same scanner or different scanners?), biological aspects (e.g., is the 

measurement different in patients with vs. without cSVD?), and feasibility of implementation 

(e.g., is the measurement practical and affordable?). In our version of this biomarker 

development framework, we define proof of concept as validation of measurement of a 

specific change or process (e.g., that arterial spin-labeling [ASL] MRI generates a signal that 

correlates with gold standard measurement of perfusion) while proof of principle refers to 

validation that the measurement distinguishes cases from controls or is associated with health 

outcomes (e.g., that ASL measured perfusion is different in cSVD patients than in controls 

and is associated with worse prognosis)12. We define proof of effectiveness as the ability to 

measure the marker across larger groups of patients at multiple sites12. Repeatability refers to 

the precision of repeated measurements under the same conditions using the same scanner 

(with high repeatability conferring greater power to detect smaller within-individual changes 
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over time, important for longitudinal studies), while reproducibility refers to the precision of 

replicate measurements on the same or similar objects (e.g. a phantom or human volunteers) 

using different scanners12,13. For visual assessments by human raters, intra-rater reliability 

refers to the precision of measurement by the same rater while inter-rater reliability refers to 

the precision of measurements across different raters. The Quantitative Imaging Biomarker 

Alliance (QIBA) offers recommendations for study design and statistical approaches to 

technical validation14. Validation typically begins with relatively small, cross-sectional 

studies at single centers to demonstrate proof of concept, proof of principle and initial 

technical validation, before expanding to longitudinal studies and multicenter studies to 

demonstrate proof of effectiveness and reproducibility. Feasibility is then demonstrated by 

incorporation of the biomarker into clinical radiological practice or by qualification for use in 

clinical trials. 

 

Survey of Current cSVD Biomarker Development with Specific Considerations for 

Selected Emerging Modalities  

Commonly studied neuroimaging biomarkers of cSVD are lacunes, WMH of presumed 

vascular origin, and cerebral microbleeds. These lesions are typically reported in routine 

radiology practice and have been incorporated as secondary imaging endpoints in some 

clinical trials. For these markers proof of concept, principle, and effectiveness have been 

established. Even so, longitudinal data on change over time and data on repeatability and 

reproducibility, so important for planning sample sizes in clinical trials, are relatively 

scant15,16.   

 A recent systematic review highlighted the gaps in knowledge in repeatability and 

reproducibility of measurements of cSVD lesions, focusing mostly on quantitative 

biomarkers including volumes of WMH, lacunes, and brain17. The authors systematically 
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searched the literature to identify information on scan-rescan repeatability (which they 

termed “within center reproducibility”) as well as the effects of scanner vendor, field 

strength, sequence choices, and coil type. They found that the amount of literature on 

repeatability and reproducibility varied widely by lesion type. The most literature was found 

on measures of brain volume, probably because brain atrophy is an important biomarker for 

many neurological diseases in addition to cSVD, such as Alzheimer’s disease, and because 

phantoms are available for measuring variations in geometric distortions across scanners. For 

WMH, lacunes, perivascular spaces, and microbleeds there was only sparse information on 

repeatability with relatively speaking the greatest amount of information on WMH 

measurements cross-sectionally, but no repeatability data on longitudinal measurements.  

Figure 2 provides an overview of the validation status of the best established cSVD 

markers as well as emerging modalities and techniques. Over time the list of neuroimaging 

biomarkers of cSVD has grown substantially as our knowledge of cSVD pathophysiology2, 

and ability to image it, has grown.  

Some markers have already received a large amount of attention, notably WMH 

(assessed visually or computationally), lacunes, and microbleeds (mainly visually with some 

emerging computational methods). Even so, some aspects of validation are lacking with few 

large comparisons of different volumetric tools, little longitudinal data, and none are yet 

adopted as confirmed surrogate outcomes in clinical trials. Nonetheless, they have already 

been the subject of many reviews16,17.  

Hence, the list of biomarkers discussed in detail here represents the subset that the 

HARNESS group selected as the next most promising for measuring unique aspects of cSVD 

pathophysiology, but that have so far received less attention. The list is not exhaustive. Future 

research will likely add more modalities and lesion types. For example, microinfarcts have 

been visualized on MRI by several research groups and may be a frequent but 
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underrecognized consequence of thrombosis or embolism of small arteries18. Additionally, 

future research may clarify that biomarkers currently on the list are a poor fit for some 

purposes.  

In the following sections, we review the state of imaging biomarker development for 

selected emerging modalities, along with considerations for further development and 

harmonization. 

Structural Imaging: Perivascular spaces  

Perivascular spaces are rapidly emerging as a novel marker of cSVD and are defined as 

“fluid-filled spaces that follow the typical course of a vessel as it goes through grey or white 

matter”5. While long considered an innocuous phenomenon of aging, a converging body of 

proof of principle cross-sectional studies now suggests that a larger burden of perivascular 

spaces is associated with a higher likelihood of dementia, cognitive impairment, and stroke19-

21 More importantly, these associations are independent from established markers of cSVD. 

Longitudinal studies of the appearance of perivascular spaces or their enlargement over time 

are lacking; therefore, the rate at which these spaces change over time is essentially unknown. 

One study showed that the 5-year incidence of new large perivascular spaces (defined as ≥3 

mm diameter) in a general elderly population was 3.1%21, however this size exceeds the 

generally accepted current width boundary between perivascular spaces and lacunes5.  

There are few data on the repeatability of measurements of perivascular spaces and 

reproducibility of measurement across scanners. For one automated method, repeatability was 

excellent with intra-class correlations of 0.92 for basal ganglia and 0.87 for centrum 

semiovale22. In contrast, intra-rater and inter-rater reliability for visual rating scales have been 

published by several groups and should be expected to be good to excellent (i.e., with kappa 

values of 0.5 or higher or intra-class correlation coefficients of 0.6 or higher). Rating on T2-

weighted sequences is favoured because perivascular spaces are well visible, but some 
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studies have used high resolution T1-weighted sequences instead. In one study, ratings on 

T1-weighted and T2-weighted sequences showed excellent correlation (intraclass correlation  

>0.80)23. 

The HARNESS working group identified several difficulties in the quantification of 

perivascular spaces, which have so far hampered comprehensive understanding of their 

biological meaning. First, perivascular spaces, reflecting the virtual space between blood 

vessels and pia mater, by themselves are a physiologic finding. It is the enlargement of these 

spaces that can be visible on MRI that is considered non-physiologic. The question then 

remains what amount of enlargement should distinguish physiologic from non-physiologic 

perivascular spaces? Originally, a convenience threshold was chosen, such that any 

perivascular space visible on brain MRI was considered enlarged. However, increasing field 

strengths and other advances in imaging now allow much smaller perivascular spaces to 

become visible on MRI, indicating the need to use a more objective and reproducible 

threshold independent from imaging parameters. 

Second, since perivascular spaces are defined by their intricate relation to brain 

vessels, they are ubiquitous in all brain regions. Yet, the extent of enlargement is different 

across brain regions and should be taken into account in their quantification. A working 

upper width limit of 3 mm is widely used to discriminate perivascular spaces from small 

lacunes5, but for example it is well recognized that larger width perivascular spaces are 

sometimes seen in the substantia innominata. Radio-pathological correlation studies show 

that MRI can differentiate perivascular spaces from lacunes with good sensitivity and 

specificity using morphological and signal intensity information24, but more validation on 

correlations by region would be welcome. Similarly, the processes underlying their 

enlargement are thought to differ according to brain region; for example, in cerebral amyloid 
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angiopathy enlargement of perivascular spaces is seen in the centrum semiovale but not in the 

basal ganglia.25,26. 

Against this background, it is not surprising that the various efforts to quantify 

perivascular spaces have differed with respect to definition of enlargement, regions to be 

scored, and scoring system used23,27-30. While work continues to identify the key features of 

these rating systems with respect to similarities, dissimilarities, strengths, weaknesses, and 

‘translation’ from one rating system to the other, we recommend that investigators use the 

rating system most relevant to their population, or that they are most comfortable with, while 

having a core understanding how that specific rating system relates to others available in the 

literature. Raters should be trained on a standardized dataset with measurement of intra-rater 

and inter-rater reliability and report these measures in publications; training tools are 

available on HARNESS website.  

Parallel to this development of visual rating, there is now a strong focus on fully-

automated quantification of perivascular spaces. These efforts have so far been hampered by 

similar methodological considerations as outlined above, but the recent introduction of 

machine learning algorithms in brain imaging holds great promise in overcoming these 

barriers22,31. Just like automated quantification of WMH resulted in dramatic improvement in 

our understanding of their role in neurodegenerative diseases particularly at the voxel level, 

automated detection, volumetrics, shape, density and orientation of perivascular spaces could 

signify a paradigm shift in their position within the pantheon of cSVD markers. 

Structural Imaging: Atrophy in the context of cSVD  

Atrophy is now a well-established, measurable consequence of cSVD. Both cross-

sectional and longitudinal studies show proof of principle that total brain volume is lower in 

cSVD and decreases more quickly in persons with enlarging WMH. The repeatability and 

reproducibility of brain volume measurements in the context of cSVD has been reviewed 
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recently17. Here, we highlight specific aspects to be considered when implementing atrophy 

measurements in cSVD studies.  

Given the complexity of brain anatomy, measures of brain volume should be obtained 

from 3D T1-weighted high-resolution isotropic sequences with quantitative computerized 

methods where possible. To capture chronic, final effects, the image acquisitions should be 

performed remotely in time (probably 90 days or longer) from the occurrence of acute brain 

lesions.  

