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Abstract 

Attention is biased toward emotional stimuli, even when they are irrelevant to current goals. Motivation, 

elicited by performance-contingent reward, reduces behavioural emotional distraction. In emotionally-

neutral contexts, reward is thought to encourage use of a proactive cognitive control strategy, altering 

anticipatory attentional settings to more effectively suppress distractors. The current preregistered study 

investigates whether a similar proactive shift occurs even when distractors are highly arousing emotional 

images. We monitored pupil area, an online measure of both cognitive and emotional processing, to 

examine how reward influences the timecourse of control. Participants (n = 110) identified a target letter 

flanking an irrelevant central image. Images were meaningless scrambles on 75% of trials; on the 

remaining 25%, they were intact positive (erotic), negative (mutilation), or neutral images. Half the 

participants received financial rewards for fast and accurate performance, while the other half received no 

performance-contingent reward. Emotional distraction was greater than neutral distraction, and both were 

attenuated by reward. Consistent with behavioural findings, pupil dilation was greater following emotional 

than neutral distractors, and dilation to intact distractors (regardless of valence) was decreased by reward.  

Although reward did not enhance tonic pupil dilation (an index of sustained proactive control), exploratory 

analyses showed that reward altered the timecourse of control – eliciting a sharp, rapid, increase in dilation 

immediately preceding stimulus-onset (reflecting dynamic use of anticipatory control), that extended until 

well after stimulus-offset. These findings suggest that reward alters the timecourse of control by 

encouraging proactive preparation to rapidly disengage from emotional distractors.  

 

Keywords: emotion, motivation, distraction, cognitive control, reward, pupillometry 
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Emotional distractions can be difficult to ignore (Pourtois, Schettino, & Vuilleumier, 2013; 

Okon-Singer, Tzelgov, & Henik, 2007; Yiend, 2010). Although attentional biases to 

emotional stimuli are often thought of as reflexive (e.g., Brosch, Pourtois, Sander, & 

Vuilleumier, 2011) increasing task motivation via performance-contingent reward can 

enhance cognitive control of emotional distractions (Padmala & Pessoa, 2014; Padmala, 

Sirbu, & Pessoa, 2017; Walsh, Carmel, Harper, & Grimshaw, 2018), just as motivation 

enhances control in emotionally-neutral contexts (Chiew & Braver, 2013; 2014; Locke & 

Braver, 2008; Padmala & Pessoa, 2011). However, we know little about the cognitive 

mechanisms by which motivation enhances control of emotional distractions. The current 

study uses pupillometry, a temporally-sensitive measure of both cognitive control and 

emotional processing (Beatty & Lucero-Wagoner, 2000; Bradley, Miccoli, Escrig, & Lang, 

2008; Laeng, Sirois, & Gredeback, 2012), to address the question of how reward influences 

the timecourse of control when distractors are emotional.  

 The Dual Mechanisms of Control Framework (DMC; Braver, Gray, & Burgess, 2007; 

Braver, 2012), which is usually applied in emotionally-neutral contexts, provides predictions 

as to how motivation might influence the control of emotional distractions. Cognitive control 

allows us to focus on task-relevant information while ignoring task-irrelevant distractions. 

Often, we control distraction using a reactive control strategy, disengaging from distractors 

after they capture our attention (Geng, 2014). Proactive control requires greater effort, 

because it involves anticipatorily preparing to suppress distractors before they appear. 

Neurally, proactive control recruits lateral prefrontal cortex (PFC) to actively maintain 

representations of goals prior to stimulus-onset  (Braver, 2012; Braver, Paxton, Locke, & 

Barch, 2009). This activation can be sustained over time, or dynamically implemented before 

stimulus-onset. Reactive control also recruits lateral PFC, but does so after a distractor has 

appeared (Braver, 2012; Braver et al., 2009). The terms “reactive” and “proactive” here refer 
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to the timing of the implementation of control, and not to specific mechanisms per se. 

Proactive mechanisms could include, for example, anticipatory enhancement of target 

representations, or suppression of distractor location or features; reactive mechanisms could 

include facilitation of conflict detection, or a speeding of disengagement. 

A central tenet of the DMC framework is that we shift to more effective, but more 

effortful, proactive control only when it is worthwhile to do so (see Botvinick & Braver, 2015 

for a review). Reward is one incentive that is known to motivate a shift to proactive control in 

emotionally-neutral contexts (Chiew & Braver, 2013; 2014; Fröber & Dreisbach, 2014; 2016; 

Hefer & Dreisbach, 2016; Locke & Braver, 2008; Padmala & Pessoa, 2011; Yamaguchi & 

Nishimura, 2018). This proactive shift is thought to be implemented via connections between 

reward-processing areas (such as the ventral striatum and orbitofrontal cortex) and cognitive 

control regions (such as the anterior cingulate cortex and dorsolateral prefrontal cortex; 

Botvinick & Braver, 2015; Pessoa & Engelmann, 2010; Pessoa, 2009). However, it is not 

known whether motivation similarly enhances control of emotional distraction via a shift to 

proactive control.  

It is reasonable to think that reward might enhance control of emotional distractions 

via different mechanisms than it does for neutral distractions. Attention is biased toward 

biologically-relevant emotional stimuli because they are important for survival and 

reproduction (LeDoux, 2012). Therefore, it might be adaptive for them to always capture our 

attention, regardless of their relevance to current goals, so that we can determine whether 

they require immediate action before we disengage from them. Emotional distractors (unlike 

their neutral counterparts) are thought to bias our attention via both exogenous (reflexive) and 

endogenous (goal-driven) processes (Brosch et al., 2011; Mohanty & Sussman, 2013; 

Mulckhuyse, 2018; Sussman, Jin, & Mohanty, 2016), making them more difficult to ignore 

(Pourtois et al., 2013; Okon-Singer et al., 2007; Yiend, 2010). If emotional distractors bias 
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our attention reflexively, we may not be able to control them proactively. Instead, we may be 

more likely to control emotional distraction by up-regulating reactive control so that we can 

rapidly disengage from distractors. Our primary research question is therefore whether the 

availability of rewards encourages proactive control, just as it does in emotionally-neutral 

contexts.  

 Recent neuroimaging studies provide some support for the proactive control of 

emotional distraction under reward. In a series of studies Padmala and colleagues (Padmala & 

Pessoa, 2014; Padmala et al., 2017) had participants ignore a centrally-presented distractor 

image while judging the orientation of two flanking lines. Participants were slower when 

negative compared to neutral distractors were presented (i.e., they showed an emotional 

distraction effect). On some trials, a pre-trial reward cue appeared, indicating availability of 

monetary reward for fast and accurate performance on the upcoming trial. Reward sped up 

responses, and also eliminated emotional distraction. Functional magnetic resonance imaging 

(fMRI) showed that participants with greater ventral striatum activation during the reward 

cue phase showed a greater benefit from reward on a behavioural measure of emotional 

distraction (Padmala et al., 2017). Furthermore, there was stronger functional connectivity 

between ventral striatum and frontal and parietal regions involved in attentional control while 

processing reward compared to non-reward cues, consistent with the recruitment of proactive 

control mechanism to reduce emotional distraction when rewards were signalled.  

