Liquid CO2 behaviour during water displacement in a sandstone core sample

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.jngse.2018.12.005
10.1016/j.jngse.2018.12.005

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Natural Gas Science and Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Liquid CO$_2$ Behaviour during Water Displacement in a Sandstone Core Sample

Ebraheam Al-Zaidi*, Xianfeng Fan

Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JL, United Kingdom

* Corresponding author. Tel.: +44-782-407-776 or +964-771-715-5652. E-mail address: e.al-zaidi@ed.ac.uk or ebraheam80_saheb@yahoo.com.

Abstract: CO$_2$ sequestration in saline aquifers and hydrocarbon reservoirs is a potential strategy to reduce CO$_2$ concentration in the atmosphere, enhance hydrocarbon production, or extract geothermal heat. CO$_2$ injection is considerably influenced by the interfacial interactions, capillary forces and viscous forces. Any change in the subsurface conditions of pressure, temperature, and salinity is likely to have an impact on the interfacial interactions, capillary forces and viscous forces, which, in turn, will have an influence on the injection, migration, displacement, and CO$_2$ storage capacity. In this study, unsteady-state immiscible experimental investigations have been performed to explore the impact of fluid pressure, temperature, salinity (brine concentration and valency) and injection rate on the dynamic pressure evolution and displacement efficiency when CO$_2$ as a liquid phase is injected into a water-saturated sandstone core sample. This study also highlights the impact of capillary forces and viscous forces on the two-phase flow properties and shows when capillary forces or viscous forces are dominant. The results reveal a moderate to considerable impact for the fluid pressure, temperature, injection rate, and salinity on the differential pressure profile, water recovery (WR), endpoint CO$_2$ relative permeability ($Kr_{CO_2}$), and cumulative produced volumes. Overall, increasing fluid pressure, CO$_2$ injection rate and salinity (brine concentration and valency) cause an increase in the differential pressure profile; the highest increase occurred with the injection rate. In general, increasing temperature caused a reduction in the differential pressure profile. The WR is in range of around 61.6-69.3% while the $Kr_{CO_2}$ is in range of 0.112-0.203, depending on the investigated parameters. Increasing fluid pressure and injection rate caused an increase in the WR; the highest increase occurred with the injection rate. On the other hand, increasing temperature and salinity caused a decrease in the WR; the highest reduction occurred with salinity. Nevertheless, the increase in fluid pressure, temperature, injection rate and salinity led to a reduction in the endpoint CO$_2$ relative permeability; the highest reduction occurred with increasing temperature whilst the lowest occurred with increasing fluid pressure. The cumulative injected volumes decreased with fluid pressure and salinity but showed no noticeable change with temperature and injection rate. The capillary forces have less impact on the differential pressure profiles than viscous forces when fluid pressure, temperature and injection rate increase but the capillary forces have more impact when salinity increase.

1 Introduction

Carbon capture and storage (CCS) is regarded as one of the promising techniques to reduce CO$_2$ concentration into the atmosphere [1-3], enhance hydrocarbon recovery, or extract geothermal heat from subsurface formations [4, 5]. The captured CO$_2$ can be injected into deep saline aquifers, depleted or abandoned oil and gas reservoirs [5-7], unmineable coal bed seams [5, 8], and deep oceanic waters (depths > 3000 m) [9]. As a result, the injected CO$_2$ can exist in a supercritical state (ScCO$_2$) (e.g., Weyburn oil field:~140 bar, 49.85 °C), a gaseous state (GCO$_2$) (e.g., Alabama Black Warrior Basin:~70 bar, 22.85 °C), and/or a liquid state (LCO$_2$) (e.g., West Sak reservoir: ~110-125 bar, 23.9 °C [10, 11] and deep oceanic waters [9]), as shown in Figure 1, [10-15]. Liquid CO$_2$ can also be used as a working fluid to enhance oil recovery in high-temperature reservoirs [16]. Hamdi and Awang showed a significant enhancement in the displacement efficiency when a low-temperature CO$_2$ (liquid CO$_2$) is injected into a hot reservoir (+ 93 °C)[16].
ngiroozabadi noticed that, attention to salinity on investigations CO was used. They observed that concomitant increase in contact angle; i.e. shifting wettability towards oil impact on has different wettability wettability, permeability and storage capacity 37 trapping pressure concentration) will have a subsurface interest for many industrial and environmental issues such rock capillarity, and mass transfer across the interface water with time, at early stages most of the injected CO 17 [18] showed that using NaCl and CaCl₂ brines lead to a different wettability behaviour as NaCl monovalent brine has a highly water-wet tendency while CaCl₂ divalent brine has an oil-wet tendency [48]. Wu and Firoozabadi noticed that NaCl, KCl, and CaCl₂ have an adverse and a different impact on permeability; increasing NaCl salinity led to a reduction in gas absolute permeability; while, increasing CaCl₂ salinity caused only a minor impact on permeability [28]. Arif et al. noticed an increase in zeta potential and a concomitant increase in contact angle; i.e. shifting wettability towards oil-wet, when divalent cations (Mg²⁺, and Ca²⁺) was used. They observed that using brine instead of deionised water caused a reduction in the storage capacity, which was attributed to surface de-wetting, and that the storage capacity with NaCl was higher than that of MgCl₂ and CaCl₂ due to better wetting performance [27]. Thus, although salinity is one of the key parameters that strongly influence the CO₂-brine displacements in both microscopic and macroscopic flows, it has not attracted much attention in previous investigations [31, 49]. Moreover, most of studies provided in literature have focused on investigating salinity impact on the properties of CO₂-water (brine) systems (e.g. wettability and interfacial tension) with scarce or overlooked attention to salinity impact on multiphase flow properties of CO₂-water (brine) systems.