At a given time point, volumetric measures reflect the sum of the individual’s 

maximum brain volume growth (estimated by the intracranial cavity volume), the effect of 

age, and that of multiple potential diseases including cSVD, overt stroke, and 

neurodegenerative diseases such as Alzheimer’s disease. Controlling for differences in head 

size, e.g. by expressing volumes as a fraction of intracranial volume or including intracranial 

volume as a covariate, is mandatory in single time point analyses. Although controlling for 

intracranial volume is not strictly necessary for longitudinal analyses, investigators may still 

want to analyze it as a proxy for original maximum brain size which reflects premorbid brain 

health and is associated with general intelligence32. In longitudinal analyses, the use of cross-

timepoint registration pipelines rather than repeated use of cross-sectional methods may 

reduce variability in measurement33,34 but the optimal approach remains to be confirmed.  

Methods involving registration to a common template should be used cautiously given 

that brains with cSVD, often exhibiting large ventricles and white matter atrophy, can register 

poorly to atlases based on healthy individuals. This is a particularly challenging problem 

when cSVD is accompanied by larger destructive intracerebral hemorrhages or infarcts. The 

impact of brain tissue lesions on the different methods to assess brain volume is often 

unpredictable35. In particular, the presence of extensive WMH can lead to erratic behavior of 

most algorithms,36,37 and if appropriate they should be masked. Additionally, algorithms may 
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variably segment fluid-filled cavities within the brain (lacunes and enlarged perivascular 

spaces) as cerebrospinal fluid, gray matter or white matter, requiring a systematic visual 

quality control of segmentation results35,38. There is consensus that cavities resulting from 

infarction should be excluded from brain tissue estimates5, depending on the question being 

asked; clearly, they do not represent spaces such as subarachnoid space or ventricles but nor 

do they represent normal brain tissue. They can be considered as part of the ‘total burden of 

brain injury’39 in some analyses. Quantitative methods are emerging that can estimate 

perivascular space volume; when such measurements are made we recommend that 

perivascular space volume be reported as a separate tissue class and not included in the total 

brain volume. Given the numerous sources of variation in gray to white contrast in cSVD, 

differential measures of gray and white matter volumes should be interpreted carefully40. The 

use of other computational volumetric markers, such as ventricle volumes, has not been 

validated in cSVD. All methods require visual checking and may need manual editing where 

automated segmentation has failed to identify the correct tissue. 

Diffusion imaging metrics 

Diffusion imaging provides of the diffusion of water molecules within brain tissue. 

There are a large variety of techniques to analyze these data. Diffusion-weighted imaging is 

positive (that is, shows increased signal) in the setting of recent infarction or microinfarction. 

Scalar measures describe diffusion properties on the voxel level, such as the extent or 

directionality. Diffusion tensor imaging (DTI) is the most useful model to derive these scalar 

metrics such as mean diffusivity (MD) or fractional anisotropy (FA). Tractography can be 

used to visualize fiber connections and analyze diffusion on the tract level. Global 

tractography in combination with graph theoretical network analysis allows to assess the 

impact of cSVD on the level of brain networks. 
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Proof of principle that diffusion imaging metrics can serve as biomarkers of cSVD is 

well established by multiple studies associating diffusion imaging indices derived from the 

white matter (WM) or normal-appearing WM (NAWM) with cSVD and cSVD risk factors. 

Most studies report cross-sectional associations between lower FA or higher MD and 

cognitive and gait impairments41,42 Mean diffusivity is readily measured in the whole brain, 

tissue subregions, regions of interest or tracts and shows the strongest associations with SVD 

lesion burden43. Recent, promising post-processing methods to increase the reliability and 

ease of extraction of diffusion imaging metrics include histogram-derived diffusion imaging 

metrics, such as the peak width of the skeletonized MD distribution (PSMD)44, and 

connectivity measures including ones based on network theory45-47. Lower brain connectivity 

in strategic network locations, such as long-distance fibers connecting so-called network 

‘hubs’, show promise for prediction of speed and executive functioning48,49. This is not an 

exhaustive list, as there are several other promising diffusion imaging acquisition and 

analysis methods which show promise for development as biomarkers of cSVD50,51. 

In contrast to the many cross-sectional studies, there are fewer studies evaluating 

diffusion imaging as a prognostic marker of disease progression.41 The LADIS study reported 

an association between NAWM MD at baseline and decline in processing speed,52 whereas 

the RUN DMC study found no association between baseline NAWM MD and cognitive 

decline53, or risk of dementia over 5 years54. Diffusion imaging-derived brain connectivity 

predicted conversion to dementia after 5 years55. Longitudinal studies of diffusion imaging 

change over time are at this time relatively scarce56-60 but promising, suggesting that change 

over time can be detected on diffusion imaging with similar sensitivity as change over time in 

WMH volume, requiring smaller sample sizes than required to detect atrophy or incident 

lacunes61. Progression over time in diffusion imaging metrics has been associated with 

increased risk of dementia58 and gait decline62. 
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The tissue correlate of altered diffusion metrics in cSVD is still debated. A recent 

study suggests that increased extracellular water content is a major contributor50. 

There are few studies on repeatability and reproducibility. The only study in patients 

with cSVD showed high reproducibility of PSMD in 7 patients with CADASIL scanned on a 

1.5T and 3T scanner (intraclass correlation 0.95)44. Other studies in healthy controls have 

shown good repeatability and reproducibility for FA and MD measurements (coefficient of 

variation ranging from 0.8 to 5.7%)63-65. Nonetheless, variation in scanner or scanner 

upgrades may bias measurements in longitudinal studies63; therefore, investigators ideally 

should avoid scanner upgrades or changing scanners between baseline and follow-up 

measurements in studies designed to detect small changes over time. Phantoms to estimate 

reproducibility are in development.66 

Perfusion and cerebrovascular reactivity  

Perfusion and cerebrovascular reactivity (CVR) approaches are highly relevant in cSVD 

research because reduced tissue perfusion and impaired CVR are hallmark pathological 

features. These physiological forms of imaging introduce a unique set of challenges for study 

design, given the large variability in acquisition methods for perfusion and especially CVR 

which are less well established compared to many structural imaging techniques. To image 

CVR, the investigator must choose among several experimental methods for stimulating 

changes in cerebral blood flow (CBF), as well as between several different acquisition types 

such blood oxygen level dependent (BOLD) or arterial spin labeling (ASL). Because the 

vascular signal comes from only a proportion of voxel contents (the blood volume fraction in 

grey matter accounts for 5 to 10% of the tissue volume), and for BOLD-related techniques 

the changes in hemoglobin oxygenation are relatively small, attention must be paid to ensure 

sufficient signal to noise ratio to generate images of adequate quality. 
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 Dynamic susceptibility contrast (DSC) and ASL are examples of MRI acquisitions 

that yield perfusion-weighted images; the former relies on an exogenous gadolinium contrast 

agent, while the latter uses magnetically labeled arterial blood water that is proximal to the 

imaging volume to label blood and produces quantitative perfusion maps typically expressed 

in units of mL/100g tissue/minute.  

ASL is a promising modality for repeated measure studies because it does not require 

administration of an exogenous intravenous contrast agent. A fraction of cSVD articles on 

perfusion have thus far used ASL67; cross-sectional studies, for example, provide proof of 

principle by showing that a pattern of reduced frontal perfusion was associated with increased 

WMH volume68. Longitudinal studies are less common, however, one 4-year follow-up study 

reported that global CBF decreases were associated with higher baseline WMH but that 

baseline CBF was not associated with greater WMH progression.69 Another longitudinal 

study found that while lower baseline CBF predicted appearance of new WMH at 18 months, 

change in CBF was not associated with new WMH70. Studies are needed on the association of 

baseline and longitudinal CBF and the prevalence and incidence of new brain infarcts and 

microinfarcts. Although white matter and subcortical tissue perfusion estimates are of 

particular interest in cSVD, these measurements are less robust than in grey matter when 

using ASL71 due to the lower CBF and longer arterial transit time.   

A validation study of ASL found higher repeatability for pseudo-continuous ASL 

compared with pulsed ASL or continuous ASL, with a coefficient of variation of 3.5% in 

gray matter and 8.0% in white matter72. There are few reproducibility studies across scanner 

types. One study found high reproducibility in eight volunteers scanned on two General 

Electric (GE) 3T scanners73. Another study found that sequence parameter differences had a 

larger effect than hardware or software differences on General Electric, Philips, and Siemens 

scanners74. Phantoms for ASL have been developed but not yet widely adopted75. 
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 Unlike physiological imaging during a single “baseline” state, CVR involves 

physiological provocation to measure a vasoactive response, typically by breathing medical 

air enriched with carbon dioxide gas. Technical and paradigm details and considerations have 

been recently reviewed76. Multi-contrast physiological imaging, combining perfusion and 

CVR maps in cSVD, is a promising technique77. At this time, relatively few CVR studies 

have focused explicitly on cSVD78. However, CVR imaging is being exploited as an imaging 

endpoint to assess the efficacy of vasodilatory drugs in a dose escalation trial79. CVR appears 

to be a promising prognostic biomarker of cSVD brain changes, for example as revealed by 

one longitudinal study that found impaired regional CVR was predictive of WMH lesion 

expansion at one-year follow-up80. A four-year longitudinal study showed that age-related 

decreases in CVR were associated with steeper declines in processing speed and episodic 

memory but not working memory or reasoning; however, the degree to which enlarging 

WMH or new infarction may have been associated with these changes was not assessed. The 

BOLD-response to a visual stimulus has been shown to be a possible biomarker for CAA and 

could be a more easily implemented, well-tolerated alternative means to measure CVR, but is 

is limited to the occipital lobe81-83 and has not been compared directly to CVR measurement 

based on hypercapnia. 