Although neuroimaging findings support the hypothesis that reward encourages the 

implementation of proactive control, dynamic changes in control are best examined using 

more temporally-sensitive measures of cognitive and emotional processing. The current 

preregistered study uses pupillometry (a high-resolution measure of changes in pupil area 

over time), to examine the effect of reward on the timecourse of cognitive control of 

emotional and neutral distractions. Pupil dilation marks changes not only in perceived 
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luminance (Mathôt & Van der Stigchel, 2015), but also in cognitive processing; dilation is an 

established, temporally-sensitive, measure of cognitive control (Beatty & Lucero-Wagoner, 

2000; Chatham, Frank, & Munakata, 2009; Chevalier, Martis, Curran, & Munakata, 2015; 

Chiew & Braver, 2013; 2014; Kahneman, 1973; Jones, Siegle, & Mandell, 2015; Rondeel, 

van Steenbergen, Holland, & van Knippenberg, 2015). Pupil dilation is driven by release of 

the neuromodulator norepinephrine (NE) from the locus coeruleus (LC; Joshi, Kalwani, & 

Gold, 2016; Laeng et al., 2012; Rajkowski, Majczynski, Clayton, & Aston-Jones, 2004). The 

LC (located in the rostral pons) provides the major source of NE to the brain, sending dense 

projections to diverse brain regions, including those involved in attentional control (e.g., 

PFC, parietal cortex, superior colliculus, and the pulvinar nucleus) and reward processing 

(including VTA, eliciting dopaminergic release from the nucleus accumbens; see Laeng et 

al., 2012; Sara, 2009 for reviews). It is thought that NE has an important arousal-inducing 

function, which promotes cognitive performance (Laeng et al., 2012; Samuels & Szabadi, 

2008; Sara, 2009). Furthermore, NE is thought to facilitate changes to attention, cognition 

and behaviour by enhancing functional connectivity between various brain regions (Coull, 

Buchel, Friston, & Frith, 1999; Sara, 2009 ).  Pupillometry is sensitive to both emotional 

arousal (e.g., Bradley et al., 2008) and cognitive effort (see Kahneman, 1973; Laeng et al., 

2012), and so is well-suited to our aims.  

Two measures of pupil dilation are relevant: tonic dilation refers to changes in 

baseline pupil area (often measured during an inter-trial-interval period; e.g., Chiew & 

Braver, 2013; 2014; Heitz, Schrock, Payne, & Engle, 2008), and reflects state-related changes 

such as increases in sustained arousal; phasic dilation is an event-related transient change 

triggered by a specific stimulus or event (baselined to a preceding time-period). Recently, 

Chiew and Braver (2013; 2014) used both tonic and phasic pupil dilation to measure the 

timecourse of motivationally-induced enhancements of cognitive control. Participants were 
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rewarded for successful performance on a cognitive control task (AX Continuous 

Performance), which elicited behavioural performance consistent with a shift toward 

proactive control. Reward increased tonic pupil dilation, thought to reflect increases in 

arousal that accompany a shift to a sustained proactive control strategy. Reward also 

increased preparatory phasic pupil dilation (triggered by the cue for an impending target), 

thought to reflect a more dynamic form of proactive control (Chatham et al., 2009; Chevalier 

et al., 2015). These findings suggest that both tonic and phasic changes in pupil dilation can 

mark a motivationally-driven shift to proactive control, at least in an emotionally-neutral 

context. 

Pupil dilation also indexes emotional arousal induced by viewing emotional images 

(Bradley et al., 2008; Cohen, Moyal & Henik, 2015;  Henderson, Bradley, & Lang, 2014; 

Kinner et al., 2017; Snowden et al., 2016; Vanderhasselt, Remue, Ng, & De Raedt, 2014), 

and correlates with measures of skin conductance (Bradley et al., 2008). This emotional pupil 

response is subject to top-down influences. When cognitive control is enhanced via conflict 

manipulations (flanker incongruence; Cohen, et al., 2015); or by implementation of effective 

emotion-regulation strategies (Kinner et al., 2017; Vanderhasselt, et al., 2014), pupil dilation 

in response to negative emotional images is reduced. Furthermore, pupil dilation during 

anticipation of a negative emotional image is inversely related to pupil dilation in response to 

the image itself (Vanderhasselt et al., 2014). Therefore, increased anticipatory pupil dilation 

can index proactive control of emotional processing; and reduced post-stimulus pupil dilation 

can index attenuated processing of emotional content.  

The current study takes advantage of the pupil’s sensitivity to the timing of cognitive 

effort and emotional processing, to determine whether reward reduces emotional distraction 

via a shift to proactive control. Participants identified a target letter flanking an irrelevant 

central image. The behavioural task is a replication of that used by Walsh et al. (2018) to 
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show that reward attenuates distraction by both positive and negative distractors. Images 

were meaningless scrambles on 75% of trials, a proportion that gives rise to a predominantly 

reactive control strategy (Bugg & Crump, 2012; Grimshaw, Kranz, Carmel, Moody, & 

Devue, 2018); on the remaining 25% of trials, however, intact positive (erotic couples), 

negative (mutilations), or neutral images (of people) were presented. Distractor valence was 

blocked, so that participants could anticipate the type of distractor they might see, but not on 

which trial an intact distractor would occur. Half the participants received performance-

contingent financial rewards for fast and accurate performance, while the other half received 

a fixed payment that was not linked to performance.  

We expected that the motivational manipulation would enhance control, reflected by 

reduced behavioural emotional distraction (replicating Walsh et al., 2018), and a reduction in 

the pupil’s response to emotional distractors. Our key question was whether reward improves 

performance by encouraging people to shift to a proactive control strategy to ignore 

emotional distractors. If reward elicits proactive control via a global strategy that is 

maintained across an experimental block, we expect reward to increase tonic pupil dilation. If 

reward elicits proactive control via a dynamic strategy that occurs on a trial-by-trial basis, we 

expect reward to enhance phasic, pre-stimulus pupil dilation. Additionally, we examined 

phasic pupil dilation in the post-stimulus period, to provide insight on the consequences of 

control for subsequent processing of distractors. Specifically, we predicted that reward would 

reduce the dilation to intact (relative to scrambled) distractors, reflecting reduced distractor 

processing. Lastly, we examined reward x valence interactions in all planned analyses, to 

determine whether reward influences the timecourse of control (indexed by pupil dilation) of 

neutral, negative and positive distractions similarly. 
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Method 

This study was preregistered on Open Science Framework (OSF) prior to data collection 

(osf.io/jd96p/). The preregistration adheres to the disclosure requirements of OSF. All data, 

materials, and code used for image manipulation and statistical analyses, are available at 

osf.io/yhkdr. 

Sample size determination 

To determine the sample size needed to test the effect of reward on the pupil’s response to 

emotional images, we assumed that the effect of reward on post-stimulus pupil dilation would 

be comparable in size to the effect of reward on a behavioural measure of emotional 

distraction (RT), which was d = .519 in Walsh et al. (2018). This effect size is similar to that 

reported by Cohen et al. (2015; d = .503) for the effect of flanker congruency on pupillary 

response to negative (relative to neutral) images. A sample size analysis in G*Power (Faul, 

Erdfelder, Lang, and Buchner, 2007) indicated 47 participants per group would provide 

sufficient power to detect a similar effect of reward on emotional distraction 80% of the time 

(alpha = .05).  Rounding up to accommodate counterbalancing yielded a sample size of 54 

participants per reward condition. A sensitivity analysis (also in G*Power, with alpha = .05) 

showed that 54 participants per group provide sensitivity to detect an effect of d = .482 or 

larger at 80% power. 

Participants 

A total of 114 participants were recruited from the community in Wellington, New Zealand, 

via fliers and emails. Participants reported normal vision, spoke fluent English, and were not 

currently being treated for depression or anxiety. Participants were randomly allocated to the 

control or reward groups. Four participants did not complete the task due to technical errors 

(experiment crashing n = 3, eye-tracker technical issues n = 1). Replacement participants 

were run to reach the sample size goal, resulting in 55 participants in each group (control 
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group: 13 men, 42 women; reward group: 18 men, 37 women; between 18-39 years old, M = 

23, SD = 4). We exceeded the target of 54 participants per condition because a participant 

who was mistakenly excluded and rerun did not actually meet the preregistered exclusion 

criteria; an additional participant was therefore recruited to balance the size of the control and 

reward groups. The study was approved by the School of Psychology Human Ethics 

Committee, by delegated authority of the Victoria University of Wellington Human Ethics 

Committee. Participants provided informed consent prior to participation. 