The characterization of multiphase flow of CO₂-water (brine) system involves laboratory experiments [50], computational modelling [50-52], and field scale projects [24]. The current literature review showed an extensive work has been done to investigate supercritical CO₂-brine (water) displacements [18, 21, 49, 53-65] but only a scarce research...
has been allocated to gaseous [66–68] and liquid CO$_2$ (LCO$_2$)-water displacements [22, 25, 54, 60, 69]. Song et al. examined the multiphase properties of LCO$_2$-water displacements, under immiscible conditions of 60 bar and 21.85 °C, in a packed bed filled with glass beads. They noticed that: (I) in general, the efficiency of water displacement depends on the permeability, displacement pattern, and CO$_2$ injection rate, (II) low permeability formations leads to an increase in the residual water saturation, and (III) CO$_2$ fingering or channelling phenomena occur even in liquid immiscible displacement [54]. Levine et al. examined flow-properties of LCO$_2$-water brine (1% and 5% NaCl)-displacements, in synthetic and natural porous media (Berea sandstone core sample) at 100 bar and 20 °C, by measuring the differential pressure against various flowrates. They noticed that drainage endpoint relative permeability of LCO$_2$: was between 0.34 and 0.44 [25]. Zhang et al. investigated the impact of pore scale heterogeneity on the two-phase characteristics of CO$_2$-water displacement by conducting LCO$_2$-water displacements inside a dual permeability pore network model at 90 bar and 22 ± 1 °C. They noticed that at low injection rate, the displacement is unstable, and the water is displaced by LCO$_2$: from high permeability zones only. However, as CO$_2$ injection rate increased, the displacement mechanism shifted from capillary to viscous fingering, and liquid CO$_2$: displaced water from lower permeability zones, too [22]. Alemu et al. injected LCO$_2$: into a brine-saturated Rothbach sandstone core sample at 100 bar and 20 °C. After 20 pore volumes (PVs) of CO$_2$: injection, the endpoint residual CO$_2$: saturation was 0.53 [60]. Manceau et al. injected LCO$_2$: into a water-saturated Triassic sandstone core sample at 90 bar and 28 °C; the Triassic core sample contains small amounts of carbonate minerals. As a result of the CO$_2$: injection, they observed a mineral dissolution and an increase in porosity and permeability [69]. It can be seen that aforementioned LCO$_2$: water displacements have investigated different topics such as: (a) the two-phase flow properties in different porous media, (b) pore-scale heterogeneity impact on two-phase flow characteristics, (c) endpoint residual CO$_2$: saturation, (d) mineral dissolution, and (e) porosity and permeability change. Nevertheless, despite its high importance, these studies have overlooked the analysis of the pressure data in core flooding [70].

In our previous study [71], we have investigated the impact of CO$_2$: phase on the pressure and production data. In this investigation, we have explored the impact of the fluid pressure, temperature, salinity, and injection rate on the dynamic pressure evolution and displacement efficiency when a CO$_2$: in its liquid state is injected into a water/brine (1% NaCl, 1% CaCl$_2$, and 5% NaCl) saturated sandstone core sample under unsteady-state immiscible conditions. This study also highlights the impact of capillary forces and viscous forces on the two-phase flow properties and shows when the capillary forces or viscous forces are dominant. This study deals with the impact of the investigated parameters on the two-phase flow characteristics, especially focusing on the differential pressure profile, water production profile, residual water saturation, and effective and relative CO$_2$: permeabilities. During these dynamic displacements, the transient pressures were recorded at the inlet and outlet sides of the core; and, the differential pressure, transient outflow rates of water and CO$_2$: water recovery, and endpoint effective (relative) CO$_2$: permeability were measured and analysed. To the authors’ best knowledge, no detailed experimental investigation have been presented in literature yet. The result of this study would be of an interest for the injection, displacement, migration, and storage capacity and integrity of CO$_2$: in deep and cold formations. It is worth mentioning that in our previous study [71], we explored the impact of injection rate on the differential pressure of LCO$_2$: water displacements. In this study, detailed investigations focus on the injection rate impact on the differential pressure as a function of fluid pressure.

2 Materials and Experimental Setup

A sandstone core sample from Guillemot A Field in the North Sea saturated with dionised water was used during these unsteady-state immiscible liquid CO$_2$: water drainage displacements. The core sample has a diameter of 2.54 cm, length of 7.62 cm, an average effective porosity of 14%, and an absolute water permeability of 15.8 millidarcy; for more information about the core sample description see Al-Zaidi et al [71].

2.1 Experimental Setup

As shown in Figure 2, the experimental system used for performing liquid CO$_2$: drainage displacements are consisted of two high-pressure syringe pumps (Teledyne ISCO, Lincoln, NE, United States, flow range of 0.0001 to 30 ml/min with an accuracy of 0.3% of set point), a stainless steel core holder, a pressure gauge mounted on the core holder for measuring confining pressure, a water bath (Grant instruments GD 100) for controlling the temperature with a precision of ± 0.02 °C, an overburden pressure pump (CM400) for delivering the confining pressure, a vacuum pump (Edwards, Model E2M5) for removing the trapped gas, pressure transducers (UNIK, 0-100 bar with a precision of ± 0.1% of BSL) for measuring the pressure readings at the inlet and outlet side of the core; and a LabVIEW software system built for acquiring the pressure readings from the pressure transducers.
2.2 Liquid CO₂-Water Drainage Displacement procedures

First of all, the core sample was wrapped into a shrinkable Teflon tube and placed inside a rubber sleeve. Then, the core sample was placed inside the core holder, which was mounted horizontally inside the water bath. Next, the overburden pump was run to deliver a confining pressure of about 135 bar, which was always higher than the pore pressure, for avoiding fluid bypassing the core sample. Later, the water bath was filled with water, temperature was controlled by the heater, and vacuum pump was connected to the system to remove the trapped gas. To fully saturate the core sample with water, about 40-60 pore volumes (PVs) of deionised water was injected at a high-differential pressure of 80-90 bar; this differential pressure was attained by using a 0.2 µm membrane (Nuclepore Track-Etch Membrane-Whatman). To obtain heat equilibrium, the water bath temperature was set to the required degree and the system was left overnight at the experimental temperature.

