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Automated detection of age-related macular degeneration in color fundus photography: A 

systematic review 

 

Abstract 

The rising prevalence of age-related eye diseases, particularly age-related macular degeneration 

(AMD), places an ever-increasing burden on healthcare providers. As new treatments emerge, it is 

necessary to develop methods for reliably assessing patients’ disease status and stratifying risk of 

progression. The presence of drusen in the retina represents a key early feature where size, number 

and morphology are thought to correlate significantly with risk of progression to sight-threatening 

AMD. Manual labelling of drusen on color fundus photographs by a human is labor intensive and is 

where automatic computerised detection would appreciably aid patient care. We review and 

evaluate current artificial intelligence methods and developments for the automated detection of 

drusen in the context of AMD.  

Keywords 

Age-related macular degeneration, age-related disorders, artificial intelligence, machine learning, 

deep learning  
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1. Introduction 

 

With longer life expectancy, age-related disorders are increasing the burden placed on healthcare 

providers. In particular, age-related macular degeneration (AMD) is one of the major causes of vision 

loss in the elderly [28].  AMD currently affects 6 million people in the UK alone [28] and was 

estimated to have cost the country’s economy £155million in 2011 [49]. By 2040, the number of 

people affected globally by the disease is projected to be 288 million [58] 

The earliest phase of AMD is typically observed as presence of (asymptomatic) macular drusen, 

often incidentally found on examination or fundus imaging. Drusen are small deposits of 

predominantly lipid, acellular debris that accumulate between the retinal pigment epithelium (RPE) 

and Bruch’s membrane. Whilst the presence of small drusen is not itself diagnostic of AMD, as 

drusen frequently occur in normal aging, increasing number and size of drusen raise the risk of 

progression to visually symptomatic AMD. Later signs of AMD, such as pigmentary changes of the 

RPE that occur prior to the development of geographic atrophy (GA-so-called dry AMD) and 

exudative abnormalities (so-called wet AMD) enable more established gradings [5] [3] [33]  and 

classification of AMD [2] [28] [32] [34].  

Drusen appear as clusters of white or yellow spots in color fundus photographs and broadly exist as 

two main types, hard and soft. Hard drusen are round, small, discrete lesions with defined edges 

whereas soft drusen are less defined and often confluent. Drusen are rarely homogenous in their 

composition. Because of their yellow color and brightness on color fundus photographs, drusen are 

distinguishable by the human eye, but computer algorithms to automatically detect them need to be 

robust to the presence of other similarly bright appearing pathology such as hard exudates. 

Indistinct borders for drusen appearing in color fundus photographs are challenging for conventional 

image processing techniques such as edge detection and morphological filtering, and have been 
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discussed in detail in an earlier review [15]. To the best of our knowledge, no reviews cover recent 

developments, involving the application of artificial intelligence (AI) and deep learning techniques.  

AI is a long-standing field of computer science that aims to simulate human intelligence by 

perceiving its environment and taking appropriate action to achieve a set of goals, which is often one 

of decision making. Machine learning (ML) is an approach to AI partially inspired by how humans 

learn [37]. Learning is achieved through examples. If a child is presented with a new object, they will 

use features such as color, shape and texture so that when they observe the object again they will 

use what they have learned to identify or categorise it as something they have previously seen. 

Similarly, many ML classification algorithms use features from training examples to discover or 

confirm patterns that categorise subsets. When new, unseen data are presented the algorithm can 

classify which category they belong to (Figure 1). These features can be learned by either training 

from previous examples (i.e. supervised learning) or discovered by the algorithm (i.e. unsupervised 

learning).  

[FIGURE 1] 

 Figure 1. Illustration of standard supervised machine Learning pipeline. 1) Image pre-processing is 

applied to reduce noise and enhance image features. 2) Features are extracted such as measures of 

entropy, energy, color and texture of image intensities, and spatial or geometric properties. 3) 

Features are grouped into as numerical vectors (forming the image representation) and often 

undergo a selection process to decide which features best represent the image. 4) Training phase 

builds a model that tries to separate the data into the target, distinct classes. 5) The classifier – the 

mathematical function – that implements classification and defines the classes. 6) Testing is 

performed by classifying unseen data belonging to know classes.  

 

Deep learning (DL) is a subset of ML that is gaining prominence for medical imaging [38][45] and 

ophthalmology [14] due to increasing reports of high performance for clinical classification and 

decision making. DL is based on neural networks, a class of algorithms inspired by the human brain. 

In a neural network, the neurons are organised in layers and implement simple operations on the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

input data or from the output of previous layers. In a deep neural network, the number of layers is 

much higher than conventional neural networks (indicatively 10 or more as opposed to 2-3). The 

connections between the layers are assigned values, called weights, representing connection 

strengths. Learning the weights is the objective of the training process. Training and testing a deep 

neural network requires large amounts of labelled data (i.e. known classes). 

In this review, we report and evaluate current AI strategies and developments for the automated 

detection of drusen in the context of AMD (Figure 2). Though some recent work has begun to 

explore the potential for automated drusen detection by optical coherence tomography (OCT), with 

varied methods and mixed results [10] [27] [50] [56], the focus of this review is on color fundus 

imaging of the retina. 

[FIGURE 2] 

Figure 2. Overview of ML methods in discussion and where they are applied at each stage. Deep 

Convolutional Neural Networks is a DL technique. 

 

2. Methods 

2.1 Inclusion and exclusion criteria 

 

We aimed to include all published studies applying AI to automatic drusen detection in color fundus 

photographs. Inclusion criteria were (1) original study; (2) written in English; (3) validation by 

performance against at least one manual grader. The following studies were excluded: (1) reviews; 

(2) nonhuman research; (3) non-English language studies; (4) studies other than color fundus 

photographs (e.g. OCT); (5) studies that did not feature robust validation, as outlined below. 