Stimuli and Materials 

The experiment was run on an Acer PC with a 22” flat-screen monitor with 1024 x 768 pixel 

resolution and a 120 Hz refresh rate. Viewing distance was maintained by a chin-rest 60 cm 

from the screen. The experiment was programmed and run on E Prime 2.0 (Psychology 

Software Tools, Pittsburgh, PA). A nine-point calibration and validation of the eye-tracker 

was performed at the beginning of the session. Between each block a manual drift check was 

performed, and if necessary the calibration and validation were performed again. Area of the 

left pupil (in arbitrary units) was recorded using an Eyelink 1000-plus desktop mounted eye-

tracker (SR Research Ltd., Mississauga, ON) using a 1000 Hz sampling rate. 

The images were selected from the International Affective Picture System (IAPS; 

Lang, Bradley, & Cuthbert, 2008) and comprised 12 high arousal negative images (gory 

images of mutilations), 12 high arousal positive images (erotic images of heterosexual 

couples), and 12 neutral images (of people). So that the positive and negative image sets 

could be matched on arousal, separate but overlapping image sets were selected for men and 

women. See supplementary materials for the valence and arousal ratings for the image sets 

(Table S.1) and specific IAPS images used and the mean ratings for the image sets (Table 

S.2). 
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Three scrambled versions of each image were used as control stimuli (see an example 

in Figure 1).  The scrambled images were created in MATLAB by performing a 2D fast 

Fourier transform, followed by phase randomisation, and reconstruction of the image. The 

process of phase scrambling also matched the images on average RMS contrast. The 

scrambled images maintain the same lower level visual properties (i.e. colour, amplitude 

spectrum) as the original image while changing the position of the spatial frequency 

components and removing meaningful content. All images (intact and scrambled) were 

matched on average luminance using the SHINE MATLAB toolbox (Willenbockel et al., 

2010). 

The target display (see Figure 1A) consisted of a centrally presented image (11° width 

x 8.26° height) on a grey background, with six white letters (0.86° x 0.92°) placed 0.75° 

above and three 0.75° below the image’s horizontal edge. In the centre of the image was a 

light grey cross which provided a focal point for participants to help them control eye-

movements. The image was an intact IAPS image on 25% of trials, and a scrambled image on 

75% of trials. On each trial, five of the letters were Os and the target was a K or N. The target 

letter appeared in each location an equal number of times. The display was similar to that 

used in Gupta, Hur, & Lavie, (2016), and Walsh et al. (2018). 
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Figure 1. Target display (A) and trial sequence (B). A) An example of a scrambled (left) and 

intact (right) target display. B) The trial sequence. Arrows indicate onset of a display. 

Preregistered time-windows for pupil analyses are represented by grey shaded boxes. For 

illustrative purposes, images are not to scale; the central part of the display is enlarged.  

 

Task and procedure 

Participants were tested in a dimly-lit room. Participants were told that the images were 

irrelevant to their task, so they should ignore them. They were asked to avoid blinking 

excessively, to keep their head still, and to continue looking at the centre of the screen 

throughout a trial. 

For all participants (in both reward and control conditions), each trial (see Figure 1B) 

began with a large, bold white fixation cross on a grey background. When they were ready to 

start the trial, the participant looked directly at the bold cross for 1000 ms, at which point it 

turned into a smaller white fixation cross indicating the start of the trial. The smaller fixation 

cross was presented for a constant duration of 2000 ms and was followed by the target 
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display for 200 ms. Participants indicated (as quickly and accurately as possible) whether the 

target letter was a K or an N, using the keys 1 and 2 on the number pad, with the index and 

middle fingers of their right hand. Following the target display, the fixation cross reappeared 

for 1800 ms (a fixed response-window, regardless of when a response was made). Feedback 

was then displayed for 100 ms, indicating whether the participant was “correct” or 

“incorrect” in white font. If no response was made within the response-window then the 

feedback stated: “please respond faster”. Following the feedback, the smaller fixation cross 

appeared again throughout the 2000 ms inter-trial-interval (ITI). At the end of a trial, the 

larger bold fixation cross again appeared, and the next trial began when the participant had 

fixated on it for 1000 ms.  

The experiment began with a set of 12 practice trials, arranged in three mini-blocks 

(negative, neutral, positive) of four trials each, with one intact and three scrambled images 

appearing randomly in each mini-block. The images presented in the practice trials were 

different from those used in experimental blocks. Following the practice trials was a baseline 

block of 24 trials. The purpose of the baseline block was to calculate participants’ individual 

median RT, to be used as a threshold for reward during the experimental blocks and to 

provide a baseline from which to measure tonic pupil dilation in subsequent blocks. The 

baseline block consisted of 24 scrambled distractor trials. The phase-scrambled images used 

in the baseline block were derived from a set of 12 neutral images (different from those used 

in the neutral experimental block) and were presented once each. Following the baseline 

block, participants completed six experimental blocks of 48 trials each. Each block comprised 

12 different intact and 36 scrambled image trials (in random order), all with one valence. 

There were two sequential blocks of each valence (e.g. positive, positive, negative, negative, 

neutral, neutral), resulting in each intact and scrambled image being presented twice in total. 

Valence order was counterbalanced across participants. 
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The Behavioural Activation and Inhibition Scale (Carver & White, 1994) was 

administered to participants at the end of the experimental session, however due to a 

technical error the responses were not recorded and are therefore not analysed. 

Reward Manipulation 

Following the baseline block, the reward group was informed of the potential to earn points 

and move up levels in the following six blocks of trials. They were told that winning points 

would lead to achieving ‘levels’, and that each new level increased total earnings upon task 

completion by $2.50. Participants began on level one ($10). Level two required 53 points 

($12.50); 53 additional points were needed to ascend to each new level, up to level 6 ($20). 

All participants actually earned $20 in supermarket vouchers at the end of the study, 

regardless of the amount they presumed they had won during the study. Feedback was 

provided after every trial: if participants responded accurately and faster than their median 

response time in the baseline block, they earned 1 point, and saw: “you won a point!”; if they 

were accurate but slower than the reward threshold they saw “correct”, and if they were 

incorrect saw “incorrect”. Feedback on overall performance was provided in each break 

between blocks. If a participant moved up a level in the preceding block, the feedback screen 

read, “Well done! You have moved up a level.” If not, it read “No level up”. On the same 

screen, they saw their current point total, current level, and mean proportion correct for the 

previous block. Participants were reminded at this point to be fast and accurate. To minimise 

the potential for a speed-accuracy trade-off due to the reward RT deadline, a warning to keep 

trying to be accurate was provided during the breaks between blocks if accuracy fell below 

95% across the previous block.  

The control group performed the task with no performance-contingent motivational 

incentive. They received informative feedback after each trial (“correct”, “incorrect”, or 

“please respond faster”). They did not have the opportunity to earn points and did not receive 
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overall performance feedback between blocks. Instead they saw a screen saying, “please take 

a short break”.   

Preregistered analyses 

The following descriptions of data processing, calculation of indices, inference and exclusion 

criteria, and analyses were all preregistered. 

Pupillometry data processing 

Pupillometry data were pre-processed in MATLAB using a combination of open source code 

(see acknowledgements), and our own code. Blinks < 500 ms long were linearly interpolated. 

Partial blinks were identified by extreme (unrealistic) changes in pupil area from one time 

point to the next; pupil area during these partial blinks was then linearly interpolated. Pupil 

indices were calculated using mean pupil area (in arbitrary units) across several time-

windows (as outlined in more detail below). Pupil indices were calculated using mean pupil 

area (in arbitrary units) across several time-windows. Baseline subtraction was used to 

calculate indices, as it is more robust to baseline artifacts, and increases statistical power, 

relative to divisive baseline corrections (Mathôt, Fabius, Van Heusden, & Van der Stigchel, 

2017). Only trials with correct responses were included in phasic pupil indices.  

The first two time-windows (tonic and phasic pre-stimulus; see Figure 1B) provide 

indices to test predictions regarding the effects of reward on anticipatory, proactive control. 