Prior to each flooding experiment, a constant pressure was applied to the entire system with the syringe pump at each end. After achieving the experimental pressure, the system was left for about 20 mins to ensure that temperature stabilization is achieved throughout the system. Later, the mode of the injection pump was changed from a constant pressure mode to a constant flowrate mode, and the CO₂ was injected (at a constant injection rate) into the water saturated core sample. The volumes of the injected CO₂ and collected fluids were recorded every 30 seconds. During the experiment, the inlet and outlet pressure transducer readings were recorded every 6 seconds, using the LabVIEW software, in order to calculate the differential pressure across the core sample. When the experiment was finished, the volumes produced were measured to calculate the residual water saturation using the mass balance principles. Later, the weight of the core sample was measured using a Sartorius weighing scale with a resolution of 0.0001 gram to confirm the residual saturation measurements.

3 Results and Discussions

In order to have a deep insight into the two-phase flow characteristics when a liquid CO₂ is injected into sandstone formations, the effect of fluid pressure, temperature, injection rate and salinity (brine concentration and valency) on the differential pressure profile, production behaviour, water recovery, and endpoint effective and relative permeabilities of CO₂ have been investigated. The experimental data has been categorized into three main sections. The first and second main sections deal with the impact of fluid pressure, temperature, injection rate and salinity on the differential pressure profile and production behaviour, respectively; while the third section deal with their influence on the endpoint CO₂ effective (relative) permeability and residual water saturation. It should be noted that during this study, the corresponding time refers to the time required to reach the maximum-differential pressure at the start of the experiment. The quasi-differential pressure refers to the differential pressure at the end of the core flooding.

The differential pressure of LCO₂-water displacements can be obtained by having the difference between the pressure transducers readings at the inlet and outlet sides of the core sample. In a horizontal flooding process, the differential pressure is largely influenced by the capillary and viscous forces. The capillary forces are dependent on the
CO₂-water interfacial tension, contact angle, pore diameter and geometry [34, 74-76] while the viscous forces are controlled by the viscosity of both displacing and displaced fluids, fluid velocity in the pores, the amount of each fluid (i.e. the length of CO₂ invasion) in the pore, and the properties of the porous medium (e.g. cross sectional area, permeability and length). The capillary forces arise when an interface exists between the immiscible fluids [74]. The capillary forces are highly influenced the multiphase flow in low permeability rocks and fractured reservoirs [77] and responsible for the entrapment of one phase by another in a porous medium during immiscible flooding processes [75, 78]. Espinoza and Santamarina [12] propose the following equation to account for the differential pressure when a liquid CO₂ displaces brine (water) in a cylindrical horizontal tube:

$$\Delta P = P_{CO₂} - P_{water} = 4 \frac{\sigma_{CO₂-water} \cos \theta}{d} + v \frac{32 L}{d^2} \left( \frac{\mu_{CO₂} \rho_{CO₂}^2 + \rho_{water} \rho_{water}}{l} \right)$$

where $\Delta P$ is the differential pressure across the core sample (Pa), $P_{CO₂}$ and $P_{water}$ are the CO₂ phase and water bulk pressures, respectively. $\sigma_{CO₂-water}$ is the CO₂-water interfacial tension (mN/m), $\theta$ the contact angle between fluids and core sample surface, $d$ (m) the diameter of the largest effective pore [79-82], $v$ (m/sec) the fluid velocity in the pores, $L$ (m) the length of the core sample, $l$ (m) length of CO₂ or water phase inside the core sample, and $\mu$ (Pa·s) the viscosity of the fluids. Eq.1 consists of Young-Laplace equation, the first hand-right term, for capillary forces and Poiseuille’s equation, the second hand-right term, for viscous forces [12, 83]. In case of small injection rate and high viscosity contrast conditions [83], Eq.1 can be reduced to the Yong-Laplace equation, Eq.2, as follows:

$$\Delta P = P_{CO₂} - P_{water} = 4 \frac{\sigma_{CO₂-water} \cos \theta}{d}$$

### 3.1 Differential Pressure Profile of Liquid CO₂-Water Drainage Displacements

To examine the effect of fluid pressure, experimental temperature, salinity (brine concentration and valency), and CO₂ injection rate on the differential pressure and production behaviour, series of LCO₂-water (brine) displacements were conducted at various fluid pressures (from 60 to 90 bar), different experimental temperatures (20 and 29 °C) and various CO₂ injection rates (0.1, 0.4 and 1ml/min).