Validation is the process of showing quantitatively that an algorithm performs correctly, through 

comparison of its output to a reference standard, for example, manual grading of images by experts 
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[54]. Any articles that did not include validation were excluded. The performance of an algorithm is 

typically measured using criteria such as accuracy, sensitivity, specificity and area under ROC 

(receiver operating characteristic) [24]. Another important aspect is the size of the dataset: the 

image set an algorithm is tested must be sufficiently large to be representative of the target 

population, and to be suitable for the number of neural network parameters to be trained. AI 

methods are not immune to small sample size effects that can contaminate the evaluation of a 

proposed system. For instance, color fundus photographs can differ in appearance between patients 

while disease manifestations are also of a varying nature. Considering this, articles validated on less 

than 50 images were excluded.  

 

2.2 Data Extraction 

 

For all identified studies, an independent reviewer (EP) screened the titles and abstracts. Irrelevant 

and duplicate articles were removed, and the remaining articles were assessed for agreement with 

the inclusion and exclusion criteria by full-text review. Data extracted from studies at this stage 

included title, year of publication, authors, study aim, study type, number of images (training and 

test), diagnostic criteria, participant selection criteria, method of fundus imaging, algorithm, 

performance metric(s) results, and conclusions. The most recent papers were hand searched 

following the same strategy, filtered for the current year (i.e. 2018), and subjected to the same 

inclusion criteria. A similar strategy was followed for articles cited within the bibliographies of the 

results. 
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3. Results 

 

2236 articles were identified in the initial search performed in 2017. Following filtering for AMD, 

1318 articles were excluded, such as those featuring diabetic retinopathy (n = 42) and glaucoma (n = 

42). From the remaining 918 articles, 834 were excluded as not using color fundus photographs (n = 

18), using no imaging (n = 770) or being reviews (n = 34). 73 articles did not meet the selection 

criteria such as articles not reporting performance (n = 9) or featuring software optimisation (n = 3), 

hardware reports (n = 2) or fewer than 50 images for validation (n = 12). At the end, 8 papers met all 

inclusion criteria. One further article was included after searching bibliographies and 5 papers were 

found by hand search for this current year (2018). The resulting 14 articles were considered in this 

review. They all applied ML and DL techniques to drusen detection color fundus photographs.  

 

3.1 Study designs and populations 

 

The 14 studies involve 4 publicly available datasets (i.e. ARIA [62], STARE[26], AREDS [2], 

RetinaGallery [12]), 3 private datasets, 1 sourced from a telemedicine platform and a cohort from an 

independent study [6]. Some studies contained overlapping report analyses on the same datasets, 

but use different methods. 4 articles aimed to achieve disease or no disease classification. Six articles 

aimed to classify AMD severities according to AREDS [2] or in-house grading criteria (Cologne Image 

Reading Centre and Laboratory (CIRCLE)). Two articles aimed to classify Dry AMD vs. Normal images 

and 1 Wet AMD vs. Dry AMD or Normal (Table 1). 
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3.2 Pre-processing and feature extraction 

 

In automatic detection, pre-processing is a commonly employed step to enhance an image to better 

facilitate the extraction of features relating to objects of interest. The human eye distinguishes 

“features” of disease in an image (such as GA and drusen), but AI algorithms need to extract 

“features” measured from the pixels pertaining to an object (i.e. drusen). In addition, a color fundus 

photographs typically contains a black border that needs either to be avoided or eliminated because 

these pixels will not be of any relevance. Retinal landmarks (e.g. the optical nerve boundary, blood 

vessels and macula) may obstruct features of small objects, so their removal may further improve 

automatic detection by reducing sources of false targets for drusen detection. A color fundus 

photographs might also contain artefacts (e.g. from dust particles on the lens) and display areas of 

uneven illumination that pre-processing can eliminate. The type of pre-processing used in the 

studies included depended upon the particular features used (Table 1). 

Pixel values in imaging typically range from 0 (black) to 255 (white) per color channel (e.g. red, green, 

blue (RGB), or hue, saturation, value (HSV)). In color fundus photographs, drusen appear as small 

regions of bright pixels. Properties calculated from the image histogram (i.e. a plot of the number of 

pixels for each intensity value in the range and for each color channel) such as energy, entropy and 

intensity have all been used as features for classifying whether regions in an image contain drusen or 

not. Contrast Limited Adaptive Histogram Equalisation (CLAHE) [48] has been used [25] [42] [43] [61] 

[1] to improve contrast in the image. This well-established technique involves flattening the image 

histogram of relative color intensities to make the whole image as similar as possible, ultimately 

enhancing histogram-based features. Two studies utilised a median filter, which is applied after 

removing the black border to smooth high-frequency noise, but at the cost of reducing contrast [31] 

[47] . Grivensen and coworkers [20] manually assigned individual pixels a probability that it is part of 

a drusen and automatically extracted their boundaries using intensity and contrast characteristics to 
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then be used as features for training. Burlina and coworkers [7] obtained training regions of 

background (no pathology) and testing masks for abnormal areas (candidate drusen) using standard 

image processing techniques such as median filtering, morphological dilation and thresholding. 

Garcia-Floriano and coworkers [18] also used mathematical morphology to highlight drusen areas 

and healthy macular regions. Subsequently, features called Hu moments, a well-recognised tool for 

object recognition in computer science, were then calculated from each pixel.  

Following the pre-processing stage, it is necessary to select which features best perform as 

descriptors of the object of interest (i.e. drusen) within a classification scheme. 

[TABLE 1] 

Table 1 Included articles using AI methods for automated detection of AMD. 

 

3.2 Feature selection 

Feature selection, reported in 6 articles, is used to select a group from the extracted features or 

create variables that achieves the best classification performance. This process removes potentially 

irrelevant or confusing features and avoids model overfitting. In other words, it identifies salient 

features that can be used to distinguish disease images from healthy ones most effectively. Feature 

selection returns a numerical feature vector, which is the representation then used to train a 

classification algorithm (see section 3.3). 