 The repeatability of CVR measurements has been investigated in healthy controls but 

not patients with cSVD. In a study of 15 controls, the coefficient of variation ranged from 

7.3% to 42.9% across 16 regions of interest including cortical and subcortical grey matter and 

white matter84. The coefficient of variation was lower when using a paradigm that averaged 

two three-minute blocks of CO2 inhalation rather than three one-minute blocks84. 

 A consensus group has provided recommendations for ASL imaging protocols85; 

however, long-label and long-delay ASL approaches may prove superior for CBF 

measurement in the white matter and subcortical gray matter. Multicenter studies using 



19 

 

scanners from different vendors seems justifiable as long as key methods (including choice of 

pseudo-continuous ASL, readout strategy, labeling duration, and post-labeling delay time) are 

kept constant. For CVR imaging, there are a greater diversity of methods and the different 

methods may suit specific patient populations. One published protocol84 using three-minute 

CO2 blocks is being used in a multicenter trial. 

Blood-brain barrier integrity 

Although proof-of-concept evidence is very limited, proof-of-principle evidence from cross-

sectional clinical studies suggests that blood-brain barrier (BBB) dysfunction determined by 

MR is associated with imaging features of cSVD, and that BBB leakage may contribute to 

tissue damage, development of cSVD features and long-term adverse outcomes86,87. 

Therefore, BBB permeability is an important target of measurement in studies of 

pathophysiology and treatment evaluation. 

Dynamic contrast-enhanced MRI (DCE-MRI) using a standard dose of a gadolinium-

based contrast agent is presently the most promising technique for quantitative imaging of 

subtle leakage86, and has been applied in several studies of cSVD and related conditions.86,88-

91 However, while the technique is well-established in other conditions such as brain tumours, 

particular challenges emerge in cSVD due to the slow rate of leakage. For qualitative 

assessment, gadolinium-based contrast agent (GBCA) enhancement of cerebrospinal fluid on 

T2-weighted fluid attenuated inversion recovery (FLAIR) and T1-weighted imaging may 

provide a practical, though non-specific, alternative92,93. Other potential methods are difficult 

to quantify (e.g. dynamic susceptibility contrast MRI),94 employ ionising radiation,95,96 or are 

at an early stage of development (compartmental ASL modelling97-99). Nevertheless, DCE-

MRI is not routinely used in cSVD studies due to practical impediments (long scan time, 

exogenous contrast), lack of widespread expertise, and technical and physiological 

complexities and confounds100,101.   
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There are few studies of BBB permeability change over time in cSVD. A single study 

of 22 subjects with high WMH burden reported little overlap between regions of high white 

matter permeability between the first and second scan, but that high permeability was often 

seen along the border of WMH at either time102. 

Because there is no reliable convenient reference method for quantifying subtle BBB 

permeability, studies comparing DCE-MRI measurements with other measures of BBB 

integrity are few and inconclusive103,104. The need for a second gadolinium administration is a 

barrier to conducting studies on repeatability, but one study showed good evidence of 

repeatability with coefficient of variation of 11.6 % for white matter and 14.4 % for gray 

matter at 3T105. Reproducibility across different MR hardware has not been investigated. 

Based on theoretical considerations and experimental observations, it is likely that 

measurements are influenced by MR field strength, scanner stability, spatial resolution, pulse 

sequence parameters, acquisition time, GBCA type, and pharmacokinetic model100,101,106,107. 

The diversity of acquisition and analysis protocols described (sometimes incompletely) in the 

literature is, therefore, a key impediment to the interpretation and comparison of data from 

different studies and centres. 

Our recommendation for future studies is to use a three-dimensional, MR acquisition 

with wide spatial coverage, pre-contrast T1 measurement, a minimum temporal resolution of 

around one minute and minimum DCE scan time of 15 minutes108. A vascular input function 

should be measured in the venous sinuses and the permeability-surface area product PS for 

tissue regions or, where feasible, individual voxels should be estimated using an appropriate 

pharmacokinetic model, typically the Patlak model109; simulations may be performed to 

assess accuracy and precision. Results should be interpreted carefully, particularly when 

comparing data from different research groups or scanners. We identify three priorities for 

the development of this biomarker: (i) agreement by the wider cSVD and dementia imaging 
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research community on an open-access, dynamic consensus protocol for DCE-MRI 

measurements of slow BBB leakage, (ii) acquisition of data on repeatability and 

reproducibility, and (iii) studies to assess accuracy, including theoretical work, comparison 

with independent measures of BBB integrity, and validation using MR test objects and 

histology. Further technical development to increase accuracy and precision, as well as 

continued development of alternative methods are also encouraged. 

Ultra high field MRI 

Ultra-high field MRI, in particular 7T MRI, is emerging as a new tool in cSVD research. The 

higher resolution, different tissue contrasts, and better signal to noise ratios of 7T MRI allow 

the investigator to probe aspects of cSVD that are difficult to assess at lower field strength. In 

addition to enhanced sensitivity for cSVD lesions such as microinfarcts and microbleeds and 

more precise assessment of atrophy18,110, with 7T MRI it is possible to actually visualize the 

small vessels111.  From both perforating arteries and veins features such as vessel density, 

length, and tortuosity can be resolved.111,112. Additionally, different aspects of vascular 

function, including blood flow, pulsatility of flow in small penetrating arteries (a possible 

indicator of vascular stiffness), vascular reactivity to vasoactive agents (e.g carbon dioxide) 

or neuronal stimulation (i.e. functional MRI), can be assessed, making it possible to probe 

cSVD at the level of the small vessels themselves111. 

Despite the potential for of 7T MRI for cSVD, important steps have to be taken to 

validate these novel techniques. Of note, EUFIND (the European Ultrahigh-Field Imaging 

Network in Neurodegenerative Diseases), another JPND initiative, has the goal of 

harmonizing 7T MRI protocols across more than 20 centres from Europe and the US.  

 

Tools to Facilitate cSVD Biomarker Development and Harmonization 
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 The HARNESS initiative focused on three areas to provide tools for harmonization: 

MR acquisition, post-processing, and common repositories for training and validation. These 

tools are made available to the research community at www.harness-neuroimaging.org. 

 The HARNESS website provides fully specified MR acquisition protocols suitable for 

research studies that include a focus on cSVD. Given the diversity of manifestations of cSVD 

and hypotheses that can be tested, there is no single MR acquisition protocol that can quantify 

all aspects of cSVD and therefore investigators must make choices regarding protocol 

composition, also accounting for issues of feasibility including acquisition time and cost. 

Therefore, instead of a single protocol the HARNESS website provides several options that 

meet these criteria: a) they adhere to STRIVE5, b) they are suitable for identifying canonical 

cSVD lesions types--lacunes and WMH of presumed vascular origin, recent small infarcts, 

microbleeds, atrophy, and DTI changes, c) they have been tested on more than one scanner as 

part of an established multicenter study and d) the protocol developers are willing to share the 

protocol freely. There are also links to other websites and useful repositories of information. 

Currently, protocols are available from the SVD@target study84 (ISRCTN10514229) 

and the Canadian Dementia Imaging Protocol113, with plans to add the protocol from the U.S. 

National Institute of Neurological Disorders and Stroke MarkVCID Biomarker Consortium 

(https://markvcid.partners.org/) once it has been fully specified and tested. Sequence 

parameters with exam cards are provided for 3T for most of the major vendors including 

General Electric, Phillips, and Siemens. The protocols are suitable for prospective research 

studies with quantitative imaging biomarkers but probably exceed most clinical stroke 

protocols in terms of acquisition time, spatial resolution, and inclusion of DTI. They have 

been implemented successfully in multicenter studies at research sites, but nonetheless may 

not be feasible for multicenter studies performed at predominantly clinical scan sites where 

the intent is to leverage clinical imaging without a focus on quantitative biomarkers.  

http://www.harness-neuroimaging.org/
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 Reducing imaging variability may be enhanced by following consensus 

recommendations17 to perform automated quality checks for acquisition parameters and 

monitoring of images for artefacts, correction for gradient nonlinearities, a well-defined 

method for subject’s positioning in the scanner, and a clear strategy for hardware replacement 

when needed.  

 The HARNESS software database provides a searchable source for information on 

downloadable software tools for processing MR data for cSVD quantitative biomarkers, such 

as for segmenting WMH. There are many existing software libraries for neuroimaging 

analysis, but only HARNESS focuses exclusively on cSVD. Site users can search for 

software by image modality, measurement type, key words, availability (i.e. by download or 

by request to the developer), or operating system. Software developers control their own 

entries via password-protected accounts, and must make their software available according to 

their own terms by providing a link or through contacting the developer. We are actively 

recruiting developers with tools to sell or share. Developers may access the site for 

information on how to create accounts. 

 To aid visual review for cSVD lesions according to STRIVE, the HARNESS site 

makes downloadable electronic documents available including validated visual rating scale 

scores and instructions, case report forms, and training slides. 

 Training readers and software algorithms requires access to independent MR datasets 

for measurements. The HARNESS site includes a web-based repository with completely de-

identified 3T MR data showing lacunes, WMH, microbleeds, and cortical superficial 

siderosis from patients with TIA, minor ischemic stroke, and cerebral amyloid angiopathy, 

with consensus “gold standard” measurements for comparison. This repository will be useful 

for independently confirming reliability of measurements within and across research groups, 

and for derivation and validation of computerized algorithms for quantitative measurement 
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(e.g. for segmenting WMH to determine location and overall volume) as well for comparing 

WMH algorithms against an independent standard. 