The first window provides an index of tonic proactive control: mean pupil area across the 

1000 ms time-window prior to trial-onset, baselined to the grand mean of pupil area across 

the 200 ms time-window immediately preceding trial-onset across all 24 (non-reward, 

scrambled image only) baseline block trials. The second window provides an index of phasic 

proactive control: mean pupil area across the 2000 ms time-window starting from fixation-

onset, and ending at stimulus-onset, baselined to mean pupil area across the 200 ms time-
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window immediately preceding fixation-onset. This phasic proactive control index reflects 

dynamic, effortful preparation immediately preceding stimulus-onset.  

Two phasic post-stimulus (early and late) indices were created to test predictions 

regarding how reward affects the pupil’s response to the emotional distractors. The early 

post-stimulus window begins 500 ms post-stimulus-onset and extends for 1800 ms1. The late 

post-stimulus window begins immediately following the first and extends for 1800 ms until 

the end of the trial. For both the early and late post-stimulus indices, the baseline is the mean 

pupil area 200 ms immediately preceding stimulus-onset. These post-stimulus phasic indices 

for intact image trials are subtracted from the phasic indices on scrambled image trials (thus 

controlling for pupil dilation in response to low-level visual properties) to obtain an index of 

the pupil’s response to the content of the intact images. All indices were calculated for each 

individual participant, separately for each valence.  

Data exclusion criteria 

Trials were excluded if they were missing more than 50% of pupil samples, Additionally, 

trials were excluded from specific analyses if the baseline period for that time-window was 

missing more than 50% of its pupil area samples. A mean of 13 (out of 288) indices were 

removed per participant (min = 0, max = 66; see OSF materials for more information on the 

breakdown of trial exclusions). Our pre-registration stated that participants would be 

excluded if they had less than 75% accuracy overall, less than 60% accuracy on a given 

block, loss of more than 20% of their pupil samples overall, or had fewer than 10 trials in a 

given condition. No participants met these exclusion criteria.  

 

 

                                                
1 Other (unpublished) studies from our lab, in which participants passively viewed these same images, typically 

find that effects of distractor type (intact versus scrambled) and valence did not begin to emerge until 500 ms 

post-stimulus-onset.  
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Inference criteria 

P values < .05 were accepted as statistically significant and relevant follow-up analyses were 

conducted on these effects. One- or two-tailed tests for planned comparisons were specified 

in the predictions, and were not corrected for multiple comparisons (see Armstrong, 2014). 

Exploratory analyses were not corrected for multiple comparisons (except for the pupil – 

behaviour correlations), but are noted as exploratory and should be interpreted with caution. 

Note that distractor type (intact, scrambled) is not a factor in the analyses because it is either 

irrelevant (for the proactive indices), or included in the transformations (for the post-stimulus 

indices). Cohen’s d effect sizes are dz for within-subjects comparisons, and ds for between-

subjects comparisons. 

Results 

All analyses were preregistered unless noted as exploratory. All preregistered predictions are 

confirmed as supported, or not supported. Significant findings that were not predicted are 

noted as such. Data and code to reproduce analyses and figures are provided on OSF (link: 

osf.io/yhkdr). 

Behavioural distraction 

Mean response times (RTs) and proportion correct scores are included in Table 1. Trials with 

no response or with anticipatory responses (RT < 200 ms) were counted as errors.  
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Table 1.  Comparisons of mean correct RTs (ms) and accuracy (proportion correct) for scrambled versus 

intact images (distraction in milliseconds), for each distractor valence condition, separately for control and 

reward groups. 

Valence 

Block 

Scrambled 

Trials 

Intact  

Trials 
Distraction dz 

95% CI 

Low            Upper 

 

Response Times 

 

Control Group 

Negative 669 (91) 813 (152) 144***(93) 1.550 119 169 

Neutral 670 (81) 726 (112) 56***(49) 1.145 43 69 

Positive 674 (94) 825 (160) 151***(93) 1.636 126 176 

Reward Group 

Negative 562 (100) 620 (140) 58***(60) 0.978 42 75 

Neutral 564 (86) 598 (117) 34***(42) 0.824 23 46 

Positive 568 (111) 631 (145) 63***(52) 1.204 49 77 

 

Proportion Correct 

 

Control Group 

Negative .965 (.036) .947 (.052) .018* (.055) 0.327 .003 .033 

Neutral .973 (.030) .966 (.046) .007 (.044) 0.156 -.005 .019 

Positive .969 (.025) .926 (.070) .043*** (.070) 0.631 .025 .063 

Reward Group 

Negative .955 (.037) .915 (.081) .040*** (.072) 0.560 .021 .059 

Neutral .960 (.042) .946 (.054) .014* (.045) 0.314 .002 .026 

Positive .952 (.038) .909 (.083) .043*** (.075) 0.567 .063 .022 

Note: Distraction is calculated as: [RT intact – RT scrambled] and [proportion-correct scrambled – 

proportion-correct intact]. SDs are in brackets. Effect sizes are Cohen’s dz from paired comparisons 

of intact and scrambled trials within conditions, and asterisks indicate whether the intact – scrambled 

difference is significant in that condition. *p < .05, **p < .01, ***p < .001. 95% confidence intervals 

surround the distraction scores, in ms and proportion correct. n = 55 per group. 

 

Examination of means suggests that (as predicted) reward elicits a speed-accuracy trade-off, 

speeding up responses at a small cost to accuracy. This speed-accuracy trade-off is examined 
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in supplementary analyses (in which preregistered ANOVAs are performed on correct RTs 

and proportion correct, and an exploratory ANOVA is conducted on inverse-efficiency 

scores; Bruyer & Brysbaert, 2011), in which we show that it does not account for the effect of 

reward group on emotional distraction. Therefore, we followed our preregistered plan and 

focused our analyses on distraction indices, which were calculated as: ((mean RT intact - 

mean RT scrambled) / mean RT scrambled)) x 100 (Figure 2). These distraction indices 

reflect percentage slowing due to intact distractors, relative to performance on scrambled 

trials. A simple difference score between intact and scrambled RTs was not used because of 

the overall difference in RTs between the reward and control groups. However, for ease of 

interpretation, we present the difference scores in milliseconds (intact – scrambled) in Table 

1. 

 
 

Figure 2.  Mean behavioural distraction indices by group and valence. Greater distraction 

[((mean RT intact - mean RT scrambled) / mean RT scrambled) x 100] was elicited by 

emotional than by neutral images. Neutral and (to a greater extent) emotional distraction 

were attenuated by reward. Error bars represent standard error of the mean. 
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A mixed-model ANOVA was conducted on distraction indices with distractor valence 

(negative, neutral, positive) as a within-subjects factor and reward group (control, reward) as 

a between-subjects factor.  Neutral valence was entered as the middle level in the ANOVA so 

that effects of emotional versus neutral distraction could be examined as quadratic effects of 

valence (as was done in Grimshaw et al., 2018). As predicted, overall, emotional images were 

more distracting than neutral images, shown by the quadratic main effect of valence: F(1, 

108) = 99.24, p < .001, ηp
2 = 0.479. Planned comparisons showed that distraction from 

positive (M = 16.30%, SD = 11.82%) and negative (M = 15.57%, SD = 12.51%) images did 

not differ from each other, (p = .474, two-tailed) and so positive and negative distraction were 

collapsed together into emotional distraction (M = 15.93%, SD = 10.92%), which was greater 

than neutral distraction (M = 6.88%, SD 6.19%), t(109) = 9.04, p < .001, d = 0.862, 95% CI 

[7.07, inf] (one-tailed).  