Zheng and coworkers [62] used L2-Loss of function, an established FS technique. Their aim was to 

identify and filter the pixel intensity features that were produced by noise. The resulting list was 

then ranked and the top features selected to be used for disease/no disease classification. 

Garcia-Floriano and coworkers [18] used a filter from a feature selection software package [21]. The 

filter uses correlation-based feature selection that evaluates the predictive capability of features and 

chooses subsets highly correlated to each class [22].  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

To assess features that determine whether an image was Dry or No AMD, Mookiah and coworkers 

[42] [43] used parametric and non-parametric tests (e.g. t-test and Wilcoxon ranking) to determine 

the top features achieving the best one-versus-all classification for each class. With each ranked 

feature incrementally nested into the classification algorithm, they reported in [43] a texture feature 

(from a Gabor filter) as the highest ranking. In their second paper [42], the best feature was derived 

using the top energy features (entropy measures and their coefficients and averages) to compute an 

index for each image. The authors proposed the index value as a method for devising a threshold so 

that in a virtual clinic the threshold would be used to determine Dry AMD from No AMD. 

 

In [1], feature selection was achieved combining a shortest-path algorithm, inspired by ant 

behaviour (ant colony optimisation), with a genetic optimisation algorithm, inspired by mutation and 

crossover operators in genetics (genetic algorithm). The overall aim was to classify Dry AMD and Wet 

AMD from No AMD. The highest ranking energy and entropy features were selected according to 

ANOVA to obtain a p-value. The top 10 features (1 energy, 3 entropy, 6 other non-linear) (Table 1) 

most statistically significant (p < 0.05) features were used for classification. 

 

3.3 Classification 

 

Classification uses the features selected to identify the model that best separates the data into the 

desired classes. A collection of images is typically separated into training and testing sets, where the 

former is used to develop the model and the latter is used to test it. In the context of AMD, this 

would test the model’s ability to classify disease/no disease or dry/wet AMD. To evaluate the 

accuracy of the classifier, cross-validation is often performed [52]. The algorithm performance is 

commonly reported in terms of statistics of measures comparing the classifiers decisions against 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 

 

those of one or more human experts (Table 2-4). Next, we describe the variety of classifications used 

in the studies included in this review. 

 

3.3.1 Disease/No disease  

 

Hijazi and coworkers [25], proposed case-based reasoning (CBR) system to develop an automated 

screening tool to classify 144 color fundus photographs into AMD or normal categories. CBR is a 

problem-solving technique founded on the observation of how humans use previous examples or 

information to solve new, but similar, problems. If a CBR system is given a new case, it will use the 

previous most similar cases in its case base to solve the problem. Each image histogram was 

conceptualized to a set of curves, called a time series, and used to generate a 2 step CBR 

classification. The first case consisted of enhanced green channel images with the blood vessel pixels 

replaced with null values. The second case contained the same but with the further process of 

removing the optic disc. Histograms and their time series of a collection of unseen graded images 

were passed to the first case for comparison to the training images. An algorithm called dynamic 

time warping was used to measure the similarity between the histograms and time series of the 

testing and training images. If the unseen image was below a certain similarity measure it was then 

passed to the second case for reassessment. The output is whether the input image is like either the 

learned time series of an AMD image or a healthy image in the case base. A specificity of 82% was 

reported for the effectiveness of the classifier in identifying AMD images, 65% specificity for the 

classifier identifying normal images and 75% accuracy in classifying images as AMD or normal (Table 

2). This two-pass approach offered a system whereby isolation and segmentation of drusen was not 

required; however, removal of vessels and the optic disc was needed to improve the accuracy. 

 

Constant false alarm rate (CFAR) detection is an adaptive algorithm that has been used to identify 

normal or intermediate AMD in color fundus photographs. CFAR is used in radar systems where true 
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signal and noise signals need to be distinguished to determine origin. This returns a probability that 

the signal is not a false alarm. Burlina and coworkers [7] adopted such a system on 66 color fundus 

photographs to separate AMD from healthy images. Training and testing data were constructed 

from the masks obtained by pre-processing (normal retina tissue mask and edge/artefact mask). The 

CFAR detector was trained on the RGB and HSV color spaces of each mask, creating the signal which 

provides a feature for support-vector machine (SVM) classification. SVM classification is a form of 

ML based on regression where data is projected to a much higher dimensional space to promote 

linear separability of the target classes. The ability of the classifier to determine whether the image 

contains interesting (i.e. potentially disease) changes was reported as having a 95% specificity, 95% 

sensitivity with a positive predictive value (PPV) of 97% and a negative predictive value of 92% (NPV) 

(Table 2). 

The same authors in [7] later reported image-mining techniques for disease/No-disease classification 

[61]. In this method, images were represented as quad trees, a form of heirarchical tree data 

representation, separated by their homogeny that is defined by similar pixel values. In order to 

extract features of the training image quad trees, a mining algorithm was used to take features from 

the tree such as the pixel color similarity between parent and child nodes. This returned a set of 

features that were reduced using an SVM ranking method [16]. To then classify the testing images, 

machine learning algorithms (Naïve Bayes and SVM) were used. Best detection was reported with 

SVM. This was then applied to new data to best predict which group the data should lie in. The 

authors reported 100% specificity, 99.4% sensitivity and 99.6% accuracy. This system required blood 

vessel removal to improve its accuracy (Table 2).  

Garcia-Floriano and coworkers [18] used an SVM to classify 70 images into disease/no-disease 

categories. The proposed method was first evaluated on the entire dataset without and without 

feature selection. They obtained an accuracy of 83.58% for both evaluations. Images where the 
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proposed method failed was due to sub-optimal image quality. Removal of poor quality images and 

evaluated with feature selection, improved accuracy to 92.16%. 