 

SUMMARY AND CONCLUSIONS 

 The HARNESS initiative was a multidisciplinary consensus process with input from a 

large number of neuroimaging researchers investigating cSVD. Our group developed a 

framework for neuroimaging biomarker development closely aligned with those proposed in 

other areas of imaging research. The HARNESS website (www.harness-neuroimaging.org) 

was created to facilitate harmonized neuroimaging methods for cSVD research.  The site 

includes cSVD-appropriate MR acquisition protocols aligned with STRIVE, a searchable 

database of softwares for analyzing brains with cSVD, visual rating scales and case report 

forms, and a repository of 100 deidentified scans demonstrating different cSVD lesion types. 

These tools and resources are made available to the research community via the site and can 

be easily updated by contributors. 

 In this rapidly evolving field, we found that the degree of biomarker validation—

technical, biological and clinical, and feasibility—varied by cSVD lesion and measurement 

type. In general, visually diagnosed cSVD lesions such as lacunes, WMH, and microbleeds 

have the greatest amount of clinical validation including as prognostic markers and data are 

available on incidence andchange over time, and are already being used in multicenter studies 

and reported in routine clinical practice. Even so, none of these markers has yet been 

qualified for use in clinical trials by regulatory agencies, and more work is needed to 

standardize and compare current volumetric tools. Other markers are at a less advanced stage 

of biomarker development. Atrophy has been extensively studied but almost always in the 

context of Alzheimer’s disease and not cSVD. Among the emerging cSVD markers there are 

relatively more data on diffusion imaging and perivascular space imaging, but more 

http://www.harness-neuroimaging.org/
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longitudinal data and multicenter data on reproducibility are needed. Measurements of brain 

perfusion, vascular reactivity, and blood-brain barrier integrity are promising but are at an 

even earlier stage of development. For these cSVD manifestations innovation to overcome 

technical and feasibility barriers, rather than harmonizing to a best protocol, is the most 

important next step in development. 

 We found that technical validation often lagged clinical validation. However, 

estimates of repeatability and reproducibility are critically important to estimate minimum 

detectable differences over time and variability in measurement in multicenter studies, 

essential for sample size calculations for multicenter longitudinal trials. This lag in technical 

validation likely reflects the difficulty in obtaining funding for technical studies compared to 

clinical studies, the burden on research subjects to undergo multiple scans, and the general 

lack of non-human phantoms for studies of reproducibility. In contrast to volumetric imaging 

and functional MRI, phantoms for other measurements are less well developed. One research 

group has developed a phantom for iron deposits that mimic mineral deposits and 

microbleeds, not currently available for purchase114; otherwise, we are not aware of any other 

phantoms that recreate specific aspects of cSVD. Technical validation for neuroimaging 

biomarkers of cSVD would be enhanced by creating funding opportunities specifically for 

this purpose. 
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Figure 1. Imaging Biomarker Development Framework for Cerebral Small Vessel Disease 
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Figure 2. Schematic overview of neuroimaging biomarker development status for cerebral 

small vessel disease 
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Figure 2 Legend: Green light indicates validation data from two or more studies from 

independent research groups; Yellow light indicates support from a single study or 

conflicting evidence from multiple studies; Red light indicates there is currently insufficient 

evidence. WMH, white matter hyperintensities of presumed vascular origin; CMB, cerebral 

microbleeds; PVS, perivascular spaces; DTI, diffusion tensor imaging; BBB, blood-brain 

barrier. Proof of concept: evidence that the marker measures a specific change or process 

related to cerebral small vessel disease.  Proof of principle/ Mechanism: evidence that the 

marker differs between patients with and without cerebral small vessel disease. Proof of 

effectiveness: evidence from larger scale multiple center studies that the marker differs 

between patients with and without cerebral small vessel disease. Repeatability: precision of 

repeated measurements under the same conditions using the same scanner. Reproducibility: 

replicate measurements on the same or similar objects (e.g. a phantom or human volunteers) 

in different locations using different scanners. Longitudinal: rate of change over time has 
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been defined. Monitoring: evidence that longitudinal change in the marker is associated with 

progression of cerebral small vessel disease. Surrogate: evidence that change in the marker is 

strongly associated with clinical outcomes in cerebral small vessel disease, such that changes 

in the marker could be considered a substitute for a clinical endpoint.  
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ABSTRACT 

Introduction: Many consequences of cerebrovascular disease are identifiable by magnetic 

resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of 

data. The European Union Joint Programme on Neurodegenerative Diseases (JPND) funded 

the Harmonizing Brain Imaging Methods for Vascular Contributions to Neurodegeneration 

(HARNESS) initiative, with a focus on cerebral small vessel disease. 

Methods: Surveys, teleconferences, and an in-person workshop were used to identify gaps in 

knowledge and to develop tools for harmonizing imaging and analysis. 

Results: A framework for neuroimaging biomarker development was developed based on 

validating repeatability and reproducibility, biological principles, and feasibility of 

implementation. The status of current MRI biomarkers was reviewed. A website was created 

at www.harness-neuroimaging.org with acquisition protocols, a software database, rating 

scales and case report forms, and a deidentified MRI repository.  

Conclusions: The HARNESS initiative provides resources to reduce variability in 

measurement in MRI studies of cerebral small vessel disease. 

 

 

INTRODUCTION 

Vascular disease contributes to more than half of dementia cases, often in conjunction with 

Alzheimer’s disease pathology1. Most of the vascular brain injury is caused by cerebral small 

vessel disease (cSVD)2, which often goes clinically unrecognized until revealed by brain 

imaging. cSVD is strongly associated with cognitive impairment and future risk for cognitive 

decline and dementia3,4. One of the challenging but intriguing aspects of research in this field 

is that cSVD has diverse manifestations, including brain infarcts, lacunes, white matter 

hyperintensity (WMH) of presumed vascular origin, perivascular spaces, and microbleeds5. 
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Additionally, several promising new imaging biomarkers are emerging for the diagnosis and 

monitoring of patients, as well as for studies into etiology and pathophysiology6,7. 

The Standards for Reporting Vascular Changes on Neuroimaging (STRIVE)5 were an 

important first step to harmonize neuroimaging assessment of cSVD. Terms and definitions 

for common cSVD lesion types, reporting standards, and suggestions for acquisition 

protocols were provided, and are now commonly used in research practice. However, 

STRIVE did not address pathways for developing and validating new biomarkers, nor did it 

address sources of variability in measurement, which should be minimized to enhance the 

ability to detect biological differences in multicenter and longitudinal studies. 

To fully realize the potential of neuroimaging biomarkers of cSVD for use in larger 

scale, multicenter studies including clinical trials with cSVD endpoints, we created the 

Harmonizing Brain Imaging Methods for Vascular Contributions to Neurodegeneration 

(HARNESS) initiative. This initiative builds on the work of STRIVE by defining a 

framework for developing neuroimaging biomarkers of cSVD, reviewing the status of 

emerging neuroimaging biomarkers in this field, and developing and implementing 

standardized acquisition protocols and web-based repositories to facilitate multi-center 

research.  

 

METHODS 

HARNESS Group Composition 

HARNESS was funded by the international Joint Programme for Neurodegenerative Diseases 

initiative to address neuroimaging biomarkers in neurodegeneration and dementia. The 

HARNESS members were invited to participate based on contributions cSVD research 

including their participation in STRIVE, and to provide a balance of input from different 

geographic regions and research disciplines. HARNESS included 70 members from 29 
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institutions in 11 countries, representing disciplines including radiology, biomedical 

engineering, clinical trials, computer science, epidemiology, medical biophysics, neurology, 

stroke medicine and psychiatry. Members were surveyed to identify important needs for 

harmonizing neuroimaging methods for cSVD, and then subdivided into 11 working groups 

of 6-12 participants representing a range of disciplines, cSVD interests and location, to 

address these needs. The initiative commenced in July 2016 and culminated in an in-person 

conference in June 2017. Where appropriate, working groups identified relevant papers 

through literature searches, expert knowledge, and hand searching articles from reference 

lists, but formal systematic reviews and creation of evidence tables were considered out of 

scope.   

 

RESULTS 

Neuroimaging Biomarker Framework for cSVD 

We adopted the definition of a biomarker used by the Biomarkers Definitions Working 

Group8: “a characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention”. Inherent to this definition is that biomarkers may have different clinical 

purposes including diagnosis, prognosis, monitoring, and measuring treatment response. 

Biomarkers have been used as surrogate endpoints for clinical trials, meaning that the 

biomarker substitutes for or represents a manifestation of the clinical endpoint, when the 

biomarker is expected to predict “clinical benefit or harm based on epidemiologic, 

therapeutic, pathophysiologic, or other scientific evidence”9. This might be considered the 

highest level of qualification for a biomarker. However, biomarkers have other important 

uses for investigation, diagnosis, and monitoring of disease even if they do not predict 

treatment response. 
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Validation is required to determine whether a biomarker can be considered fit for a 

specific purpose. Some regulatory authorities, such as the U.S. Food and Drug 

Administration (FDA), define a formal process of biomarker qualification for use in 

evaluating therapeutics10. To our knowledge, no biomarker of cSVD, including WMH, 

lacunes, or microbleeds, has yet been submitted to and qualified by the US FDA for use in 

clinical trials, although they have been used as secondary endpoints in imaging substudies11. 

Qualification of an imaging marker that can be used as a trial endpoint would greatly 

accelerate the development of therapies for cSVD by improving selection criteria, reducing 

the size and cost of a trial and increasing the specificity of the outcome. 