#### 3.1.1 Effect of Fluid Pressure on the Differential Pressure Profile of Liquid CO₂-Water Displacements

The data from Figure 3 and Figure 4 present the impact of increasing fluid pressure on the differential pressure profile. It is worth mentioning that the differential pressure for the 60 bar-displacements in Figure 3 and Figure 4 were presented in our previous paper [71]; however, they have been used here to make a comparison with the 70 bar-displacements. The differential pressure profile experienced a sharp increase that is followed by a quasi-stable pressure reduction for a while; and then, it experienced a high-pressure reduction that is followed by a gradual pressure reduction. Increasing fluid pressure led to an increase in the differential pressure profile, which further increased with increasing injection rate. For illustration, as the fluid pressure increased from 60 to 70 bar, the differential pressure during the early times of the flooding increased by around 11% (from around 0.45 to 0.5 bar) for the displacements conducted at 0.4 ml/min and by around 14% (from around 1.58 to 1.8 bar) for the displacements performed at 1 ml/min; however, the differential pressure at the end of the displacements increased by around 11% (from 0.222 to 0.247 bar) for the displacements conducted at 0.4 ml/min and by around 17.5% (from 0.706 to 0.829 bar) for the displacements performed at 1 ml/min.

According to Eq.1, the most likely reason behind the increase in the differential pressure profile is the increase in the applied viscous forces. This is because the observed increase in the differential pressure profile is the net result of the increase in the viscous forces and the reduction in the capillary forces. With increasing pressure, the viscous forces are increased due to increasing CO₂ viscosity while the capillary forces are reduced due to decreasing CO₂-water interfacial tension (from around 34.9 to 29.7 mN/m as can be seen in Figure 5), and increasing capillary force (owing to increasing CO₂ solubility with increasing pressure) [32]. To confirm that the increase in the differential pressure profile with increasing fluid pressure was because of increasing viscous forces due to increasing CO₂ viscosity, the data presented in Figure 3 were normalized against CO₂ viscosity. The result was an identical trend between the pressure profile of both 60 and 70 bar-experiments, as shown in Figure 6. This confirms that in the case of liquid CO₂-water displacements, the viscous forces are more influential than capillary forces with increasing fluid pressure.
Figure 3: Effect of fluid pressure on the differential pressure profile of LCO₂-water displacements conducted at 0.4 ml/min and 20 °C.

Figure 4: Effect of fluid pressure on the differential pressure profile of LCO₂-water displacements conducted at 1 ml/min and 20 °C.
Figure 5: Interfacial tension for CO₂-Pure Water Systems adopted from Bachu and Bennion [32].

Figure 6: A viscosity normalised differential pressure profiles of LCO₂-water displacements conducted at 20 °C and 0.4 ml/min.

3.1.2 Effect of Temperature on the Differential Pressure Profile of Liquid CO₂-Water Displacements

Figure 7 presents the impact of increasing temperature on the differential pressure profile. The results show that the differential pressure profile was stable during the first period that lasted for about 16 min, was reducing overtime during the mixed period, and was increasing over time during the last period; consequently, after around 200 min, the differential pressure profile of the 29 °C-experiment became higher than that of the 20 °C-experiment; the first period, mixed and last period is characterized by water production only, CO₂ and water production, and CO₂ production only, respectively, for more information see Al-Zaidi et al. [71]. Moreover, the results reveal that increasing temperature generated oscillations in the differential pressure profiles. The increase in the differential pressure profile is likely to occur because of the blocking of the CO₂ outflow paths when the viscous forces become less than the capillary forces [84]. The second possible reason is that, after around 170 min, the impact of viscous forces might become higher than that of capillary forces as most of the water was displaced; thereby CO₂ was flowing through opened pores [85]. The oscillations might have occurred as the energy of the CO₂ molecules increased with increasing temperature.
3.1.3 Effect of Injection Rate on the Differential Pressure Profile of Liquid CO\textsubscript{2}-Water Displacements

Figure 8 shows the impact of increasing injection rate on the differential pressure profile; while Figure 9 presents the dynamic change in the differential pressure profile with increasing CO\textsubscript{2} injection rate; it is worth stating again that the data in Figure 8 were presented in our previous paper [71], but introduced here for comparison purpose. The increase in injection rate leads to three identifiable observations (A-C):

A) The data from Figure 8 show that increasing injection rate resulted in a considerable increase in the differential pressure, which was slightly decreased (by around 3\%) with increasing fluid pressure. For illustration, increasing injection rate for the 60 bar-experiments caused the maximum-differential pressure to increase by more than 236\% (from 0.463 to 1.554 bar) and the quasi-differential pressure to increase by 240\% (from 0.208 to 0.707 bar). Nonetheless, increasing the injection rate for the 70 bar-experiments caused the maximum-differential pressure to increase by around 233\% (from 0.543 to 1.807 bar) and the quasi-differential pressure to increase by 237\% (from 0.247 to 0.832 bar). According to Eq.1, the observed increase in the maximum and quasi-differential pressures can be related only to the increase in viscous forces due to the increase in the CO\textsubscript{2} injection rate. However, the observed reduction in the differential pressures can be associated with the reduction in the capillary forces with increasing fluid pressure as stated in Section 3.1.1 above.

B) The data from Figure 9 show that increasing CO\textsubscript{2} injection rate from 0.4 to 1 ml/min caused the differential pressure to increase by more than 3.5 times, except for the first 5 min interval. During this time interval, the ratio of the differential pressures decreased quickly from around 3.5 to 2.5 times. The quick reduction in the differential pressure might reflect the high replacement of the water (a more viscous fluid) by CO\textsubscript{2} (a less viscous one) and the high increase in the CO\textsubscript{2} relative permeability at the expense of water relative permeability. After 5 min until the end of the experiment, the differential pressure ratio profiles (Figure 9) experienced a quasi-steady profile. This indicates that the majority of water production happened during the first 5 min, therefore the capillary and viscous forces experienced a slight reduction (as most water was produced and most capillaries were opened to flow [85]) leading to a small reduction in the differential pressure profile ratio.