[TABLE 2] 

Table 2 Included articles using ML for classification of disease/no-disease. Performances reported as 

accuracy (ACC), sensitivity (SEN), specificity (SPEC) 

 

3.3.2 AMD severity 

Phan and coworkers [47] attempted to classify AMD severity according to their AREDS categories [5] 

using visual words, also known as “bag of words”. The most salient features in the image were 

detected and their frequencies counted and binned in to a histogram. This forms a so-called 

vocabulary that can be used for automated detection of the same words in an unseen image. The 

authors used SURF (Speeded Up Robust Features) to build the vocabulary from different color 

spaces (RGB and a color space describing lightness, green-red and blue-yellow called L*a*b) of 279 

images, including poor quality images, to build the vocabulary. SVM and Random Forest classifiers 

were tested with and without feature selection steps. They report the best performance for AMD 

screening with SVM classifier (AUC 87.7%). For grading the classes of AMD they report {1} vs {2} vs {3} 

vs {4} accuracy of 62.7%. Accuracy of 75.6% and 72.4% were obtained for {1&2} vs {3} vs {4} and for 

{1} vs {2&3} vs {4} respectively (Table 3). 

Kankanaballi and coworkers [31] also used SURF along with a faster version called Scale-Invariant 

Feature Transform (SIFT) to extract local features in 2772 AREDS images. These features were taken 

from the L*a*b color space to generate a vocabulary for a visual words algorithm. They evaluated 

the performance of the algorithm to correctly classify images into AREDS categories [5] (1) class 

{1&2} vs {3 & 4}: (2) {1 vs 2} vs {3}: (3) {1} vs {3}: (4): {1} vs {3 & 4} and experimented with 3 dataset 

designs. A manually selected data set of good quality images (denoted MS). A set of automatically 

selected [44] good quality images, one where each class of AREDS category was as large as possible 
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(denoted MIPC) and another where AREDS categories was kept equal (denoted EIPC). They reported 

the highest accuracy for category 1 from MS images of 98.9% accuracy. For images automatically 

selected, the highest accuracies were 96.1% (category 2 EIPC), 97.1% (category test 3 EIPC) and 97.1% 

(category 4 MIPC) (Table 3). 
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Grinsven and coworkers [20] segmented drusen so that their location, area and size could be 

quantified. The overall aim was to distinguish images of low-risk AMD from high-risk AMD. Two 

observers manually segmented 52 images to provide a reference set for evaluation of automated 

drusen quantification (set A) and graded 355 images to evaluate automated AMD severity 

classification (set B). Candidate drusen extraction was achieved by convolving the green channel of 

the color fundus photographs with Gaussian filters and using their derivatives to train a classifier. 

The classifier used regression to determine the class of the data point and the pixels filter response, 

called K-nearest neighbours. The line of regression can be used to assign a probability value that 

from the filter response of a previously unseen pixel that that it belongs to a lesion. Therefore, 

neighboring pixels with high probabilities can be grouped into candidate drusen. At this stage, the 

authors segmented the optic nerve and blood vessels so that any candidate drusen overlapping 

these anatomical landmarks could be excluded. This produced a probability map of the image where 

a search-based optimisation method (i.e. dynamic programming) was then used to solve the 

candidate borders. Subsequently, total drusen area and maximum drusen diameter were quantified 

and compared to measurements derived from the observers’ manual annotations using intraclass 

correlation coefficients (ICC). Linear discriminant analysis was used to separate candidate drusen 

from true drusen by extracting over 100 features in different color spaces (Luv, HSI), intensity (RGB 

contrasts), contextual (Average, SD of pixel probability inside/outside border) and shape (area, 

perimeter) information. Each image probability map was then binned according to candidate drusen 

size and used to train a Random Forest classifier. This builds a decision tree whereby the output is 

whether the image is from a low- or high-risk patient. The authors validated algorithm according to 

measurement agreeability between algorithm and two graders using ICC. They report ICC’s of drusen 

area and diameter measurements of 0.69 and highest AUC of 0.954 of correct AMD image 

classification (Table 3).  
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[TABLE 3] 

Table 3. Included articles using ML for classification of AMD severity. Equal Number of Images (EIPC), 

Maximum Number of Images per Class (MIPC), Manually Selected images (MS). Interclass correlation 

coefficient (ICC) set at 95% Confidence Interval. Kappa scores measure inter rater agreement. 

Performances reported as area under curve (AUC), sensitivity (SEN), specificity (SPEC) and accuracy 

(ACC). AMD categories defined using AREDS categories [5] or by in-house grading criteria (Cologne 

Image Reading Centre and Laboratory (CIRCLE)). 

 

 

3.3.3 Wet/Dry/No-disease 

 

Using entropy measures as features from wavelet coefficients and from green channel CLACHE 

enhanced images, detection of Dry AMD using SVM, Naïve Bayes, Probabilistic Neural Networks, k-

nearest neighbours and decision trees was proposed by Mookiah and coworkers [42] [43]. This 

system was trained and tested separately on three datasets (ARIA, STARE and a private dataset). The 

best performance was reported for a SVM classifier where Gabor, local pixel intensity changes and 

entropy features ranked best. The highest performances were observed in ARIA and STARE with an 

accuracy of correctly classifying between Dry AMD and Normal of 95.7% and 95% respectively [43]. 

Statistical moments, energy, entropy and Gini index features extracted from discrete wavelet 

transform (a well-known image denoising technique) also presented the best accuracy for SVM 

(93.70%) [41]. This system did not require prior segmentation of retinal landmarks and drusen and 

the use of multiple classifiers provided a degree of discrimination ability of the extracted features 

(Table 4). 

SVM was also reported to be the best performing classifier for Pyramid Histogram of Gradients 

(PHOG) features extracted by particle swarm optimisation (PSO) algorithm, used to detect Wet AMD 

and Dry AMD [1]. In a private dataset, 945 images were used for training and testing where the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 

 

algorithm correctly identified the Wet from Dry from Normal images with 85.12% accuracy. The 

number of Wet AMD images in the data set was imbalanced (21 Dry to 1 Wet). To compensate for 

this, synthetic samples was generated by oversampling of the minority class. This produced synthetic 

features to simulate pathology and balance the dataset. This system did not require any retinal 

landmark or drusen segmentation steps (Table 4). 