To facilitate validation of cSVD biomarkers we present a framework for 

neuroimaging biomarker development in Figure 1, adapted from consensus recommendations 

from the European Society of Radiology12 and for development of imaging biomarkers for 

oncology13. Validation has technical aspects (e.g., can the same measurement be reproduced 

reliably on the same scanner or different scanners?), biological aspects (e.g., is the 

measurement different in patients with vs. without cSVD?), and feasibility of implementation 

(e.g., is the measurement practical and affordable?). In our version of this biomarker 

development framework, we define proof of concept as validation of measurement of a 

specific change or process (e.g., that arterial spin-labeling [ASL] MRI generates a signal that 

correlates with gold standard measurement of perfusion) while proof of principle refers to 

validation that the measurement distinguishes cases from controls or is associated with health 

outcomes (e.g., that ASL measured perfusion is different in cSVD patients than in controls 

and is associated with worse prognosis)12. We define proof of effectiveness as the ability to 

measure the marker across larger groups of patients at multiple sites12. Repeatability refers to 

the precision of repeated measurements under the same conditions using the same scanner 

(with high repeatability conferring greater power to detect smaller within-individual changes 
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over time, important for longitudinal studies), while reproducibility refers to the precision of 

replicate measurements on the same or similar objects (e.g. a phantom or human volunteers) 

using different scanners12,13. For visual assessments by human raters, intra-rater reliability 

refers to the precision of measurement by the same rater while inter-rater reliability refers to 

the precision of measurements across different raters. The Quantitative Imaging Biomarker 

Alliance (QIBA) offers recommendations for study design and statistical approaches to 

technical validation14. Validation typically begins with relatively small, cross-sectional 

studies at single centers to demonstrate proof of concept, proof of principle and initial 

technical validation, before expanding to longitudinal studies and multicenter studies to 

demonstrate proof of effectiveness and reproducibility. Feasibility is then demonstrated by 

incorporation of the biomarker into clinical radiological practice or by qualification for use in 

clinical trials. 

 

Survey of Current cSVD Biomarker Development with Specific Considerations for 

Selected Emerging Modalities  

CommonlyThe most studied neuroimaging biomarkers of cSVD are lacunes, WMH of 

presumed vascular origin, perivascular spaces and cerebral microbleeds. With the exception 

of perivascular spaces, Tthese lesions are typically described reported in routine radiology 

reports in clinical practice and have been incorporated as secondary imaging endpoints in 

some clinical trials. For these markers proof of concept, principle, and effectiveness have 

been established. Even so, longitudinal data on change over time and data on repeatability 

and reproducibility, so important for planning sample sizes in clinical trials, are relatively 

scant15,16.   

 A recent systematic review highlighted the gaps in knowledge in repeatability and 

reproducibility of measurements of cSVD lesions, focusing mostly on quantitative 
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biomarkers including volumes of WMH, lacunes, and brain17. The authors systematically 

searched the literature to identify information on scan-rescan repeatability (which they 

termed “within center reproducibility”) as well as the effects of scanner vendor, field 

strength, sequence choices, and coil type. They found that the amount of literature on 

repeatability and reproducibility varied widely by lesion type. The most literature was found 

on measures of brain volume, probably because brain atrophy is an important biomarker for 

many neurological diseases in addition to cSVD, such as Alzheimer’s disease, and because 

phantoms are available for measuring variations in geometric distortions across scanners. For 

WMH, lacunes, perivascular spaces, and microbleeds there was only sparse information on 

repeatability with relatively speaking the greatest amount of information on WMH 

measurements cross-sectionally, but no repeatability data on longitudinal measurements.  

Figure 2 provides an overview of the validation status of the best established cSVD 

markers as well as emerging modalities and techniques. Over time the list of neuroimaging 

biomarkers of cSVD has grown substantially as our knowledge of cSVD pathophysiology2, 

and ability to image it, has grown.  

Some markers have already received a large amount of attention, notably WMH 

(assessed visually or computationally), lacunes, and microbleeds (mainly visually with some 

emerging computational methods). Even so, some aspects of validation are lacking with few 

large comparisons of different volumetric tools, little longitudinal data, and none are yet 

adopted as confirmed surrogate outcomes in clinical trials. Nonetheless, they have already 

been the subject of many reviews16,17.  

Hence, the list of biomarkers discussed in detail here represents the subset that the 

HARNESS group selected as the next most promising for measuring unique aspects of cSVD 

pathophysiology, but that have so far received less attention. The list is not exhaustive. Future 

research will likely add more modalities and lesion types. For example, microinfarcts have 
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been visualized on MRI by several research groups and may be a frequent but 

underrecognized consequence of thrombosis or embolism of small arteries18. Additionally, 

future research  and may clarify that biomarkers currently on the list are a poor fit for some 

purposes.  

In the following sections, we review the state of imaging biomarker development for 

these selected emerging modalities, along with considerations for further development and 

harmonization. 

Structural Imaging: Perivascular spaces  

Perivascular spaces are rapidly emerging as a novel marker of cSVD and are defined as 

“fluid-filled spaces that follow the typical course of a vessel as it goes through grey or white 

matter”5. While long considered an innocuous phenomenon of aging, a converging body of 

proof of principle cross-sectional studies now suggests that a larger burden of perivascular 

spaces is associated with a higher likelihood of dementia, cognitive impairment, and stroke19-

21 More importantly, these associations are independent from established markers of cSVD. 

Longitudinal studies of the appearance of perivascular spaces or their enlargement over time 

are lacking; therefore, the rate at which these spaces change over time is essentially unknown. 

One study showed that the 5-year incidence of new large perivascular spaces (defined as ≥3 

mm diameter) in a general elderly population was 3.1%21, however this size exceeds the 

generally accepted current width boundary between perivascular spaces and lacunes5.  

There are few data on the repeatability of measurements of perivascular spaces and 

reproducibility of measurement across scanners. For one automated method, repeatability was 

excellent with intra-class correlations of 0.92 for basal ganglia and 0.87 for centrum 

semiovale22. In contrast, intra-rater and inter-rater reliability for visual rating scales have been 

published by several groups and should be expected to be good to excellent (i.e., with kappa 

values of 0.5 or higher or intra-class correlation coefficients of 0.6 or higher). Rating on T2-
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weighted sequences is favoured because perivascular spaces are well visible, but some 

studies have used high resolution T1-weighted sequences instead. In one study, ratings on 

T1-weighted and T2-weighted sequences showed excellent correlation (intraclass correlation  

>0.80)23. 

The HARNESS working group identified several difficulties in the quantification of 

perivascular spaces, which have so far hampered comprehensive understanding of their 

biological meaning. First, perivascular spaces, reflecting the virtual space between blood 

vessels and pia mater, by themselves are a physiologic finding. It is the enlargement of these 

spaces that can be visible on MRI that is considered non-physiologic. The question then 

remains what amount of enlargement should distinguish physiologic from non-physiologic 

perivascular spaces? Originally, a convenience threshold was chosen, such that any 

perivascular space visible on brain MRI was considered enlarged. However, increasing field 

strengths and other advances in imaging now allow much smaller perivascular spaces to 

become visible on MRI, indicating the need to use a more objective and reproducible 

threshold independent from imaging parameters. 

Second, since perivascular spaces are defined by their intricate relation to brain 

vessels, they are ubiquitous in all brain regions. Yet, the extent of enlargement is different 

across brain regions and should be taken into account in their quantification. A working 

upper width limit of 3 mm is widely used to discriminate perivascular spaces from small 

lacunes5, but for example it is well recognized that larger width perivascular spaces are 

sometimes seen in the substantia innominata. Radio-pathological correlation studies show 

that MRI can differentiate perivascular spaces from lacunes with good sensitivity and 

specificity using morphological and signal intensity information24, but more validation on 

correlations by region would be welcome. Similarly, the processes underlying their 

enlargement are thought to differ according to brain region; for example, in cerebral amyloid 
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angiopathy enlargement of perivascular spaces is seen in the centrum semiovale but not in the 

basal ganglia.25,26. 

Against this background, it is not surprising that the various efforts to quantify 

perivascular spaces have differed with respect to definition of enlargement, regions to be 

scored, and scoring system used23,27-30. While work continues to identify the key features of 

these rating systems with respect to similarities, dissimilarities, strengths, weaknesses, and 

‘translation’ from one rating system to the other, we recommend that investigators use the 

rating system most relevant to their population, or that they are most comfortable with, while 

having a core understanding how that specific rating system relates to others available in the 

literature. Raters should be trained on a standardized dataset with measurement of intra-rater 

and inter-rater reliability and report these measures in publications; training tools are 

available on HARNESS website.  

Parallel to this development of visual rating, there is now a strong focus on fully-

automated quantification of perivascular spaces. These efforts have so far been hampered by 

similar methodological considerations as outlined above, but the recent introduction of 

machine learning algorithms in brain imaging holds great promise in overcoming these 

barriers22,31. Just like automated quantification of WMH resulted in dramatic improvement in 

our understanding of their role in neurodegenerative diseases particularly at the voxel level, 

automated detection, volumetrics, shape, density and orientation of perivascular spaces could 

signify a paradigm shift in their position within the pantheon of cSVD markers. 

Structural Imaging: Atrophy in the context of cSVD  

Atrophy is now a well-established, measurable consequence of cSVD. Both cross-

sectional and longitudinal studies show proof of principle that total brain volume is lower in 

cSVD and decreases more quickly in persons with enlarging WMH. the context of 

progressive cSVD. The repeatability and reproducibility of brain volume measurements in the 
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context of cSVD has been reviewed recently17. Here, we highlight specific aspects to be 

considered when implementing atrophy measurements in cSVD studies.  

Given the complexity of brain anatomy, measures of brain volume should be obtained 

from 3D T1-weighted high-resolution isotropic sequences with quantitative computerized 

methods where possible. To capture chronic, final effects, the image acquisitions should be 

performed remotely in time (probably 90 days or longer) from the occurrence of acute brain 

lesions.  