C) The data from Figure 8 reveal that increasing injection rate caused a high spike in the differential pressure profile after the initial increase, which is immediately followed by a sharp reduction that is followed by a gradual reduction. The spikes in the differential pressure immediately before CO\textsubscript{2} breakthrough might have occurred because of the sweeping of water inside the pipeline segments [56] or it might happen because the injected CO\textsubscript{2} had to open new flow
paths after the initial entry as the available space was not enough for the injected CO$_2$, which depends on the core sample properties.

Figure 8: Effect of injection rate on the differential pressure profile of LCO$_2$-water displacements conducted at 60 bar and 20°C.

Figure 9: The ratio of the differential pressure of 1 ml/min-experiment to the differential pressure of the 0.4 ml/min-experiment for LCO$_2$-water displacements conducted at 60 and 70 bar and 20°C.

3.1.4 Effect of Salinity on the Differential Pressure Profile OF Liquid CO$_2$-Brine (Water) Displacements

Figure 10 and Figure 11 present the impact of brine concentration and valency on the differential pressure profile at different injection rates. The results reveal that increasing brine concentration and valency caused a slight increase in the differential pressure profile with a slight change in the differential pressure profile, mainly during the first period.

Figure 10 shows that increasing brine concentration and valency led to a slight increase in the differential pressure profile, primarily during the first period. Overall, the order of the differential pressure was as follows: LCO$_2$-1% CaCl$_2$ > LCO$_2$-5% NaCl > LCO$_2$-1% NaCl > LCO$_2$-DIW displacement. According to Eq.1, the increase in the differential pressure can be related largely to the increase in the capillary forces because of increasing surface tension with increasing brine concentration and valency [86]. The order of the differential pressure was according to the cations arrangement in terms of their order of impact on the increase in surface tension: Cs$^+$ < Rb$^+$ < NH$_4^+$ < K$^+$ < Na$^+$ < Li$^+$ < Ca$^{2+}$ < Mg$^{2+}$ [86].
Figure 11 reveals that both deionised water and 1% NaCl displacements showed similar differential pressure profiles. On the other hand, both 1% CaCl\(_2\) and 5% NaCl displacements profiles characterized by almost identical profiles; their profiles were characterized by a spike before starting declining. This sharp increase might have needed in order to open new pores for the injected CO\(_2\).

![Differential pressure profile comparison](image1)

Figure 10: Effect of salinity on the differential pressure profile of LCO\(_2\)-brine (DIW) displacements conducted at 70 bar, 0.4 ml/min, and 20\(^\circ\)C.

![Differential pressure profile comparison](image2)

Figure 11: Effect of salinity on the differential pressure profile of LCO\(_2\)-brine (water) displacements conducted at 70 bar, 1 ml/min, and 20\(^\circ\)C.

In summary, the differential pressure profile experienced a sharp increase that is followed by a quasi-stable pressure reduction for a while; and then, it experienced a high-pressure reduction that is followed by a gradual pressure reduction. The differential pressure profile characterized by: (a) no change in its shape with increasing pressure, (b) oscillations and an increase in the differential pressure profile at the end of the displacements with increasing temperature, (c) a spike in the differential pressure profile after the initial increase with increasing injection rate, and (d) only a slight change, mainly during the first period, with increasing salinity (brine concentration and valency).

The differential pressure profile: (a) slightly increased with increasing pressure; which increased with increasing injection rate, (b) was stable during the first period, decreased during the mixed period, and increased again during the last period with increasing temperature, (c) considerably increased with increasing injection rate, mainly during the first five minutes; this considerable increase was slightly decreased by around 0.3% as the fluid pressure increased from 60 to 70 bar, and (d) slightly increased, mainly during the first period, with increasing salinity. The order of the
differential pressure profile with increasing salinity was as follows: LCO-1% CaCl₂ > LCO-5% NaCl > LCO-1% NaCl > LCO-DIW.

3.2 Water Production Behaviour

In this section, we will discuss the effect of fluid pressure, temperature, CO₂ injection rates, and water salinity on the production behaviour.

3.2.1 Effect of Fluid Pressure on Liquid CO₂-Water Production Behaviour

Figure 12, Figure 13 and Figure 14 present the transient outflow rates of water and CO₂, the cumulative injected volumes and cumulative produced volumes, and water recovery profile for LCO₂-water displacements, respectively. It is worth mentioning that the differential pressure for the 60 bar-displacements in Figure 14 were presented in our previous paper [71], but included here for comparison with the 70 bar-displacements. The results reveal that increasing fluid pressure led to a slight reduction in the cumulative produced volumes along with the slight increase in water recovery.

The data from Figure 12 and Figure 13 reveal that increasing fluid pressure led to a slight reduction in the transient outflow rates of water and CO₂ and the cumulative produced volumes. As the pressure increased from 60 to 70 bar, the cumulative produced volumes at the end of the experiments decreased slightly by around 0.373 ml. This slight reduction can be related to increasing solubility and compressibility of liquid CO₂ with increasing fluid pressure [87, 88].

The data from Figure 14 show that increasing fluid pressure caused a slight increase in the total water recovery (WR) with a very slight increase in the amount of water production and the length of the first period. As the fluid pressure increased from 60 to 70 bar, the WR increased by around 2% (from 65.9 to 67.87%) and the water production of the first period increased by 0.003 PVs (from about 0.503 to 0.506 PVs) while its length increased by 0.2 min (from around 6.5 to 6.7 min) due to the slight decrease in the viscosity ratio. The slight increase in the total water production might be related to the increase in the capillary number (Ca) and the slight decrease in the viscosity ratio (M). The Ca increases with the increase in the viscous forces (because of increasing viscosity), and the reduction in the capillary forces (owing to increasing contact angle and reducing CO₂-water interface with increasing CO₂ solubility [12, 80, 83]. As the fluid pressure increased from 60 to 70 bar at a constant temperature of 20 °C, CO₂ viscosity increases from 69.72 to 74.54 × 10⁻⁶ (Pa·s), the IFT decreases from 34.9 to 30 mN/m, the M decreases from 14.33 to 13.4 and the Ca increases from 2.175 to 2.73 × 10⁻⁷.