[TABLE 4] 

Table 4. Included articles using ML for classification of wet/dry/no-disease. Performances reported 

as sensitivity (SEN), specificity (SPEC) and accuracy (ACC). 

 

3.4 Deep Learning 

 

DL is a rapidly growing field where conventional ML feature extraction, training and classifiers are 

replaced with multi-layer neural networks capable of learning latent patterns in the data [37]. Neural 

network architecture (i.e. the layers) are carefully designed and assembled for the task the network 

is to perform. Convolution, pooling and fully connected layers are the basic building blocks for the 

most well known class of neural networks, called convolutional neural networks (CNN). CNN’s are 

considered Deep Convolutional Neural Networks (DCNN) when their architecture typically contains 

10 or more convolutional layers. DCNN’s require large amounts of often labelled data to train, that 

may not be available, especially in a healthcare setting. Various methods exist to increase data set 

size in order to utilise state of the art DL techniques. 

Tan and coworkers [55] developed a 14-layer deep convolutional neural network to classify images 

as disease/no-disease and trained and tested on 1110 images (708 no disease, 402 disease). To 

increase the size of the data set, data augmentation was used. Images were flipped left, flipped 

down and flipped left and downwards to increase artificially the size of the dataset. This produced 

four instances of each image used to train and test the DCNN. They validated the DCNN using 10-fold 
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cross validation reporting an average fold accuracy, sensitivity and specificity of 95.45%, 96.43% and 

93.75% respectively.  

Pre-trained networks also offer a solution when there is little data, whereby networks already 

trained to solve a similar task can be re-used (transfer learning). ImageNet is a large general (non-

medical) benchmark dataset popularly used to develop DCNN’s. Early layers of a DCNN learn lower 

level features such as edges and colors. The following layers learn higher level features and more 

image domain specific features to classify the image. Transfer learning is based on the idea that 

these lower level features may generalize to images different from the training images. For instance, 

Overfeat is a pre-trained network to detect and localise everyday objects within a non-medical 

image [51]. Burlina and coworkers [8] assessed the efficacy of the pre-trained DCNN in classification 

of AMD using OverFeat. With the input of 5600 color fundus photographs from NIH AREDS into the 

OverFeat network to classify against pairs of AREDS categories [5] {1 & 2} vs {3 &4}; {1 & 2} vs {3} ; {1} 

and {1} vs {3 & 4} , they reported a preliminary performance of 92% to 95% accuracy. The same 

experiment was performed in their later work [9] to assess the use of these features to fine tune a 

SVM classifier and compared the algorithms AREDS grades to a human grader. An input of 5,664 

images into the pre-trained Overfeat network was used to obtain a feature vector. These features 

were then passed to an SVM classifier to classify AMD images as before. They reported a similar 

performance between class 1 and class 4 and grader with less agreeability between class 2 and class 

3, algorithm versus grader.  

Ensemble learning is a method where multiple models are combined into one predictive model. 

Grassmann and coworkers [19] trained six DCNN’s from the ImageNet competition independently, 

[11] [23] [36] [46] [53] [54] to predict AMD severity. Classes were defined as AREDS category (9 

classes), late AMD stages (3 classes) and ungradable image (1 class). The results from each DCNN 

were then used to train a random forest classifier to build a model ensemble. They trained and 

tested each DCNN and the ensemble on 120,656 color fundus photographs (86,770 training and 
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21,867 testing). Individual DCNN’s achieved accuracies between 57.7% and 61.7%. By combining the 

DCNN’s into an ensemble the overall accuracy was increased to 92.1% for predicting each AMD class. 

Grassmann and coworkers [18] also used an independent dataset of 5555 [6] to evaluate their 

algorithm and achieved an accuracy of 34%. Misclassifications were color fundus photographs from 

healthy individuals incorrectly classified as neovascular AMD. This was due to younger eyes in the 

KORA dataset (< 40 years old) demonstrating dominant macular reflexes, which was not observed in 

the training data (> 55 years old). By restricting the analysis to fundus images of eyes 55 years and 

older they increased the performance to 50% accuracy for predicting AMD severity according to 

their defined AMD classes. When the algorithm was used to classify early or late AMD, accuracy was 

improved to 84.2% and correctly classified 94.3% of healthy fundus images.  

 

4. Discussion 

 

Our search highlighted ML as the predominant technique for AMD detection and classification, with 

most recent papers reporting DL techniques. The primary aim of drusen-related automated image 

analysis is to support decision-making in the clinic. Rather than detecting individual drusen, image 

level classification was more common with the aim of computerizing AMD screening and grading 

systems. Only a single article reported discrete drusen measurement and quantification [20]. 

Manually outlining individual drusen to provide ground truth for algorithm training is very labor 

intensive and motivates the shortage of ML approaches to individual drusen segmentation. AREDS 

categories [5], Class 1 and Class 2 AMD are the most difficult to separate because grading relies on 

drusen counts and measurements that cannot be obtained automatically without the reference data. 

ML is particularly susceptible to this paradox because they are driven by examples that are assumed 

to be representative of the population. A newly obtained image may not be similar to any of the 

examples used to train the model and therefore it may fail to classify it. This effect of data variability 
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was also observed in [19] when the model was evaluated on an independent dataset containing 

colour fundus photographs with retinopathies not present in the training set and removal improved 

performance.  This raises questions as to how ML would generalise to the clinic. 