At a given time point, volumetric measures reflect the sum of the individual’s 

maximum brain volume growth (estimated by the intracranial cavity volume), the effect of 

age, and that of multiple potential diseases including cSVD, overt stroke, and 

neurodegenerative diseases such as Alzheimer’s disease. Controlling for differences in head 

size, e.g. by expressing volumes as a fraction of intracranial volume or including intracranial 

volume as a covariate, is mandatory in single time point analyses. Although controlling for 

intracranial volume is not strictly necessary for longitudinal analyses, investigators may still 

want to analyze it as a proxy for original maximum brain size which reflects premorbid brain 

health and is associated with general intelligence32. In longitudinal analyses, the use of cross-

timepoint registration pipelines rather than repeated use of cross-sectional methods may 

reduce variability in measurement33,34 but the optimal approach remains to be confirmed.  

Methods involving registration to a common template should be used cautiously given 

that brains with cSVD, often exhibiting large ventricles and white matter atrophy, can register 

poorly to atlases based on healthy individuals. This is a particularly challenging problem 

when cSVD is accompanied by larger destructive intracerebral hemorrhages or infarcts. The 

impact of brain tissue lesions on the different methods to assess brain volume is often 

unpredictable35. In particular, the presence of extensive WMH can lead to erratic behavior of 

most algorithms,36,37 and if appropriate they should be masked. Additionally, algorithms may 
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variably segment fluid-filled cavities within the brain (lacunes and enlarged perivascular 

spaces) as cerebrospinal fluid, gray matter or white matter, requiring a systematic visual 

quality control of segmentation results35,38. There is consensus that cavities resulting from 

infarction should be excluded from These fluid-filled cavities should be excluded from brain 

tissue estimates5, depending on the question being asked; clearly, they do not represent 

spaces such as subarachnoid space or ventricles but nor do they represent normal brain tissue. 

They can be considered as part of the ‘total burden of brain injury’39 in some analyses. 

Quantitative methods are emerging that can estimate perivascular space volume; when such 

measurements are made we recommend that perivascular space volume be reported as a 

separate tissue class and not included in the total brain volume. Given the numerous sources 

of variation in gray to white contrast in cSVD, differential measures of gray and white matter 

volumes should be interpreted carefully40. The use of other computational volumetric 

markers, such as ventricle volumes, has not been validated in cSVD. All methods require 

visual checking and may need manual editing where automated segmentation has failed to 

identify the correct tissue. 

Diffusion imaging metrics 

Diffusion imaging provides of the diffusion of water molecules within brain tissue. 

There are a large variety of techniques to analyze these data. Diffusion-weighted imaging is 

positive (that is, shows increased signal) in the setting of recent infarction or microinfarction. 

Scalar measures describe diffusion properties on the voxel level, such as the extent or 

directionality. Diffusion tensor imaging (DTI) is the most useful model to derive these scalar 

metrics such as mean diffusivity (MD) or fractional anisotropy (FA). Tractography can be 

used to visualize fiber connections and analyze diffusion on the tract level. Global 

tractography in combination with graph theoretical network analysis allows to assess the 

impact of cSVD on the level of brain networks. 
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Proof of principle that diffusion imaging metrics can serve as biomarkers of cSVD is 

well established by multiple studies associating diffusion imaging indices derived from the 

white matter (WM) or normal-appearing WM (NAWM) with cSVD and cSVD risk factors. 

Most studies report cross-sectional associations between lower FA or higher MD and 

cognitive and gait impairments41,42 Mean diffusivity is readily measured in the whole brain, 

tissue subregions, regions of interest or tracts and shows the strongest associations with SVD 

lesion burden43. Recent, promising post-processing methods to increase the reliability and 

ease of extraction of diffusion imaging metrics include histogram-derived diffusion imaging 

metrics, such as the peak width of the skeletonized MD distribution (PSMD)44, and 

connectivity measures including ones based on network theory45-47. Lower brain connectivity 

in strategic network locations, such as long-distance fibers connecting so-called network 

‘hubs’, show promise for prediction of speed and executive functioning48,49. This is not an 

exhaustive list, as there are several other promising diffusion imaging acquisition and 

analysis methods which show promise for development as biomarkers of cSVD50,51. 

In contrast to the many cross-sectional studies, there are fewer studies evaluating 

diffusion imaging as a prognostic marker of disease progression.41 The LADIS study reported 

an association between NAWM MD at baseline and decline in processing speed,52 whereas 

the RUN DMC study found no association between baseline NAWM MD and cognitive 

decline53, or risk of dementia over 5 years54. Diffusion imaging-derived brain connectivity 

predicted conversion to dementia after 5 years55. Longitudinal studies of diffusion imaging 

change over time are at this time relatively scarce56-60 but promising, suggesting that change 

over time can be detected on diffusion imaging with similar sensitivity as change over time in 

WMH volume, requiring smaller sample sizes than required to detect atrophy or incident 

lacunes61. Progression over time in diffusion imaging metrics has been associated with 

increased risk of dementia58 and gait decline62. 
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The tissue correlate of altered diffusion metrics in cSVD is still debated. A recent 

study suggests that increased extracellular water content is a major contributor50. 

There are few studies on repeatability and reproducibility. The only study in patients 

with cSVD showed high reproducibility of PSMD in 7 patients with CADASIL scanned on a 

1.5T and 3T scanner (intraclass correlation 0.95)44. Other studies in healthy controls have 

shown good repeatability and reproducibility for FA and MD measurements (coefficient of 

variation ranging from 0.8 to 5.7%)63-65. Nonetheless, variation in scanner or scanner 

upgrades may bias measurements in longitudinal studies63; therefore, investigators ideally 

should avoid scanner upgrades or changing scanners between baseline and follow-up 

measurements in studies designed to detect small changes over time. Phantoms to estimate 

reproducibility are in development.66 

Perfusion and cerebrovascular reactivity  

Perfusion and cerebrovascular reactivity (CVR) approaches are highly relevant in cSVD 

research because reduced tissue perfusion and impaired CVR are hallmark pathological 

features. These physiological forms of imaging introduce a unique set of challenges for study 

design, given the large variability in acquisition methods for perfusion and especially CVR 

which are less well established compared to many structural imaging techniques. To image 

CVR, the investigator must choose among several experimental methods for stimulating 

changes in cerebral blood flow (CBF), as well as between several different acquisition types 

such blood oxygen level dependent (BOLD) or arterial spin labeling (ASL). Because the 

vascular signal comes from only a proportion of voxel contents (the blood volume fraction in 

grey matter accounts for 5 to 10% of the tissue volume), and for BOLD-related techniques 

the changes in hemoglobin oxygenation are relatively small, attention must be paid to ensure 

sufficient signal to noise ratio to generate images of adequate quality. 
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 Dynamic susceptibility contrast (DSC) and ASL are examples of MRI acquisitions 

that yield perfusion-weighted images; the former relies on an exogenous gadolinium contrast 

agent, while the latter uses magnetically labeled arterial blood water that is proximal to the 

imaging volume to label blood and produces quantitative perfusion maps typically expressed 

in units of mL/100g tissue/minute.  

ASL is a promising modality for repeated measure studies because it does not require 

administration of an exogenous intravenous contrast agent. A fraction of cSVD articles on 

perfusion have thus far used ASL67; cross-sectional studies, for example, provide proof of 

principle by showing that a pattern of reduced frontal perfusion was associated with increased 

WMH volume68. Longitudinal studies are less common, however, one 4-year follow-up study 

reported that global CBF decreases were associated with higher baseline WMH but that 

baseline CBF was not associated with greater WMH progression.69 Another longitudinal 

study found that while lower baseline CBF predicted appearance of new WMH at 18 months, 

change in CBF was not associated with new WMH70. Studies are needed on the association of 

baseline and longitudinal CBF and the prevalence and incidence of new brain infarcts and 

microinfarcts. Although white matter and subcortical tissue perfusion estimates are of 

particular interest in cSVD, these measurements are less robust than in grey matter when 

using ASL71 due to the lower CBF and longer arterial transit time.   

A validation study of ASL found higher repeatability for pseudo-continuous ASL 

compared with pulsed ASL or continuous ASL, with a coefficient of variation of 3.5% in 

gray matter and 8.0% in white matter72. There are few reproducibility studies across scanner 

types. One study found high reproducibility in eight volunteers scanned on two General 

Electric (GE) 3T scanners73. Another study found that sequence parameter differences had a 

larger effect than hardware or software differences on General Electric, Philips, and Siemens 

scanners74. Phantoms for ASL have been developed but not yet widely adopted75. 
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 Unlike physiological imaging during a single “baseline” state, CVR involves 

physiological provocation to measure a vasoactive response, typically by breathing medical 

air enriched with carbon dioxide gas. Technical and paradigm details and considerations have 

been recently reviewed76. Multi-contrast physiological imaging, combining perfusion and 

CVR maps in cSVD, is a promising technique77. At this time, relatively few CVR studies 

have focused explicitly on cSVD78. However, CVR imaging is being exploited as an imaging 

endpoint to assess the efficacy of vasodilatory drugs in a dose escalation trial79. CVR appears 

to be a promising prognostic biomarker of cSVD brain changes, for example as revealed by 

one longitudinal study that found impaired regional CVR was predictive of WMH lesion 

expansion at one-year follow-up80. A four-year longitudinal study showed that age-related 

decreases in CVR were associated with steeper declines in processing speed and episodic 

memory but not working memory or reasoning; however, the degree to which enlarging 

WMH or new infarction progressive cSVD may have caused been associated with these 

changes was not assessed. The BOLD-response to a visual stimulus has been shown to be a 

possible biomarker for CAA and could be a more easily implemented, well-tolerated 

alternative means to measure CVR, but is is limited to the occipital lobe81-83 and has not been 

compared directly to CVR measurement based on hypercapnia. 