 Crucially, as predicted, the reward group was less distracted overall than the control 

group: F(1, 108) = 38.10, p < .001, ηp
2 = 0.261 (controls: M = 17.10%, SD = 7.85%; reward: 

M = 8.73%, SD = 6.28%). Also as predicted, reward reduced emotional distraction to a 

greater degree than it did for neutral distraction, reflected by the quadratic reward x valence 

interaction, F(1, 108) = 24.366, p < .001, ηp
2 = 0.184. There was no difference between 

positive and negative distraction in either the control or reward groups (both p’s > .473, two-

tailed), so positive and negative distraction were collapsed together for the following planned 

one-tailed tests. Emotional distraction was significantly reduced in the reward group (M = 

10.25%, SD = 7.82%) compared to the control group (M = 21.61%, SD = 12.35%), t(108) = 

6.37, p < .001, d = 1.214, 95% CI [8.40, inf] (one-tailed). Neutral distraction was also 

significantly reduced in the reward group (M = 5.68%, SD = 5.62%) compared to the control 

group (M = 8.08%, SD = 6.55%), t(108) = 2.06, p = .021, d = 0.392, 95% CI [0.46, inf] (one-

tailed), though to a lesser extent than emotional distraction was.  
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Pupil data  

Pupil area across the entire trial (baselined against the mean of the 200 ms pre-trial period) is 

shown separately for the control and reward groups in Figure 3.  

 

Figure 3.  Mean pupil area (in arbitrary units) across the entire trial. Dilation is 

subtraction-baselined to the mean during the 200 ms time-window immediately preceding 

trial onset (on each trial) for the control group (top panel) and the reward group (bottom 

panel). Intact trials are represented by solid lines; scrambled images are represented by 

dotted lines. Distractor valence is represented by the different colour shades. Stimulus 

presentation (200 ms) is represented by the grey shaded area. Arrows indicate display-onset 

for fixation, stimulus, and feedback.  
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Proactive control pupil indices. 

 See Table 2 for means and SDs for phasic and tonic proactive control indices. Note 

that the tonic means are all negative values; this is because tonic pupil area decreased across 

the experimental session in both groups, relative to the pre-experimental baseline block at the 

start of the session. This is not unusual in long experimental sessions. For simplicity, we will 

refer to differences in dilation between experimental conditions, however these should be 

interpreted in light of an overall pattern of constriction in experimental relative to baseline 

blocks. 

Table 2. Mean pupil area in arbitrary units (and SD) for preregistered tonic and phasic proactive time-windows, 

for each distractor-valence condition, separately for control and reward groups. 

Valence Block 

Tonic 

Proactive 

Control 

Phasic  

Proactive 

Control 

Control Group 

Negative -108 (242) 26 (33) 

Neutral -121 (240) 23 (26) 

Positive -90 (244) 24 (30) 

Reward Group 

Negative -55 (209) 23 (28) 

Neutral -89 (228) 22 (26) 

Positive -42 (165) 20 (21) 

 

Separate mixed-model ANOVAs were conducted on the tonic and phasic proactive 

control indices, each with valence (negative, neutral, positive) as a within-subjects factor and 

reward group (reward, controls) as a between-subjects factor. Analysis of the tonic proactive 

indices (reflecting sustained dilation across blocks, see Figure 4) revealed that, as predicted, 

there was higher tonic dilation in emotional compared to neutral blocks, as reflected in the 

quadratic main effect of valence, F(1, 108) = 9.03, p = .003, ηp
2 = 0.077. Planned 
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comparisons showed that tonic pupil dilation in positive (M = -66, SD = 209) and negative (M 

= -82, SD = 227) blocks did not differ from each other, t(109) = 1.48, p = .141, d = 0.141, 

95% CI [-37, 5] (two-tailed), and so positive and negative tonic dilation were collapsed 

together into emotional tonic dilation. Tonic dilation was greater on emotional (M = -74, SD 

= 210) than neutral blocks (M = -105, SD = 234), t(109) = 3.01, p = .002, d = 0.287, 95% CI 

[14, inf] (one-tailed), reflecting greater sustained arousal in an emotional context. Contrary to 

predictions, reward did not increase tonic pupil dilation, F(1, 108) = 1.21, p = .274, ηp
2 = 

0.011 (although numerically tonic dilation was higher in the reward group compared to the 

control group), and there was no reward group x valence interaction, F(2, 216) = 0.46, p = 

.629, ηp
2 = 0.004 (quadratic interaction: F(1, 108) = 0.814, p = .369, ηp

2 = 0.007). Thus, tonic 

dilation was modulated by emotional context, consistent with a shift to proactive control on 

emotional blocks (but see Discussion for an alternative explanation). However, tonic dilation 

was not modulated by reward group, suggesting that reward does not elicit sustained 

proactive control. 

 

Figure 4.  Mean pupil area (in arbitrary units) across the tonic time-window. Mean pupil 

area across the 1000 ms time-window preceding trial-onset, subtraction-baselined to the 

mean during the 200 ms time-window immediately preceding trial-onset in the baseline 
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(scrambled-image only, non-reward) block. Overall, there was greater tonic dilation (or, 

more accurately, less constriction relative to baseline) on emotional compared to neutral 

blocks (with no difference between tonic dilation on positive and negative blocks). Tonic 

dilation was not modulated by reward group. Shaded error bands represent the standard 

error. 

 

Contrary to predictions, analysis of the phasic proactive control indices (reflecting 

preparation during the 2000 ms fixation period preceding stimulus-onset; Figure 5A) revealed 

no main effect of reward group, F(1, 108) = 0.29, p = .591, ηp
2 = 0.003, nor a reward group x 

valence interaction, F(2, 216) = 0.29, p = .748, np
2 = 0.003 (quadratic interaction: F(1, 108) = 

0.51, p = .476, ηp
2 = 0.005). Also contrary to predictions, there was no effect of valence on 

phasic proactive control, F(2, 216) = 0.70, p = .499, ηp
2 = 0.006 (quadratic: F(1, 108) = 0.09, 

p = .766, ηp
2 = 0.001). Here we see no evidence that participants dynamically prepare 

differently for an upcoming trial as a function of either reward group or valence of a potential 

distractor.  

Post-stimulus pupil indices. 

An ANOVA was conducted on early and late post-stimulus pupil indices (which 

reflect intact distractor processing relative to scrambled distractor processing) with valence 

(negative, neutral, positive) and time (early, late) as the within-subjects factors and reward 

group (reward, controls) as the between-subjects factor. We had no specific predictions 

regarding time. See Table 3 for means for each group, split by valence and time, and Figure 

6A for mean pupil area across the post-stimulus time-window. 
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Table 3. Comparisons of mean pupil area for the preregistered post-stimulus indices, for scrambled versus 

intact images, for each distractor-valence condition, separately for control and reward groups. 

Valence 

Block 

Scrambled 

Trials 

Intact  

Trials 
Difference 

Control Group 

Early 

Negative 67 (57) 116 (85) 49 (50) 

Neutral 67 (57) 79 (65) 12 (33) 

Positive 72 (66) 155 (89) 83 (54) 

Late 

Negative 14 (59) 55 (79) 41 (59) 

Neutral 25 (71) 27 (77) 2 (51) 

Positive 26 (71) 101 (82) 75 (64) 

 

Reward Group 

Early 

Negative 103 (58) 134 (74) 31 (47) 

Neutral 102 (61) 104 (70) 2 (31) 

Positive 106 (63) 165 (82) 59 (51) 

Late 

Negative 20 (62) 57 (87) 37 (69) 

Neutral 29 (66) 31 (70) 2 (38) 

Positive 25 (79) 83 (93) 58 (67) 

Note: Difference is [intact – scrambled]. SDs are in brackets. n = 55 per group. 

 

The predicted quadratic main effect of valence indicated that emotional distractors 

produced greater pupil dilation than neutral distractors, F(1, 108) = 108.50, p < .001, ηp
2 = 

0.501. Dilation in response to positive distractors (M = 69, SD = 57) was greater than for 

negative distractors (M = 40, SD = 53), t(109) = 5.00, p < .001, d = 0.476, 95% CI [17, 40] 

(two-tailed), so these were separately compared to neutral post-stimulus pupil dilation (one-
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tailed). Pupil dilation following positive, t(109) = 11.39, p < .001, d = 1.086, 95% CI [55, 

inf], and negative, t(109) = 6.40, p < .001, d = 0.610, 95% CI [26, inf], distractors was greater 

than pupil dilation following neutral distractors (M = 4, SD = 36). The predicted reward 

group x valence interaction was not significant, F(2, 216) = 0.98, p = .378, ηp
2 = .009, 

(quadratic interaction: F(1, 108) = 1.18, p = .280, ηp
2 = .011), suggesting that (unlike for 

behavioural distraction) reward did not reduce pupil dilation in response to emotional 

distractors to a greater extent than neutral distractors.  