In terms of translating into the clinic, systems depending on segmentation of retinal landmarks [16] 

[20] [25] would need reliable and robust detection and segmentation algoithms. Algorithms would 

also need to be robust to image quality. Comparibly, Kankanballi and colleagues[31] and Phan and 

colleagues [47] both use a visual words algorithm, but Kankanballi includes poor quality images and 

achieve lower overall accuracies than Phan who use a larger data set. In Phan [47], the algorithm is 

tested on datasets with a varying balance of images labelled in the ARED’s categories, where highest 

accuracies are achieved for the more balanced datasets or category contains clear and expected 

differences between AMD severities (class 1 vs class {3 & 4}). This exemplifies how a classifier can be 

fine-tuned and stabilised by dataset balance and image quality alone. Additionally Burlina and 

colleagues [7],use the only algorithm that explicitly states validation on African and Asian eyes, 

where due to high melanin content, images are darker. This highlights that an algorithm for use in 

the clinic would also need to be robust to ethnicity. 

Interestingly, the single article proposing a Dry/Wet classifier yielded good results [1] even with 

synthetic data. Wet AMD occurs when neovascularisation occurs, with subsequent intra-retinal fluid 

causing central vison loss. In the clinic, it is now standard practice to use cross-sectional OCT for 

insight into intra-retinal fluid levels. Presentation of Wet AMD involves a wide spectrum of changes 

in the retina from normal looking retina to distorted bloody retina. This is a difficult classifier to train 

and may indicate why there is only a single report of an algorithm using ML to detect Dry from Wet 

AMD.  As DL is becoming state-of-the-art for difficult classification problems, future studies using DL 

for classifying Wet AMD could yield better results. This would be valuable in the clinic, as Wet AMD 

requires urgent care.  
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There is also a clear importance to assess algorithm performance against the expert grader if such 

systems are to be deployed in a clinical setting. The methods were evaluated on different datasets, 

which makes levels of performance difficult to compare between algorithms including, for example, 

variants in pre-processing, feature selection and classification. Methods of pre-processing employed 

largely depend on the features that need to be enhanced, where the green channel is the most 

commonly reported input for drusen detection. Texture and color features are predominantly used 

for AMD grading which is reasonable considering that colour distributions and texture in a diseased 

image may differ dramatically from that in a normal eye.  

ML requires feature design and selection that increase in complexity as the data increases in 

variability. DL networks exploit underlying patterns that perform well when data complexity and 

variation increases. Given the variable nature of the human retina, such systems appear more 

promising for adoption in the clinic. As drusen edges are hard to define, DL may be able to learn 

subtle patterns within the data to aide in quantifying areas of drusen for detecting disease 

progression. DL algorithms are producing state-of-the-art results but come at a computational cost. 

Large amounts of data are required to train the dataset which still requires (some) validation from 

ground truth. Further development of such algorithms represents a growing and expanding 

interdisciplinary field for automatic disease detection. 

The results of our search identified a number of articles reporting algorithms for detection of DR and 

glaucoma where drusen can also be present. Fundus imaging has also been utilised to derive 

biomarkers for systemic conditions, such as hypertension and diabetes [40]. Recently, there are an 

increased number of reports linking AMD to Alzheimer disease (AD). AD is diagnosed using medical 

history, psychiatric examination, brain imaging and biomarkers in cerebrospinal fluid (CSF). Definitive 

classification requires neuropathological changes as seen on post-mortem examination. 

Characteristic retinal changes have previously been identified in AD, such as a sparser retinal 

vascular network (inferring altered cerebral vasculature) [41] and thinning of the retinal nerve fibre 
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layer [56] a marker of axonal loss). A key component of AD related deposits in the brain, amyloid β 

(Aβ), is also found in drusen. Aβ is an aggregate-prone peptide family that aggressively targets 

neurons [4] and there are an increasing number of reports of amyloid plaques in the retina in AD 

patients [29] [35] [39] [59]. As the retina is anatomically, embryologically and physiologically linked 

to the central nervous system, it is perhaps not surprising that these depositions may have 

implications to neurodegenerative disease of the brain. Indeed, the progression of drusen formation 

in the peripheral retina has been found to be more prevalent in patients with AD in comparison to 

age-matched control [13]. These findings were in a small cohort but suggest a promising biomarker 

for disease-related plaque formation in the brain. 

When AMD progresses asymmetrically, patients risk remaining asymptomatic due to maintaining 

good visual acuity in their healthy eye. The resulting delay in presentation and treatment impacts 

visual prognosis. 

For automated drusen assessment to be applied in the clinic it must go beyond cross-sectional 

phenotyping and instead relate to real patient visual outcomes. Longitudinal studies will be required 

to determine if automated image grading, based on drusen detection, can accurately predict disease 

progression. 

 Future algorithms involving drusen detection should aim to provide useful quantification to aid 

screening for AMD. A screening programme should stratify patients according to optimal follow up 

pathway. In order for automated drusen detection to contribute to the cost-effectiveness of a 

screening programme for AMD, it must separate individuals with drusen associated with normal 

aging from patients whose drusen load progresses as well as stratifying patients with mild AMD into 

those at low risk and at high risk of progression to severe AMD. This would enable the 

ophthalmologist to select relevant patients for regular follow up, thus improving the efficiency of 

patient care.  

Method of Literature Search 
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Published studies were identified through systematic searches of EMBASE, PubMed, Web of 

Knowledge, ScienceDirect, ACM Digital Library and IEEE Xplore. The search terms in the first instance 

included “drusen” and in combination with “detection” or “classification” or “identification” or 

“segmentation” or “quantification” or “measurement” or “algorithm”. Further filtering was 

conducted on the titles and abstracts based on whether they contain “age-related macular 

degeneration” or “AMD”. 
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Reference Dataset Fundus Camera 

(resolution) 

Pre-processing  Feature Output 

Hijazi et al 2010 

[25]  

144 (ARIA) 

 

Not reported CLAHE 

Retinal vessels segmented by thresholding and 

OD segmented using intensity peaks of image 

(identified by  sliding window) 

RGB and HSI histogram of each image conceptualised to set of 

curves (time series) 

Disease/No Disease 

Burlina et al 2011 

[7] 

66 (private) 

 

Zeiss FF4 40° FOV (pupils 

dilated) 

 

Images resized to 1000 x 

1000 

Pyramid decomposition of green channel for 

regions of high gradient magnitude to create 

logical masks for training and testing. Areas of 

high gradient magnitude indicate artefacts and 

vessels where low gradient magnitude indicate 

normal retinal tissue 

Intensity, colour and gradient features of background (normal 

retina) and candidate abnormal areas  

Disease/No Disease 

Zheng et al 2012 

[61] 

101(ARIA) 

97(STARE) 
TOPCON  TRV-50 fundus 

camera 35 ° field of view 

(700 x 605) 

 

Mask of whole image to capture circular fundus 

ROI. Colour normalisation and uneven 

illumination is applied. CLAHE to enhance 

contrast. Blood vessels identified using wavelet 

features. 