 The repeatability of CVR measurements has been investigated in healthy controls but 

not patients with cSVD. In a study of 15 controls, the coefficient of variation ranged from 

7.3% to 42.9% across 16 regions of interest including cortical and subcortical grey matter and 

white matter84. The coefficient of variation was lower when using a paradigm that averaged 

two three-minute blocks of CO2 inhalation rather than three one-minute blocks84. 

 A consensus group has provided recommendations for ASL imaging protocols85; 

however, long-label and long-delay ASL approaches may prove superior for CBF 

measurement in the white matter and subcortical gray matter. Multicenter studies using 
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scanners from different vendors seems justifiable as long as key methods (including choice of 

pseudo-continuous ASL, readout strategy, labeling duration, and post-labeling delay time) are 

kept constant. For CVR imaging, there are a greater diversity of methods and the different 

methods may suit specific patient populations. One published protocol84 using three-minute 

CO2 blocks is being used in a multicenter trial. 

Blood-brain barrier integrity 

Although proof-of-concept evidence is very limited, proof-of-principle evidence from cross-

sectional clinical studies suggests that blood-brain barrier (BBB) dysfunction determined by 

MR is associated with imaging features of cSVD, and that BBB leakage may contribute to 

tissue damage, development of cSVD features and long-term adverse outcomes86,87. 

Therefore, BBB permeability is an important target of measurement in studies of 

pathophysiology and treatment evaluation. 

Dynamic contrast-enhanced MRI (DCE-MRI) using a standard dose of a gadolinium-

based contrast agent is presently the most promising technique for quantitative imaging of 

subtle leakage86, and has been applied in several studies of cSVD and related conditions.86,88-

91 However, while the technique is well-established in other conditions such as brain tumours, 

particular challenges emerge in cSVD due to the slow rate of leakage. For qualitative 

assessment, gadolinium-based contrast agent (GBCA) enhancement of cerebrospinal fluid on 

T2-weighted fluid attenuated inversion recovery (FLAIR) and T1-weighted imaging may 

provide a practical, though non-specific, alternative92,93. Other potential methods are difficult 

to quantify (e.g. dynamic susceptibility contrast MRI),94 employ ionising radiation,95,96 or are 

at an early stage of development (compartmental ASL modelling97-99). Nevertheless, DCE-

MRI is not routinely used in cSVD studies due to practical impediments (long scan time, 

exogenous contrast), lack of widespread expertise, and technical and physiological 

complexities and confounds100,101.   
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There are few studies of BBB permeability change over time in cSVD. A single study 

of 22 subjects with high WMH burden reported little overlap between regions of high white 

matter permeability between the first and second scan, but that high permeability was often 

seen along the border of WMH at either time102. 

Because there is no reliable convenient reference method for quantifying subtle BBB 

permeability, studies comparing DCE-MRI measurements with other measures of BBB 

integrity are few and inconclusive103,104. The need for a second gadolinium administration is a 

barrier to conducting studies on repeatability, but one study showed good evidence of 

repeatability with coefficient of variation of 11.6 % for white matter and 14.4 % for gray 

matter at 3T105. Reproducibility across different MR hardware has not been investigated. 

Based on theoretical considerations and experimental observations, it is likely that 

measurements are influenced by MR field strength, scanner stability, spatial resolution, pulse 

sequence parameters, acquisition time, GBCA type, and pharmacokinetic model100,101,106,107. 

The diversity of acquisition and analysis protocols described (sometimes incompletely) in the 

literature is, therefore, a key impediment to the interpretation and comparison of data from 

different studies and centres. 

Our recommendation for future studies is to use a three-dimensional, MR acquisition 

with wide spatial coverage, pre-contrast T1 measurement, a minimum temporal resolution of 

around one minute and minimum DCE scan time of 15 minutes108. A vascular input function 

should be measured in the venous sinuses and the permeability-surface area product PS for 

tissue regions or, where feasible, individual voxels should be estimated using an appropriate 

pharmacokinetic model, typically the Patlak model109; simulations may be performed to 

assess accuracy and precision. Results should be interpreted carefully, particularly when 

comparing data from different research groups or scanners. We identify three priorities for 

the development of this biomarker: (i) agreement by the wider cSVD and dementia imaging 
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research community on an open-access, dynamic consensus protocol for DCE-MRI 

measurements of slow BBB leakage, (ii) acquisition of data on repeatability and 

reproducibility, and (iii) studies to assess accuracy, including theoretical work, comparison 

with independent measures of BBB integrity, and validation using MR test objects and 

histology. Further technical development to increase accuracy and precision, as well as 

continued development of alternative methods are also encouraged. 

Ultra high field MRI 

Ultra-high field MRI, in particular 7T MRI, is emerging as a new tool in cSVD research. The 

higher resolution, different tissue contrasts, and better signal to noise ratios of 7T MRI allow 

the investigator to probe aspects of cSVD that are difficult to assess at lower field strength. In 

addition to enhanced sensitivity for cSVD lesions such as microinfarcts and microbleeds and 

more precise assessment of atrophy18,110, with 7T MRI it is possible to actually visualize the 

small vessels111.  From both perforating arteries and veins features such as vessel density, 

length, and tortuosity can be resolved.111,112. Additionally, different aspects of vascular 

function, including blood flow, pulsatility of flow in small penetrating arteries (a possible 

indicator of vascular stiffness), vascular reactivity to vasoactive agents (e.g carbon dioxide) 

or neuronal stimulation (i.e. functional MRI), can be assessed, making it possible to probe 

cSVD at the level of the small vessels themselves111. 

Despite the potential for of 7T MRI for cSVD, important steps have to be taken to 

validate these novel techniques. Of note, EUFIND (the European Ultrahigh-Field Imaging 

Network in Neurodegenerative Diseases), another JPND initiative, has the goal of 

harmonizing 7T MRI protocols across more than 20 centres from Europe and the US.  

 

Tools to Facilitate cSVD Biomarker Development and Harmonization 
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 The HARNESS initiative focused on three areas to provide tools for harmonization: 

MR acquisition, post-processing, and common repositories for training and validation. These 

tools are made available to the research community at www.harness-neuroimaging.org. 

 The HARNESS website provides fully specified MR acquisition protocols suitable for 

research studies that include a focus on cSVD. Given the diversity of manifestations of cSVD 

and hypotheses that can be tested, there is no single MR acquisition protocol that can quantify 

all aspects of cSVD and therefore investigators must make choices regarding protocol 

composition, also accounting for issues of feasibility including acquisition time and cost. 

Therefore, instead of a single protocol the HARNESS website provides several options that 

meet these criteria: a) they adhere to STRIVE5, b) they are suitable for identifying canonical 

cSVD lesions types--lacunes and WMH of presumed vascular origin, recent small infarcts, 

microbleeds, atrophy, and DTI changes, c) they have been tested on more than one scanner as 

part of an established multicenter study and d) the protocol developers are willing to share the 

protocol freely. There are also links to other websites and useful repositories of information. 

Currently, protocols are available from the SVD@target study84 (ISRCTN10514229) 

and the Canadian Dementia Imaging Protocol113, with plans to add the protocol from the U.S. 

National Institute of Neurological Disorders and Stroke MarkVCID Biomarker Consortium 

(https://markvcid.partners.org/) once it has been fully specified and tested. Sequence 

parameters with exam cards are provided for 3T for most of the major vendors including 

General Electric, Phillips, and Siemens. The protocols are suitable for prospective research 

studies with quantitative imaging biomarkers but probably exceed most clinical stroke 

protocols in terms of acquisition time, spatial resolution, and inclusion of DTI. They have 

been implemented successfully in multicenter studies at research sites, but nonetheless may 

not be feasible for multicenter studies performed at predominantly clinical scan sites where 

the intent is to leverage clinical imaging without a focus on quantitative biomarkers.  

http://www.harness-neuroimaging.org/
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 Reducing imaging variability may be enhanced by following consensus 

recommendations17 to perform automated quality checks for acquisition parameters and 

monitoring of images for artefacts, correction for gradient nonlinearities, a well-defined 

method for subject’s positioning in the scanner, and a clear strategy for hardware replacement 

when needed.  

 The HARNESS software database provides a searchable source for information on 

downloadable software tools for processing MR data for cSVD quantitative biomarkers, such 

as for segmenting WMH. There are many existing software libraries for neuroimaging 

analysis, but only HARNESS focuses exclusively on cSVD. Site users can search for 

software by image modality, measurement type, key words, availability (i.e. by download or 

by request to the developer), or operating system. Software developers control their own 

entries via password-protected accounts, and must make their software available according to 

their own terms by providing a link or through contacting the developer. We are actively 

recruiting developers with tools to sell or share. Developers may access the site for 

information on how to create accounts. 

 To aid visual review for cSVD lesions according to STRIVE, the HARNESS site 

makes downloadable electronic documents available including validated visual rating scale 

scores and instructions, case report forms, and training slides. 

 Training readers and software algorithms requires access to independent MR datasets 

for measurements. The HARNESS site includes a web-based repository with completely de-

identified 3T MR data showing lacunes, WMH, microbleeds, and cortical superficial 

siderosis from patients with TIA, minor ischemic stroke, and cerebral amyloid angiopathy, 

with consensus “gold standard” measurements for comparison. This repository will be useful 

for independently confirming reliability of measurements within and across research groups, 

and for derivation and validation of computerized algorithms for quantitative measurement 
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(e.g. for segmenting WMH to determine location and overall volume) as well for comparing 

WMH algorithms against an independent standard. 