A trend toward the predicted main effect of reward group on post-stimulus pupil 

dilation, F(1, 108) = 3.03, p = .084, ηp
2 = 0.027, was qualified by a time x reward group 

interaction (which was not predicted), F(1, 108) = 4.16, p = .044, ηp
2 = 0.037. To explore this 

interaction, two ANOVAs were conducted with valence as the within-subjects factor and 

reward group as the between-subjects factor, separately for the early and late time-windows. 

This showed a significant effect of reward group on post-stimulus pupil dilation in the early 

time window, F(1, 108) = 6.93, p = .010, ηp
2 = 0.060, but not in the late time-window, F(1, 

108) = 0.74, p = .392, ηp
2 = .007. The timecourse of the effect of reward group on post-

stimulus pupil dilation is further followed up in exploratory functional data analyses, below.  

Exploratory functional data analyses. 

The following functional data analyses (FDA) are exploratory. Averaging pupil 

dilation across pre (or post) specified (albeit arbitrary) time-windows is common in 

pupillometry studies (e.g., Bradley et al., 2008; Chiew & Braver, 2013; 2014; Chevalier et al., 

2015; Cohen et al., 2015; Henderson et al., 2014; Rondeel et al., 2015) and we chose to use 

indices calculated from pupil area in preregistered time-windows in keeping with these 

practices. However, in reducing the rich (1000 Hz) pupil data to mean dilation across long 

windows, we lose sensitivity to detect potential group differences in the timecourse of the 

implementation of control (see Sirois & Brisson, 2014 for discussion of this issue). FDA (see 
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Ramsay & Silverman, 1997; 2005) solves this problem; the discrete pupil samples are 

converted into smooth functions, and then inferential statistics are performed on the functions 

over time. The output of a functional t-test is a smooth function that defines the critical t-

value (and associated p value) at each time point; the advantage of this approach is that we 

can identify precisely if and when there are significant group differences (see Brisson et al., 

2013; Jackson & Sirois, 2009 for use of FDA with pupillometry data). We conducted FDA 

only on the phasic pre-stimulus response and the post-stimulus response, as these windows 

capture the dynamic changes in pupil dilation related to stimulus events. FDA is less 

appropriate for analyzing tonic dilation, where the goal is to identify stable difference in 

overall levels of dilation. Because the analysis was exploratory, we did not restrict it to the 

preregistered windows, and so FDA was applied to two time-windows, the first across the 

entire 2000 ms pre-stimulus window (from fixation onset to stimulus-onset); and the second 

across the entire 4100 ms post-stimulus-onset window (from stimulus-onset until the end of 

the ITI). 

Following methods described by Ramsay & Silverman (1997; 2005), cubic B-splines 

were created for each participant, for each valence, for each time-window, with a knot at each 

millisecond, and were smoothed by penalizing the second derivative. This creates a smooth 

curve that captures each participant’s pupil response across time. The B-splines for individual 

participants were then collapsed across valence, and functional t-tests were conducted to 

examine the timecourse of group differences. To calculate the critical value of the test 

statistic, the labels of individual curves (for each participant, for each condition) were 

randomly shuffled and then the test statistic was calculated with the new labels. One thousand 

permutations were run, resulting in a null distribution (the pointwise critical value over time) 

based on the actual data. See OSF for plots of the functional t-test output. 

Exploratory pupil proactive control functional t-tests. 
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Visual inspection of the pupil data suggests that by averaging pupil dilation across the 

2000 ms time-window prior to stimulus-onset (our preregistered index of phasic proactive 

control) we missed important information about how proactive control unfolds across time, 

under conditions of reward relative to no reward (see Figure 5A). Specifically, it appears that 

averaging across the time-window might have disguised proactive control in the reward 

group that occurs close in time to stimulus-onset. To address this possibility, we conducted a 

functional t-test to determine whether (and when) this apparent group difference is 

significant. The timing of significant group differences are marked by asterisks on Figure 5B. 

A significant group difference begins around 500 ms into the pre-stimulus period, extending 

until 1300 ms into the pre-stimulus period. However, contrary to predictions, this early 

difference is due to increased pupil dilation in the control group relative to the reward group, 

suggesting that the control group is implementing greater control than the reward group early 

in the fixation period. The second group difference occurs later, beginning around 1750 ms 

(250 ms prior to stimulus-onset) and extends until stimulus-onset. This difference is in line 

with predictions, with the reward group showing greater pupil dilation, reflecting enhanced 

proactive control. Indeed, given that the reward group showed less dilation than the control 

group early in the pre-trial window, their eventual greater dilation reflects a steep gradient in 

dilation just before stimulus onset. The functional t-test reveals that the control and reward 

groups prepared to ignore the distractors over different timecourses. Specifically, the control 

group exerted effort earlier, and less intensely, with a small boost of control close to 

stimulus-onset. In contrast, the reward group prepared later, but more intensely, with a large 

dynamic boost of control close in time to stimulus-onset.  
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Figure 5: Mean pupil area (arbitrary units) across the pre-stimulus phasic time-window. 
Panel A: Phasic proactive control is indexed by mean pupil area during the 2000 ms time-

window preceding stimulus-onset, subtraction-baselined to the mean during the 200 ms time-

window immediately preceding trial-onset. The preregistered analysis indicated no 

modulation of the mean phasic proactive control index (collapsed across the entire pre-

stimulus time-window) by either distractor valence or reward group. Panel B: Phasic pupil 

dilation collapsed by valence during the pre-stimulus 2000 ms time-window. Significant 

group differences from the functional t-test are indicated by the horizontal lines and 

asterisks. Shaded error bands represent the standard error. 
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Exploratory post-stimulus pupil functional t-tests. 

 In the preregistered post-stimulus pupil ANOVA we found a trend toward the 

predicted main effect of reward group on post-stimulus pupil dilation, which was qualified by 

a time x reward group interaction. This interaction suggests an effect of reward group on 

pupil dilation elicited by the intact (relative to scrambled) distractors during some but not all 

of the post-stimulus time-period. To discover precisely when this group difference was 

significant, a functional t-test was performed on the intact – scrambled difference in pupil 

area across the 4100 ms time-window, beginning at stimulus-onset and extending to the end 

of the ITI period (subtraction-baselined to the 200 ms time-window immediately preceding 

stimulus-onset) comparing pupil area between the reward and control groups. This time-

window encompasses both the early and late preregistered post-stimulus phasic pupil indices, 

as well as the 200 ms stimulus-presentation and the 300 ms post stimulus-offset periods 

which were not included in the preregistered time-windows. The timing of significant group 

differences (extending from around 1000 to 2400 ms post-stimulus) are marked on Figure 6B. 
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Figure 6: Mean pupil area (arbitrary units) across the 4100 ms post-stimulus time-window. 
All graphs show pupil area across the entire post-stimulus period starting from stimulus-

onset (subtraction-baselined to the mean 200 ms prior to stimulus-onset). Panel A: Pupil 

area split by valence, distractor type, and group (left: control group, right: reward group). 

Intact trials are represented by solid lines; scrambled images are represented by dotted lines. 

Distractor valence is represented by the different colour shades. Preregistered analyses of 

pupil indices from early and late post-stimulus time-windows showed modulation by both 

valence and reward group (see post-stimulus pupil indices). Panel B: Pupil dilation, 

collapsed across valence, split by distractor type and reward group. Intact trials are 

represented by solid lines, scrambled images are represented by dotted lines. Reward group 

is represented by the different colours. Significant group differences for the intact – 

scrambled difference from the functional t-test are indicated by the horizontal lines and 
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asterisks. Panel C: Pupil dilation on intact trials (left), and scrambled trials (right), split by 

reward group. Significant group differences from the functional t-test are indicated by the 

horizontal lines and asterisks.  