Image represented as quadtree, separated by their homogeny, 

defined by similar pixel values. Image mining algorithm returns 

features 

Disease/No Disease 

Kankanaballi et al 

2013 [31] 

2772(NIH AREDS) 

 

Not reported Green channel smoothed by large median filter. 

Median filtered image subtracted from original 

green channel and the result multiplied to 

increase contrast 

 

SIFT/SURF features of L*a*b colour channel AMD severity 

Grivinsen et al 

2013 [20] 

407(EUGENDA) 

 

TOPCON TRC 501X 50° field 

of view 

Canon CR-DGi (non-

mydriatic) 45° field of view 

 

Drusen manually outlined Each pixel in image assigned probability that it belongs to drusen 

candidate. Boundary of the candidate extracted using intensity and 

contrast characteristics 

AMD severity 

Mookiah et al 

2014 [43] 

161 (ARIA) 

83 (STARE) 

540 (KMC) 

 

Carl Zeiss Meditec fundus 

camera 50 ° field of view 

(748 x 576) 

TOPCON  TRV-50 fundus 

camera 35 ° field of view 

(700 x 605) 

TOPCON non-mydriatic 

retinal camera (TRC-

NW200) (480 x 364) 

CLAHE Entropy features – Shannon, Kapur, Renyi, Yager 

Higher Order Spectra (HOS) 

Wet/Dry/No Disease 

Mookiah et al 

2014 [42] 

540 (KMC) 

 

TOPCON non-mydriatic 

retinal camera (TRC-

NW200) (480 x 364) 

CLAHE 

 

Features for whole image obtained by discrete wavelet transform 

(DWT) decomposition. Linear features extracted from wavelet 

coefficients (mean, variance, skewness, kurtosis, Shannon entropy, 

Renyi entropy, Kapur entropy, relative energy, relative entropy, 

entropy, Gini index). 

Wet/Dry/No Disease 

Burlina et al 2016 

[8] 

5500 (NIH AREDS) Not reported Resizing and cropping images to conform to 

expected OverFeat input network 
SURF, SIFT, wavelet features AMD severity 

Phan et al [47] 279 (Telemedicine Zeiss, DRS, Topcon models Pre-processing from [31] Colour Histograms (RGB, L*a*b colour spaces) AMD severity 
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2016 

 

Platform) 45° FOV (1400, 2,200,3240 

pixels along diameter of 

image) 

 Texture - Local Binary Patterns (LBP), Histogram of Oriented 

Gradients (HOG), SURF  

Acharya et al 

2017 

 [1] 

945 (KMC) 

 

Zeiss FF450 plus mydriatic 

fundus camera (resized to 

480 x 360 from 2588 x 1958 

CLAHE Pyramid of histograms of Orientated Gradients (PHOG) to describe 

shape and pattern. Features from descriptor: 

 

Energy – uniformity of image 

 

Entropy features – approximate, fuzzy, Kolmogorov-Sinai, modified 

multiscale, Permutation, Renyi, Sample, Shannon, Tsallis and 

wavelet 

 

Nonliner features- fractal dimension (D), Hjorth (activity, 

complexity, mobility parameters), Kolmogorov complexity, largest 

Lyapunov exponent, Lempel Ziv complexity, relative qualitative 

analysis (parameters entropy, transitivity, trapping time, recurrence 

of the 1
st
 type and 2

nd
 type, longest vertical line ), Entropy, 

determinism, laminarity, maximal diagonal line length, averaged 

diagonal line length, recurrence rate, recurrence time of RQA 

parameters 

Wet/Dry/No Disease 

Burlina et al 2017 

[9] 

5664 (NIH AREDS) Not reported Resizing and cropping images to conform to 

expected OverFeat input network 
OverFeat (OF) universal features AMD severity 

Garcia-Floriano et 

al 2017 [18] 

397 (STARE) 

70 (RetinaGallery) 

 

Not reported OD located using [17]. Green channel. 

 

Hu moments were used to describe each object as a measurable 

quantity calculated from the shape of a set of points 

Disease/No Disease 

Tan et al 2018 

 [55] 

1110 (KMC) 

 

Zeiss FF450 plus mydriatic 

fundus camera (2588 x 

1958) 

Image rescaled to 180 x 180 to conform to 

network input dimensions 

Features learned through Neural Network Disease/No Disease 

Grassman et al 

2018 [19] 

120,656 (AREDS) 

5555 (KORA) 

Zeiss FF series fundus 

camera 

TOPCON TRC-NW5S 45° 

fundus camera 

Normalisation of colour balance and local 

illumination by Gaussian filtering. Images 

resized to 512 x 512 to conform to neural 

network input dimensions 

Features learned through Neural Network AMD severity 
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Reference Images with disease 

(dataset) 

Images with no disease 

(dataset) 

Classifier Reference 

Standard 

Performance 

Hijazi et al 

[25] 

86 (ARIA) 

 

56 (ARIA) Case Based Reasoning (CBR) Labels from ARIA 

project 

ACC = 75% 

SEN = 82.00% 

SPEC = 65.00% 

Burlina et al 

[7] 

39 (private) 

 

27 (private) 

 

Constant False Alarm Rate 

(CFAR) 

Graders from 

JHU Wilmer Eye 

Institute 

SEN = 95% 

SPEC = 96% 

PPV (positive 

predictive value)= 

97% 

NPV (negative 

predictive value) = 

92% 

Zheng et al 

[61] 