 

SUMMARY AND CONCLUSIONS 

 The HARNESS initiative was a multidisciplinary consensus process with input from a 

large number of neuroimaging researchers investigating cSVD. Our group developed a 

framework for neuroimaging biomarker development closely aligned with those proposed in 

other areas of imaging research. The HARNESS website (www.harness-neuroimaging.org) 

was created to facilitate harmonized neuroimaging methods for cSVD research.  The site 

includes cSVD-appropriate MR acquisition protocols aligned with STRIVE, a searchable 

database of softwares for analyzing brains with cSVD, visual rating scales and case report 

forms, and a repository of 100 deidentified scans demonstrating different cSVD lesion types. 

These tools and resources are made available to the research community via the site and can 

be easily updated by contributors. 

 In this rapidly evolving field, we found that the degree of biomarker validation—

technical, biological and clinical, and feasibility—varied by cSVD lesion and measurement 

type. In general, visually diagnosed cSVD lesions such as lacunes, WMH, and microbleeds 

have the greatest amount of clinical validation including as prognostic markers and data are 

available on incidence andchange over time, and are already being used in multicenter studies 

and reported in routine clinical practice. Even so, none of these markers has yet been 

qualified for use in clinical trials by regulatory agencies, and more work is needed to 

standardize and compare current volumetric tools. Other markers are at a less advanced stage 

of biomarker development. Atrophy has been extensively studied but almost always in the 

context of Alzheimer’s disease and not cSVD. Among the emerging cSVD markers there are 

relatively more data on diffusion imaging and perivascular space imaging, but more 

http://www.harness-neuroimaging.org/


25 

 

longitudinal data and multicenter data on reproducibility are needed. Measurements of brain 

perfusion, vascular reactivity, and blood-brain barrier integrity are promising but are at an 

even earlier stage of development. For these cSVD manifestations innovation to overcome 

technical and feasibility barriers, rather than harmonizing to a best protocol, is the most 

important next step in development. 

 We found that technical validation often lagged clinical validation. However, 

estimates of repeatability and reproducibility are critically important to estimate minimum 

detectable differences over time and variability in measurement in multicenter studies, 

essential for sample size calculations for multicenter longitudinal trials. This lag in technical 

validation likely reflects the difficulty in obtaining funding for technical studies compared to 

clinical studies, the burden on research subjects to undergo multiple scans, and the general 

lack of non-human phantoms for studies of reproducibility. In contrast to volumetric imaging 

and functional MRI, phantoms for other measurements are less well developed. One research 

group has developed a phantom for iron deposits that mimic mineral deposits and 

microbleeds, not currently available for purchase114; otherwise, we are not aware of any other 

phantoms that recreate specific aspects of cSVD. Technical validation for neuroimaging 

biomarkers of cSVD would be enhanced by creating funding opportunities specifically for 

this purpose. 
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Figure 1. Imaging Biomarker Development Framework for Cerebral Small Vessel Disease 
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Figure 2. Schematic overview of neuroimaging biomarker development status for cerebral 

small vessel disease 
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Figure 2 Legend: Green light indicates validation data from two or more studies from 

independent research groups; Yellow light indicates support from a single study or 

conflicting evidence from multiple studies; Red light indicates there is currently insufficient 

evidence. WMH, white matter hyperintensities of presumed vascular origin; CMB, cerebral 

microbleeds; PVS, perivascular spaces; DTI, diffusion tensor imaging; BBB, blood-brain 

barrier. Proof of concept: evidence that the marker measures a specific change or process 

related to cerebral small vessel disease.  Proof of principle/ Mechanism: evidence that the 

marker differs between patients with and without cerebral small vessel disease. Proof of 

effectiveness: evidence from larger scale multiple center studies that the marker differs 

between patients with and without cerebral small vessel disease. Repeatability: precision of 

repeated measurements under the same conditions using the same scanner. Reproducibility: 

replicate measurements on the same or similar objects (e.g. a phantom or human volunteers) 

in different locations using different scanners. Longitudinal: rate of change over time has 
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been defined. Monitoring: evidence that longitudinal change in the marker is associated with 

progression of cerebral small vessel disease. Surrogate: evidence that change in the marker is 

strongly associated with clinical outcomes in cerebral small vessel disease, such that changes 

in the marker could be considered a substitute for a clinical endpoint.  

 



General comment: Three additional working group members contributed to the manuscript 

revisions, whom we would like to add as coauthors: Dr. Walter Backes, Dr. Michael Ingrisch, 

and Dr. Stefan Ropele. 

 

The reviewers have now commented on your paper. Both really support this publication, 

but reviewer #2 has offered some suggestions for improvement.   

Response: We appreciate the reviewer’s interest in our work. 

 

Reviewer #1: This is an excellent overview and model, with great summary graphics to 

demonstrate current state of the art for MRI biomarker development to measure vascular 

contributions to NDG diseases.  I think this is a useful contribution to the planned JPND 

special section.  Well written, authoritative and clear. 

Response: Thank you. 

 

Reviewer #2 

This is an important and well-written study with a direct end-result, a website, that directly 

will benefit further research on the topic. Thanks for a very well written study! 

Response: Thank you. 

1. "The most studied neuroimaging biomarkers of cSVD are lacunes, WMH of presumed 

vascular origin, perivascular spaces and cerebral microbleeds " Sure, these markers are 

certainly the most studied, but perivascular spaces has not been studied to the same degree 

as the other mentioned markers. I suggest not including "most studied" as it is not based 

on evidence, and may be inaccurate. "Commonly studied" may be another way to 

accurately phrase this. 

Response: We have revised the sentence as follows (page 8): “Commonly studied neuroimaging 

biomarkers of cSVD are lacunes, WMH of presumed vascular origin, and cerebral microbleeds. 

These lesions are typically reported in routine radiology clinical practice and….” 

2.  In the atrophy section perivascular spaces are briefly touched upon with regards to 

spaces not to be included in the final brain segmentation volume. Is there however software 

that measures the total volume of perivascular spaces? Please include a brief sentence on 

this. 

Response: Software to calculate perivascular spaces are just beginning to be developed. An 

example of one such method is provided in the section on perivascular spaces (reference 31). 

However, perivascular space volume measurement is currently not implemented in the most 

commonly used packages for brain segmentation, such as FSL or Freesurfer. We have made a 

revision as follows (page 14): “There is consensus that cavities resulting from infarction should 

Response



be excluded from brain tissue estimates5 depending on the question being asked; clearly, they do 

not represent spaces such as subarachnoid space or ventricles but nor do they represent normal 

brain tissue. They can be considered as part of the ‘total burden of brain injury’38 in some 

analyses. Quantitative methods are emerging that can estimate perivascular space volume30; 

when such measurements are made we recommend that perivascular space volume be reported as 

a separate tissue class and not included in the total brain volume.” 

3. "progressive cSVD." Define progressive cSVD 

Response: We have revised the manuscript in two places to be more specific. On page 11 we 

now write: “Both cross-sectional and longitudinal studies show proof of principle that total brain 

volume is lower in cSVD and decreases more quickly in persons with enlarging WMH.” On page 

18 we now write: “A four-year longitudinal study showed that age-related decreases in CVR 

were associated with steeper declines in processing speed and episodic memory but not working 

memory or reasoning; however, the degree to which enlarging WMH or new infarction may have 

been associated with these changes was not assessed.” 

4. Diffusion imaging metrics is discussed but acute microinfarcts are not mentioned. This 

may be worthwhile including. 

Response: We have added this sentence acknowledging the important role of diffusion weighted 

imaging in identifying acute infarction, including microinfarction (page 14): “Diffusion-

weighted imaging is positive (that is, shows increased signal) in the setting of recent infarction or 

microinfarction.”  

Additionally, we have revised the section on the Survey of Current SVD Biomarker 

Development to cite a recent review of microinfarcts published in Lancet Neurology (page 9, 

reference 18): “Future research will likely add more modalities and lesion types. For example, 

microinfarcts have been visualized on MRI by several research groups and may be a frequent but 

underrecognized consequence of thrombosis or embolism of small arteries.” 

5. Interesting section on perfusion. It would be great if one sentence or two could be 

included on cortical microinfarcts and their association with brain perfusion. 

Response: Several lines of evidence point to an association between hypoperfusion and cortical 

microinfarcts including experimental animal studies, and human pathology studies that identify a 

higher frequency of microinfarction at the borderzones of cerebral arterial territories. However, 

to our knowledge there are not yet human in vivo data that directly associate hypoperfusion with 

the presence of microinfarction. Establishing the role of hypoperfusion in causing microinfarcts 

is listed as a future research direction in a recent review of microinfarcts published in Lancet 

Neurology (reference 18). We have revised the perfusion section to cite the need for longitudinal 

studies on perfusion and microinfarcts (page 19): “Studies are needed on the association of 

baseline and longitudinal CBF and the prevalence and incidence of new brain infarcts and 

microinfarcts.” 

6. "attention must be paid to ensure sufficient signal to noise to generate images of 

adequate quality" Add ratio after "signal to noise" 



Response: We made the suggested revision (page 16). 

7. Write out GBCA first time it is used since this is not an imaging journal per se. 

Response: We have spelled it out: “gadolinium-based contrast agent” (page 19). 

8. General: All the subtitles under results include imaging techniques, however 

perivascular spaces stand out in that they are a marker of cSVD. I think the paper would 

benefit from PVS being part of the atrophy section. Or maybe under a separate title named 

structural imaging. 

Response: To better harmonize the sections we have moved the perivascular spaces section to 

follow atrophy and renamed these sections “Structural imaging: brain atrophy” and “Structural 

imaging: perivascular spaces”. 
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