 

Inspection of Figure 6A suggests that, in addition to a reduction in the intact – 

scrambled difference in pupil dilation, there appears to be a shift toward greater pupil dilation 

in the reward group relative to the control group. To discover precisely when this group 

difference is significant, two functional t-tests were performed comparing the post-stimulus 

pupil dilation (separately for intact and scrambled trials, collapsed across valence) over the 

entire 4100 ms post-stimulus time-window, to compare differences between the reward and 

control groups. For intact trials, there was greater pupil dilation in the reward group than in 

the control group for the first 1200 ms of the post-stimulus time-window (marked on Figure 

6C, left graph). For scrambled trials, there was greater pupil dilation in the reward than the 

control group for the first 2550 ms of the post-stimulus time-window (marked on Figure 6C, 

right graph). Thus, while reward decreased pupil responses to intact relative to scrambled 

images (suggesting a reduction in sensitivity to the content of images), it did so by increasing 

responses to scrambles to a greater extent than to intact images in the early time window. We 

return to the implications of this finding in the Discussion. 

Exploratory pupil-behaviour correlations. 

Nine exploratory correlations (see Figure 7) were calculated to examine how pupil 

dilation relates to behavioural responses. We examined the relationship between each mean 

pupil index (tonic, phasic pre-stimulus, phasic post-stimulus) and behavioural distraction 

indices, separately for each valence block (positive, negative, neutral). All significant 

correlations survived a Bonferroni correction (at alpha = .05, adjusted to .006 for nine tests) 

unless noted otherwise. First, to determine whether the phasic post-stimulus intact – 

scrambled difference in pupil dilation does actually reflect processing of the emotional 

distractors, we examined correlations between phasic post-stimulus dilation (averaged across 
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the early and late time-windows) and behavioural distraction. Positive correlations were 

significant for all three valences: negative blocks, r(108) = .396, p < .001; positive blocks, 

r(108)  = .296, p = .002; and neutral blocks, r(108) = .232, p = .015. Note however that the 

correlation for neutral blocks does not survive the Bonferonni correction (corrected p = .135). 

These findings validate the post-stimulus pupil dilation index as a measure of processing of 

the content of the emotional images, showing that the greater the pupil dilation following 

intact relative to scrambled images, the greater the behavioural distraction. 

The tonic pupil index correlated negatively with emotional behavioural distraction, 

with greater tonic dilation on negative and positive blocks being associated with less 

negative, r(108) = -.265, p = .005, and positive, r(108) = -.259, p = .006, behavioural 

distraction, respectively. The correlation between tonic pupil dilation and behavioural 

distraction on positive blocks became marginal with the Bonferonni correction (p = .054). 

Tonic dilation on neutral blocks did not correlate with behavioural distraction, r(108) = -.144, 

p = .134. These findings are consistent with the interpretation that increased tonic dilation is 

associated with increased sustained control when distractors are expected to be emotional.  

However, phasic proactive pupil dilation (collapsed across the 2000 ms pre-stimulus 

time-window) did not correlate with negative, r(108) = .042, p = .664, positive, r(108) = .099, 

p = .302, or neutral, r(108) = -.053, p = .584, behavioural distraction2.  

                                                
2 Additional exploratory correlations were calculated between pupil dilation in the time windows that were 

sensitive to reward in the functional analyses (500-1300 ms and 1750-2000 ms in the pre-stimulus time-

window) and behavioural distraction. These were calculated separately for the control and reward groups, and 

for each valence. None of these correlations reached significance (all p’s > .107, uncorrected for multiple 

comparisons). 
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Figure 7: Pupil indices – behavioural distraction correlations. Correlations between tonic 

(top row), pre-stimulus phasic (middle row), and post-stimulus phasic (bottom row) mean 

pupil indices and behavioural distraction indices on negative (left column), neutral (middle 

column) and positive (right column) blocks. Significant positive correlations were found for 

post-stimulus phasic pupil dilation (intact - scrambled difference) and behavioural 

distraction on positive and negative blocks. Significant negative correlations were found for 

tonic dilation and behavioural distraction for positive and negative blocks. 

 

Discussion 

As predicted, the availability of performance-contingent reward decreased distraction by 

irrelevant images, particularly those that were emotional. These behavioural findings 

replicate our previous findings using a similar paradigm (Walsh et al., 2018), and are 
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consistent with a growing body of evidence that motivation enhances cognitive control, even 

when distractors are highly emotional (Padmala & Pessoa, 2014; Padmala, et al., 2017). 

Mirroring the behavioural findings, and relative to scrambled control stimuli, emotional 

distractors produced greater dilation than neutral distractors; and dilation to distractors 

(relative to scrambled control images) was reduced by reward. Furthermore, greater post-

stimulus dilation to emotional distractors predicted greater behavioural emotional distraction, 

establishing pupil dilation as a valid measure of emotional processing that has behavioural 

consequences.  

Our primary research question concerned the timecourse by which motivation reduces 

distraction. Specifically, we tested the hypothesis that reward encourages a shift to an 

effective proactive control strategy to ignore emotional distractors. We considered two 

variants of proactive control indexed by pupil dilation: dynamic up-regulation of control in 

preparation for an imminent distractor; and sustained implementation of control across entire 

blocks. Although we found no evidence that reward modulated sustained proactive control, 

exploratory analyses showed dynamic implementation of proactive control close in time to 

stimulus-onset in the reward group. Exploratory analyses also revealed that reward increased 

post-stimulus dilation (regardless of distractor type), suggesting up-regulation of a reactive 

control mechanism. Together, these findings (examined in more detail below) suggest 

dynamic implementation of anticipatory control to more effectively disengage from 

distractors. We found no evidence that reward influences the timecourse of control differently 

for positive, negative, or neutral distractions. 

We tested hypotheses using preregistered pupil indices (analysing baselined mean 

pupil area in specified time-windows) and exploratory analyses using a more data-driven 

approach to identify time periods in which pupil dilation was sensitive to reward. The tonic 

proactive control index (mean pupil area across the 1000 ms period prior to trial-onset) was 
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greater in blocks in which distractors were emotional. It is difficult to determine whether this 

effect indicates greater sustained anticipatory control when emotional distractors were 

expected, or whether it is the result of emotional arousal carrying over from previously 

presented emotional distractors (which will have occurred on 25% of trials). One way to 

assess carryover would be to analyse trials that followed an intact distractor separately from 

those that followed a scramble; however, we did not have sufficient trial numbers to make 

such an analysis robust. The correlations with behaviour, however, argue against emotional 

carryover, because greater tonic dilation on emotional blocks was associated with less 

emotional distraction, consistent with the conclusion that tonic dilation is associated with 

enhanced sustained proactive control of emotional distraction. Emotional carryover, in 

contrast, would predict a positive relationship between tonic dilation and distraction on 

emotional blocks.  

Importantly, the tonic proactive control pupil index was not affected by reward, nor 

did reward interact with valence. Findings therefore do not support the hypothesis that the 

availability of reward encourages the use of a sustained proactive control strategy in this task. 

Our findings contrast with those of Chiew and Braver (2013; 2014), who found that reward 

enhanced both tonic pupil dilation and behavioural proactive control. Our null effect of 

reward on sustained proactive control could be due to insufficient power; tonic pupil data has 

high variability, and numerically our reward group did show higher tonic dilation than 

controls. However, the significant effect of emotion on tonic dilation (greater tonic dilation in 

emotional compared to neutral blocks) suggests that our study did not lack power to detect 

cognitive effects on tonic dilation. 

The preregistered phasic proactive control pupil index (mean pupil area across the 

2000 ms pre-stimulus window) was not modulated by valence, suggesting that similar 

dynamic proactive mechanisms were engaged preceding emotional and neutral distractions. 
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Preregistered analyses also revealed no influence of reward on phasic proactive control. 