101 (ARIA) 

59 (STARE) 

 

60 (ARIA) 

38 (STARE) 

Naïve Bayes, SVM Labels from 

dataset 

SPEC = 100% 

SENS = 99.4% 

ACC = 99.6% 

Garcia-

Floriano et al 

[18] 

34 (STARE) 

33 (RetinaGallery) 

 

41 (STARE) 

37 (RetinaGallery) 

SVM Labels from 

STARE and 

RetinaGallery 

ACC = 92.1569% 

Precision = 0.904 

Recall = 0.922 

F-measure = 0.921 
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Reference Number of images in AMD severity category  Classifier Reference Standard AMD category Test Performance 

Kankanaballi et al [31] EIPC: 

• 626 (category 1) 

• 89 (category 2) 

• 715 (category 3) 

• 715 (category 4) 

 

MIPC: 

• 626 (category 1) 

• 89 (category 2) 

• 1107 (category 3) 

• 950(category 4) 

 

MS: 

• 180 (category 1) 

• 13 (category 2) 

• 114 (category 3) 

• 78 (category 4) 

Random Forest  Expert Grader (1)  {1 & 2} vs {3 & 4} 

 

 

 

 (2)  {1 & 2} vs {3} 

 

 

(3) {1} vs {3} 

 

 

(4) {1} vs {3 &4} 

EIPC: 95.4% (SPEC) 95.5% (SEN) 95.5% (ACC) 

MIPC: 91.6% (SPEC) 97.2% (SEN) 98.9% (ACC) 

MS: 98.4% (SPEC) 99.5% (SEN) 98.9% (ACC) 

 

EIPC: 96.1% (SPEC) 96.1% (SEN) 96.1% (ACC) 

MIPC: 95.7% (SPEC) 96.0% (SEN) 95.9% (ACC) 

 

EIPC: 98.6% (SPEC) 95.7% (SEN) 97.1% (ACC) 

MIPC: 96.3% (SPEC) 96.8% (SEN) 96.7% (ACC) 

 

EIPC: 96.0% (SPEC) 94.7% (SEN) 95.4% (ACC) 

MIPC: 95.4% (SPEC) 97.7% (SEN) 97.1% (ACC) 

Grivinsen et al [20] Set A: 

• 17 Observer 1 , 20 Observer 2 (No AMD) 

• 13 Observer 1 , 9 Observer 2 (Early AMD) 

• 22 Observer 1 , 23 Observer 2 (Intermediate AMD) 

 

Set B: 

• 216 Observer 1 , 218 Observer 2 (No AMD) 

• 64 Observer 1 , 64 Observer 2 (Early AMD) 

• 75 Observer 1 , 76 Observer 2 (Intermediate AMD) 

 

Average number of drusen:  

• 130.4 ± 178.1 (Observer 1), 198.5 ± 243.1 

(Observer 2) 

Average size of drusen (µm
2
): 

• 5,873 ± 10,027 (Observer 1), 5115 ± 8257 

(Observer 2) 

 

 

K-nearest Neighbour 

Linear discriminant 

classifier 

Random Forest 

2 Observers Drusen Area: 

Observer 1 vs Algorithm 

Observer 2 vs Algorithm 

Interobserver 

 

Drusen Diameter: 

Observer 1 vs Algorithm 

Observer 2 vs Algorithm 

Interobserver 

 

 

Risk Assessment: 

Observer 1 vs  Algorithm  

 

Observer 2 vs Algorithm 

 

0.91 (ICC) 

0.86 (ICC) 

0.87 (ICC) 

 

 

0.66 (ICC) 

0.69 (ICC) 

0.79 (ICC) 

 

 

 

0.84 (Observer SEN) 0.96 (Observer SPEC) 

0.948 (Algorithm AUC) 0.765 (Kappa) 

0.85 (Observer SEN) 0.954 (Observer SPEC) 

0.954 (Algorithm AUC) 0.760 (Kappa) 

 

 

Phan et al [47] Good Quality: 

• 50 (category 1) 

• 43 (category 2) 

• 24 (category 3) 

• 22 (category 4) 

 

Poor Quality: 

• 29 (category 1) 

• 36 (category 2) 

SVM & Random Forest 2 graders {1} vs {2} vs {3} vs {4} 

 

 

{1&2} vs {3} vs {4} 

 

 

{1} vs {2&3} vs {4} 

SVM: 62.7% (ACC) 

Random Forest: 61.7% (ACC) 

 

SVM: 75.6% (ACC) 

Random Forest: 74.2% (ACC) 

 

SVM: 72.4% (ACC) 

Random Forest: 69.9% (ACC)  
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• 41 (category 3) 

• 34 (category 4) 
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Reference Images with 

No-disease 

(dataset) 

Images with 

AMD(dataset) 

Classifier Reference 

Standard 

Performance 

Mookiah et al [43] 101 (ARIA) 

36 (STARE) 

270 (KMC) 

60 (ARIA) 

47(STARE) 

270 (KMC) 

Naïve Bayes, K-nearest 

Neighbours, Decision Tree, 

Probabilistic neural network, 

SVM 

Ophthalmologist 

Group 

ACC (ARIA) = 95.07% 

ACC (STARE) = 95.00% 

ACC (KMC) = 90.19% 

Mookiah et al [42] 270 (KMC) 270 (KMC) Naïve Bayes, K-nearest 

Neighbours, Probabilistic neural 

network, SVM 

Ophthalmologist 

Group 

ACC = 93.70% 

SEN = 91.11% 

SPEC = 96.30% 

Acharya [1] 404 (KMC) 517 Dry AMD 

(KMC) 

 

24 Wet AMD 

(KMC) 

SVM Ophthalmologist 

Group 

ACC (PSO with SVM) = 85.12% 

SENS  (PSO with SVM) = 87.2% 

SPEC  (PSO with SVM)  = 80% 
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