Figure 12: Effect of fluid pressure on the transient outflow rates of water and CO₂ of LCO₂-water displacements conducted at 0.4 ml/min and 20 °C.
Figure 13: Effect of fluid pressure on the cumulative injected volumes of CO₂ and the cumulative produced volumes of water and CO₂ of LCO₂-water displacements conducted at 0.4ml/min and 20 °C.

Figure 14: Effect of fluid pressure on the water recovery profile of LCO₂-water displacements conducted at 0.4 ml/min and 20 °C.

3.2.2 Effect of Temperature on Liquid CO₂-Water Production Behaviour

Figure 15 presents the effect of increasing temperature on the cumulative injected volumes and the cumulative produced volumes. The data reveals that the cumulative injected volumes of liquid CO₂ were much higher than the cumulative produced volumes. The increase in temperature did not accompanied by a noticeable change in the cumulative volume due to the high-density nature of liquid CO₂ phase, especially at high pressure (90 bar). The difference between the injected and cumulative volumes might be related to the increase in the CO₂ compressibility and the solubility of CO₂ in water, especially at high pressure [12, 80, 83]. It should be noted that the water recovery profile and the transient outflow rate data were not presented here to avoid repeatability as they were similar to those presented in the fluid pressure section above.
3.2.3 Effect of Injection Rate on Liquid CO$_2$-Water Production Behaviour

The data from Figure 16 to Figure 21 exhibit the impact of increasing CO$_2$ injection rate on the transient outflow rates, cumulative produced volumes and water recovery profiles at different flowrate. It should be noted that only the data for the LCO$_2$-water displacement conducted at CO$_2$ injection rates of 1 ml/min are presented here as the data for 0.4 ml/min was discussed in our previous paper [71] but used here for comparison. The results reveal that the increase in the injection rate caused an increase in the water recovery but caused no observable change in the behaviour of the transient flowrates of water and CO$_2$ and the cumulative produced volumes.

The data from Figure 16 to Figure 21 reveal that increasing CO$_2$ injection rate led to: (I) a reduction in the time of the only water production period (from around 6.9 to 3.5 min) and that of mixed production period (from about 23 to 6.5 min), (II) a reduction in the amount of water production during only water production period (from 50.37 to 49%) but an increase in that of mixed period (from to 16.3 to 17.38%), and (III) an increase in the total water recovery (WR) by around 3.4% (from 65.9 to 69.38%) [49] and reduction in the amount of injected CO$_2$ to achieve that by around 48% (from 2.32 to 1.98 PVs). The increase in the WR with increasing injection rate can be associated with the increase in the Ca (from about 2.175 to $5.437 \times 10^{-7}$ due to the increase in the viscous forces), and the occurrence of the uniform CO$_2$ front that leads to increasing CO$_2$ displacement efficiency [54]. The results suggest that if the goal of CO$_2$ injection is to enhance displacement efficiency, then a high injection rate might be better.
Figure 17: Transient flowrates of water and LCO$_2$ of a LCO$_2$-water displacement conducted at 60 bar, 1 ml/min, and 20 °C.

Figure 18: Cumulative injected CO$_2$ volumes and cumulative produced water and CO$_2$ volumes for a LCO$_2$-water displacement conducted at 60 bar, 0.4 ml/min and 20 °C.
Figure 19: Cumulative injected volumes of CO\textsubscript{2} and cumulative produced volumes of water and CO\textsubscript{2} for LCO\textsubscript{2}-water displacement conducted at 60 bar, 1 ml/min, and 20 °C.

Figure 20: Water recovery of a LCO\textsubscript{2}-water displacement conducted at 60 bar, 0.4 ml/min and 20 °C.

Figure 21: Water recovery of a LCO\textsubscript{2}-water displacement conducted at 60 bar, 1 ml/min, and 20 °C.

3.2.4 Effect of Salinity on Liquid CO\textsubscript{2}-Water Production Behaviour

Figure 22 presents the effect of increasing brine concentration and valency on the cumulative injected volumes and the cumulative produced volumes. The data reveals that the cumulative injected volumes of CO\textsubscript{2} were higher than the cumulative produced volumes. The increase in brine concentration and valency caused a slight decrease in the cumulative produced volumes. The cumulative produced volumes were decreased by around 0.42, 0.62, and 1.07 ml when 1\% NaCl, 1\% CaCl\textsubscript{2}, and 5\% NaCl was used instead of deionised water, respectively. This might be associated with the reduction in brine recovery due to the increase in capillary forces with the increase in the interfacial tension. However, this reduction cannot be associated with CO\textsubscript{2} solubility as solubility decreases with increasing salinity [89, 90], therefore should increase the produced CO\textsubscript{2} volumes.
In summary, the cumulative produced volumes: (a) decreased slightly with increasing fluid pressure and salinity, and (b) showed no noticeable change with increasing temperature and injection rate. The WR increased with increasing pressure and injection rate. The amounts of injected LCO₂ volumes to achieve the highest WR were reduced as injection rate increased.