However, the exploratory functional t-test showed a significant effect of reward, which arose 

because the timecourse of preparatory phasic pupil dilation differed between reward 

conditions. The test revealed (see Figure 5B) an early window (from around 500 – 1300 ms 

post fixation-onset) in which pupil dilation was greater in control than in reward participants, 

and a late window (extending from around 1750 ms after fixation-onset and continuing until 

stimulus-onset) in which phasic pupil dilation was greater (and rapidly increasing) in reward 

than in control participants. It appears that the control group exerted control earlier and less 

intensely than the reward group, who exerted a sharp “burst” of proactive control right before 

onset of the anticipated stimulus. This dynamic effect of reward on phasic proactive control is 

consistent with the effect of reward in non-emotional contexts (Chiew & Braver, 2013, 2014), 

and indeed reward did not interact with valence in any of our pre-stimulus analyses.  

Turning to the post-stimulus period, pupil dilation was modulated by both emotion 

and reward, in both the preregistered and exploratory analyses. Our preregistered analyses 

used indices of phasic post-stimulus pupil dilation (mean pupil response to intact distractors 

relative to scrambles), to assess processing of the content of distractor images while 

controlling for low-level visual features. Although behavioural distraction and the pupil 

response to distractors were broadly similar (both were greater for emotional than for neutral 

distractors, and both were reduced by reward); there were some inconsistencies in the effects 

of valence. Pupil dilation was greater following positive (erotic) distractors than following 

negative (mutilation) distractors, which both produced greater dilation than neutral 

distractors. In contrast, behavioural distraction from positive and negative images did not 

differ (see also Walsh et al., 2018). The valence effect in the pupil response is consistent with 

findings from Henderson and colleagues (2014) showing greater pupil dilation to erotic 
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images relative to negative images, even when they are matched for subjective ratings of 

arousal. 

Behaviourally, reward produced greater attenuation of distraction in emotional blocks 

than in neutral blocks. This behavioural effect is consistent with the notion that, in addition to 

generally enhancing cognitive control (as reward does in emotionally-neutral contexts), 

reward may reduce emotional distraction by additionally increasing the motivational value of 

the targets. If we attend to emotional distractors partly because we are motivated to attend to 

them, then enhancing the motivational value of targets might influence competition between 

targets and emotional distractors to a greater degree than between targets and neutral 

distractors (which lack this motivational value). However, this effect was not observed in the 

pupil index, which showed similar effects of reward on responses to emotional and neutral 

distractors. 

Interestingly, further exploratory functional data analyses (FDA) showed that the 

effect of reward on post-stimulus dilation was driven primarily by greater dilation on trials 

with scrambled distractors (but to a lesser extent intact distractors) in rewarded participants 

compared to controls. This suggests a general, control-driven increase in dilation under 

reward. Separately examining the timecourse of group differences in dilation on intact trials, 

scrambled trials, and the intact – scrambled difference, allows us to make inferences 

regarding the respective influences of reward on control- and emotion-related pupil dilation. 

Reward was associated with greater pupil dilation for both scrambles and intact images 

(regardless of valence) right from stimulus onset (Figure 6C). However, the effect of reward 

on the intact-scrambled difference did not emerge until about 1000 ms later (Figure 6B). We 

suggest that the early effect of reward reflects up-regulation of reactive cognitive control that 

is implemented in the face of any distractor. The later effect of reward reflects reduced 

emotional processing of distractors, due to more rapid implementation of control. The idea 
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that there are separable cognitive and emotional influences on pupil dilation is not new. 

Dilation due to emotional arousal is thought to be under sympathetic control (Beatty & 

Lucero-Wagoner, 2000; Bradley et al., 2008), activating the pupil’s dilator muscle; whereas 

dilation due to cognitive effort is the result of parasympathetic inhibition of the constrictor 

muscle (Samuels & Szabadi, 2008). Thus it is possible for cognitive control and emotional 

arousal to independently affect pupil size. 

A similar dissociation between control-related and emotion-related pupil responses 

was recently described by Kinner and colleagues (2017). They observed pupil responses to 

neutral and negative images that participants viewed passively, or that they prepared to view 

under instruction to either up-regulate or down-regulate their emotional response. Pupil 

dilation in an early time-window after image onset was enhanced in emotion-regulation 

conditions, regardless of whether the instruction required them to up-regulate or down-

regulate their emotional response. It was not until a later time-window that responses 

diverged, becoming larger in the up-regulation than in the down-regulation condition. Kinner 

and colleagues argue that early pupil responses reflect a “cognitive” component, indexing the 

effort applied to both emotion regulation strategies, whereas later responses reflect an 

“emotional” component that indexes the emotional consequences of that regulation. As 

described above, our findings could be similarly interpreted as showing an early effect of 

reward on pupil dilation, independent of the nature of the distractor, which reflects effortful 

control; followed by a later effect of reward on pupil dilation, dependent on distractor 

content, which reflects an emotional response. Considering that (in our data) reward enhances 

control-related dilation right from stimulus-onset, this dilation may reflect a continuation of 

anticipatory control processes, or very fast activation of reactive control processes (e.g., 

disengagement), which continue long after stimulus-offset and even behavioural response.  

Indeed, we can anticipatorily prepare to disengage from distractors (rather than proactively 
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preventing their attentional selection; Theeuwes, 2010). Future research utilising other 

temporally-sensitive measures, such as electroencephalography, may yield further insights 

into the timecourse of reward-based modulation of control of emotional distraction. 

Although a decomposition of the pupil response into a cognitive and an emotional 

component provides a parsimonious explanation of our data, we cannot rule out an alternative 

explanation: that anticipation of reward induces emotional arousal that is reflected in the 

pupil response (e.g., Bouret & Richmond, 2015).  At this point we can say that post-stimulus 

pupil responses were separately modulated by both reward and the emotional nature of the 

distractor. Manipulations that can tease apart the relative contributions of control and emotion 

on pupil dilation will be an important goal for future studies. We also note that analysis of the 

post-stimulus pupil response in the late time-window could be influenced by performance 

feedback (presented 2000 ms post stimulus-onset), which should be more affectively positive 

in the reward group than in the control group. However, group differences in the post-

stimulus pupil response (revealed by both the preregistered analyses and the exploratory 

FDA) were almost exclusively limited to the time-window prior to feedback presentation, and 

therefore the potential affective influence of feedback does not impact our findings and 

conclusions. 

Limitations in this study must be acknowledged. First, our findings in support of 

dynamic changes in proactive control were observed in the exploratory FDA, and not in our 

preregistered analyses using pre-defined windows. These exploratory findings therefore 

require replication with a preregistered analysis plan. Second, we limited our stimulus set to 

high arousal negative (mutilation) and positive (erotic) images, because they are known to 

produce robust pupil responses. Extension to other stimulus categories, perhaps with different 

motivational value, will be necessary to determine how well these effects generalise. Third, 

our erotic image set included only heterosexual couples, and we did not ask participants 
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about their sexual orientation. The subjective emotional value of both erotic and mutilation 

images naturally differs across people, with sexual orientation being one influencing factor. 

Although random assignment to reward groups should mean these individual differences will 

not account for our experimental effects, such variability might be useful to explore in future 

work. Finally, our neutral images were matched with the emotional images on content, and 

therefore contained people. The use of “interesting” neutral images  may have masked 

potential reward by emotion interactions that may emerge with the use of more mundane 

neutral distractors (e.g., household objects).  

Attending to emotional stimuli is sometimes crucial for survival. But when emotional 

stimuli are neither imperative, nor relevant to current goals, we face the challenge of ignoring 

them. The current study sits at the intersection of the growing, but largely separate, literatures 

on the effect of reward on cognitive control in emotionally-neutral contexts on the one hand; 

and the effect of (non-reward) control manipulations on emotional distraction on the other. 

Our findings confirm that performance-contingent reward can reduce emotional distraction, 

and suggest that it does so by dynamically up-regulating control just before the anticipated 

onset of a stimulus, and extending that control into the post-stimulus period. We also show 

the value of pupillometry – a non-invasive and relatively low-cost tool – to further 

understanding of both emotion and cognitive control.  
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