3.3 Effect of Fluid Pressure, Temperature, Injection Rate, and Salinity and Valency on Endpoint Effective (Relative) Permeability and Water (Brine) Recovery

The effective and relative permeabilities of CO₂ are of practical interest for determining the efficiency and integrity of CO₂ sequestration in subsurface formations [40, 91]. At the end of the flooding experiment, the volume of the produced water was measured, and the residual water saturation was calculated. Then, the core sample was weighed to confirm the calculated residual water saturation. To calculate the endpoint effective ($K_{CO₂}$) permeability and endpoint relative permeability ($K_{CO₂}$) of liquid CO₂ using Darcy’s law, the average differential pressure and the average CO₂ outflow rate of the last period were used [56, 92]. The CO₂ viscosity at the fluid pressure and experimental temperature was calculated using the Peace software website [93]. It should be noted that our discussion is based on the relative permeability data.

The data from Table 1 shows that the WR was in range of 61.6-69.38% while the $K_{CO₂}$ was in range of 0.112-0.203. The data show that increasing fluid pressure and injection rate caused an increase in the WR; the highest increase occurred with increasing injection rate. On the other hand, the increase in the experimental temperature and water salinity caused a decrease in the WR; the highest reduction occurred as brine concentration and valency increased. The WR increased by around 2% as the fluid pressure increased from 60 to 70 bar at 0.4 ml/min and by about 0.7% as the pressure increased from 60 to 70 bar at 1 ml/min. The WR increased by around 3.5% as the injection rate increased from 0.4 to 1 ml/min at 60 bar. Nevertheless, the WR decreased by around 0.8% as the temperature increased from 20 to 29 °C at 90 bar. The WR decreased by about 2.7, 5.3, and 6.3 when 1% NaCl, 5% NaCl, and 1% CaCl₂ solutions were used instead of deionised water, respectively. The efficiency of water displacement depends on many factors such as permeability, displacement pattern, injection rate, stability of the displacement front, $C_a$, and $M$ [22, 54]. The increase in injection rate can enhance production by changing the displacement pattern from capillary to viscous fingering, stabilizing the displacement front, and forcing the injected CO₂ to displace water from low permeability formations [22]. However, the most influential dimensionless parameters that determine the displacement efficiency of CO₂-water core flooding are the $C_a$ and $M$ [11]. The data from Table 1 reveal that the increase in the WR with the increasing fluid pressure and injection rate and the reduction in the WR with the increasing temperature can be associated with the change in $C_a$ and $M$ data. However, the $C_a$ data are not available for the set of data dealing with the salinity impact as contact angle data are not available. Nevertheless, the reduction in water recovery with increasing the salinity can be attributed to the increase in capillary forces due to increasing CO₂-brine interfacial tension [86].

On the other hand, the increase in fluid pressure, experimental temperature, injection rate and salinity led to a reduction in the $K_{CO₂}$. The highest reduction in the $K_{CO₂}$ occurred with increasing temperature whiles the lowest
occurred with increasing pressure. As the CO₂ injection rate increased, the percentage of the reduction in the $K_{CO2}$ with fluid pressure decreased; this can be related to increasing viscous forces and decreasing viscous forces which leads to reducing the entrapment impact of capillary forces. The $K_{CO2}$ decreased by around 0.008 as the pressure increased from 60 to 70 bar at 0.4 ml/min and decreased by about 0.002 as the pressure increased from 60 to 70 bar at 1 ml/min. It decreased by around 0.091 as the temperature increased from 20 to 29 °C at 90 bar. It decreased by around 0.056 as the injection rate increased from 0.4 to 1 ml/min at 60 bar. It decreased by about 0.004, and 0.014 when 5% NaCl, and 1% CaCl₂ solutions were used instead of deionised water, respectively. However, using 1% NaCl instead of deionised water showed a slight increase in the $K_{CO2}$, it increased by about 0.008. The reduction in the $K_{CO2}$ with increasing temperature and salinity might be related to the increase in the capillary forces and hence reducing the sweeping efficiency. However, this cannot explain the reduction in the $K_{CO2}$ with increasing pressure and injection rate, the reason for this reduction is not clear. The reduction in the $K_{CO2}$ with increasing salinity agrees with the findings of Rathnaweera et al. [40].

Table 1: Effect of fluid pressure, temperature, salinity, and injection rate on the endpoint CO₂ effective (relative) permeability and water recovery.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experiment</th>
<th>$K_{CO2}$ (md)</th>
<th>$K_{CO2}$</th>
<th>WR</th>
<th>M</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Effect</td>
<td>LCO₂-DIW-60 bar-0.4 ml-20 °C</td>
<td>3.188</td>
<td>0.203</td>
<td>65.9</td>
<td>14.33</td>
<td>2.175E-07</td>
</tr>
<tr>
<td></td>
<td>LCO₂-DIW-70 bar-0.4 ml-20 °C</td>
<td>3.064</td>
<td>0.195</td>
<td>67.87</td>
<td>13.4</td>
<td>2.734E-07</td>
</tr>
<tr>
<td></td>
<td>LCO₂-DIW-60 bar-1 ml-20 °C</td>
<td>2.307</td>
<td>0.147</td>
<td>69.38</td>
<td>14.33</td>
<td>5.437E-07</td>
</tr>
<tr>
<td></td>
<td>LCO₂-DIW-70 bar-1 ml-20 °C</td>
<td>2.271</td>
<td>0.145</td>
<td>70.1</td>
<td>13.4</td>
<td>6.835E-07</td>
</tr>
<tr>
<td>Temperature Effect</td>
<td>LCO₂-DIW-90 bar-0.1 ml-20 °C</td>
<td>3.185</td>
<td>0.203</td>
<td>65.3</td>
<td>12.24</td>
<td>6.923E-08</td>
</tr>
<tr>
<td></td>
<td>LCO₂-DIW-90 bar-0.1 ml-29 °C</td>
<td>1.760</td>
<td>0.112</td>
<td>66.1</td>
<td>12.73</td>
<td>6.124E-08</td>
</tr>
<tr>
<td>Injection Rate Effect</td>
<td>LCO₂-DIW-60 bar-0.4 ml-20 °C</td>
<td>3.188</td>
<td>0.203</td>
<td>65.9</td>
<td>14.33</td>
<td>2.175E-07</td>
</tr>
<tr>
<td></td>
<td>LCO₂-DIW-60 bar-1 ml-20 °C</td>
<td>2.307</td>
<td>0.147</td>
<td>69.38</td>
<td>14.33</td>
<td>5.437E-07</td>
</tr>
<tr>
<td>Salinity Effect</td>
<td>LCO₂-DIW-70 bar-0.4 ml-20 °C</td>
<td>3.248</td>
<td>0.195</td>
<td>67.87</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCO₂-1% NaCl-70 bar-0.4 ml-20 °C</td>
<td>3.180</td>
<td>0.203</td>
<td>65.14</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCO₂-5% NaCl-70 bar-0.4 ml-20 °C</td>
<td>2.991</td>
<td>0.191</td>
<td>62.54</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCO₂-1% CaCl₂-70 bar-0.4 ml-20 °C</td>
<td>2.845</td>
<td>0.181</td>
<td>61.6</td>
<td>13.4</td>
<td></td>
</tr>
</tbody>
</table>

4 Conclusion

In this paper, the effect of fluid pressure, temperature, injection rate, and salinity (brine concentration and valency) on the two-phase flow characteristics when liquid CO₂ is injected into a water or brine-saturated sandstone core sample have been investigated in detail. The results indicate that capillary forces have less impact on the differential pressure profiles than viscous forces when fluid pressure, temperature and injection rate increase but the capillary forces have more impact when salinity increase.

The differential pressure profile can be characterized by: (a) no change in its shape with increasing pressure, (b) oscillations and an increase in the differential pressure profile at the end of the displacements with increasing temperature, (c) a spike in the differential pressure profile after the initial increase with increasing injection rate, and (d) only a slight change, mainly during the first period, with increasing salinity. The profile of the differential pressure profile can be used an indicator for the period of only water production (quasi-stable pressure reduction), mixed production (high-pressure production), and only CO₂ production (gradual pressure reduction). The appearance of oscillations might reflect the increase in capillary forces impact with increasing temperature; these oscillations can result
in an increase in the residual CO₂ saturation due to the accompanied occurrence of a re-imbibition process of the wetting phase.

The order of the differential pressure with increasing salinity was as follows: LCO₂-1% CaCl₂ > LCO₂-5% NaCl > LCO₂-1% NaCl > LCO₂-DIW. The increase in differential pressure with fluid pressure and injection rate and the reduction in it with increasing temperature indicate that viscous forces are more influential than capillary forces at a high injection flowrate. Increasing the differential pressure with the slight increase in salinity indicates that capillary forces dominate the multi-phase flow as no practical change in viscous forces are expected with this slight addition of salts to water. Since capillary forces have a direct impact on the entry pressure and capillary number, then as capillary forces reduce with increasing pressure, temperature, and injection rate, it is expected to result in an easy upward migration of CO₂, thereby affecting the storage capacity and integrity of the sequestered CO₂ as well as result in increasing displacement efficiency. However, as capillary forces increase with salinity, it is anticipated to result in a more secure storage of CO₂ and reducing the displacement efficiency. In summary, in order to decide the extent of change in storage capacity and security of a CO₂ project with the change in the above investigated parameters, qualitative studies are required to determine the size of change in both capillary forces and buoyancy forces.

The cumulative produced volumes: (a) decreased slightly with increasing fluid pressure and salinity, and (b) showed no noticeable change with increasing temperature and injection rate. The amounts of injected CO₂ volumes to achieve the highest water recovery (WR) were reduced as injection rate increased.

The WR was in range of 61.6-69.38% while relative permeability was in range of 0.112-0.203. The results reveal that increasing fluid pressure and injection rate caused an increase in the WR. The increase in the experimental temperature and water salinity caused a decrease in the WR. The increase in fluid pressure, experimental temperature, injection rate and salinity led to a reduction in the endpoint CO₂ relative permeability. As the CO₂ injection rate increased, the percentage of the reduction in the endpoint CO₂ relative permeability decreased with increasing fluid pressure.

Acknowledgements: The authors wish to thank the Higher Committee for Education Development in Iraq and the Ministry of Oil in Iraq for their sponsorship of the first author PhD study.

5 References

1. Kazemifar F, Blois G, Kyritis DC, Christensen KT. Quantifying the flow dynamics of supercritical CO₂–water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV. Advances in Water Resources. 2015.


32. Bachu S, Bennion DB. Interfacial tension between CO2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125)° C, and water salinity from (0 to 334 000) mg· L− 1. Journal of Chemical & Engineering Data. 2008;54(3):765-75.


36. Cutts RE. Experimental investigation of the influence of surface energy and pore fluid characteristics on the behavior of partially saturated coarse-grained soils. 2009.


44. Dang CT, Nghiem LX, Chen Z, Nguyen QP, Nguyen NT, editors. State-of-the art low salinity waterflooding for enhanced oil recovery. SPE Asia Pacific Oil and Gas Conference and Exhibition; 2013: Society of Petroleum Engineers.

45. Al-Yaseri AZ, Lebedev M, Barifcani A, Iglauser S. Receding and advancing (CO2+ brine+ quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity. The Journal of Chemical Thermodynamics. 2015.


