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57 Abstract

58 Introduction: Copper (Cu) is an essential element involved in biological processes; however, 

59 excessive Cu could be harmful because of its reactive nature. Very few studies have evaluated 

60 its potential neurotoxic effects. We aimed to evaluate the association between maternal Cu 

61 levels and children’s neuropsychological development.  

62 Methods: Study subjects were mother-child pairs from the Spanish INMA (i.e. Childhood and 

63 Environment) Project. Cu was measured by inductively coupled plasma mass spectrometry in 

64 serum samples taken at the first trimester of pregnancy (2003-2005). Neuropsychological 

65 development was assessed using the Bayley Scales of Infant Development (BSID) at 12 months 

66 (n=651) and the McCarthy Scales of Children’s Abilities (MSCA) at 5 years of age (n=490). 

67 Covariates were obtained by questionnaires during pregnancy and childhood. Multivariate linear 

68 and non-linear models were built in order to study the association between maternal Cu and 

69 child neuropsychological development. 

70 Results: The mean ± standard deviation of maternal Cu concentrations was 1606 ± 272 μg/L. In 

71 the multivariate analysis, a negative linear association was found between maternal Cu 

72 concentrations and both the BSID mental scale (beta=-0.051; 95% confidence intervals [CI]: -

73 0.102, -0.001) and the MSCA verbal scale (beta=-0.044; 95%CI:-0.094, 0.006). Boys obtained 

74 poorer scores than girls, with increasing Cu at 12 months (interaction p-value=0.040 for the 

75 mental scale and 0.074 for the psychomotor scale). This effect modification disappeared at 5 

76 years of age. The association between Cu and the MSCA scores (verbal, perceptive 

77 performance, global memory and motor, general cognitive, and executive function scales) was 

78 negative for those children with lowest maternal iron concentrations (<938µg/L). Conclusion: 

79 The Cu concentrations observed in our study were within the reference range established for 

80 healthy pregnant women in previous studies. The results of this study contribute to the body of 

81 scientific knowledge with important information on the possible neurotoxic capability of Cu 

82 during pregnancy. 

83 Keywords: birth cohort, cognitive, neurodevelopment, metal, delayed effects, prenatal exposure
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84 1. Introduction

85 Copper (Cu) is an essential trace element found in all organs and cells. On the one hand, Cu is a 

86 transition metal involved in numerous biological processes such as cellular respiration, 

87 antioxidant defence, connective tissue formation, neurotransmitter biosynthesis, peptide 

88 hormone maturation, pigmentation, keratinization and iron homeostasis (Uriu-Adams et al., 

89 2010). On the other hand, excessive Cu could be harmful because of its highly reactive nature, 

90 leading to the possible production of hydroxyl radicals (Valko et al., 2005). However, most of 

91 the literature on the neurotoxicity of Cu is focused on nutritional deficiency and its effect on the 

92 brain.

93 The main source of Cu is the diet. Absorption is dependent on the amount ingested, its chemical 

94 form and the composition of other dietary components such as zinc. Liver and kidney contain 

95 high Cu levels, and fish, fruits, cereals, nuts and green vegetables are also important sources 

96 (Ellingsen et al., 2005). In human adults, the proportion of Cu absorption is inversely correlated 

97 with dietary copper intake: high dietary copper intake results in low relative Cu absorption (van 

98 den Berghe and Klomp, 2009). Under normal physiological conditions about 98% of Cu 

99 excretion is via bile and the remaining 2% is via urine (Wijmenga and Klomp, 2004).

100 Cu can be transferred from the mother to the foetus via the placenta and a substantial portion is 

101 accumulated and retained in the foetal liver (Gambling et al., 2003) to supply Cu during the first 

102 months of life, a period with a minimum intake of this nutrient. The Cu stores in the foetal liver 

103 therefore aid in preventing Cu deficiency during the early months of life (Harvey and McArdle, 

104 2008). Some experimental studies conducted with rats have shown the importance of Cu and 

105 iron during pregnancy in order to ensure adequate brain development (Penland and Prohaska, 

106 2004; Prohaska and Gybina, 2005). In humans, rare and severe alterations in Cu homeostasis 

107 have been associated with some neurological disorders, such as aceruloplasminemia, Alzheimer, 

108 Huntington or Menkel diseases (Desai and Kaler, 2008). 

109 Very few epidemiological studies have evaluated the association between prenatal or early 

110 postnatal Cu levels and child neuropsychological development, and with heterogeneous results. 

111 Postnatal traffic-related Cu exposure was associated with poorer motor performance and altered 
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112 basal ganglia assessed with magnetic resonance imaging in 8–12-year-old children from 

113 Barcelona (Spain) (Pujol et al., 2016), but maternal Cu levels measured during pregnancy in 

114 plasma in Łódź and Legnica (Poland) (Polanska et al., 2017) or urine in Sabadell (Spain) (Forns 

115 et al., 2014) were not associated with children’s neuropsychological development assessed at 1–

116 2 and 4 years old, respectively. Foetuses are especially vulnerable to the adverse effects of 

117 toxicants in comparison to adults, since their organs and systems are still developing and their 

118 detoxification mechanisms are not yet fully mature (Selevan et al., 2000). The nervous system 

119 has a long development time that extends from the embryonic period through adolescence and, 

120 thus, early exposure to toxicants could lead to developmental neurotoxicity (Rice and Barone S 

121 Jr, 2000).

122 The aim of this study is to evaluate the association between maternal Cu levels in serum 

123 samples during pregnancy and children’s neuropsychological development assessed at 1 and 5–

124 6 years of age in a Spanish birth cohort study. We additionally assessed the sociodemographic, 

125 environmental and dietary determinants of maternal Cu concentrations and evaluated the effect 

126 of interactions between Cu and other nutrients (iron, selenium and zinc) and children’s sex on 

127 neuropsychological development. 

128

129 2. Methods

130 2.1 Study population

131 Study subjects were participants in the INMA Project (Childhood and Environment Project: 

132 http://www.proyectoinma.org) – a multicentre birth cohort study that aims to investigate the 

133 effects of environmental exposures and diet during pregnancy on foetal and child health in 

134 different areas of Spain. 

135 The study protocol has been reported elsewhere (Guxens et al., 2012). Briefly, pregnant women 

136 were recruited at the beginning of their pregnancy in the region of Valencia (n=855, 

137 2003−2005). The inclusion criteria were: at least 16 years of age, 10–13 weeks of gestation, 

138 singleton pregnancy, no participation in an assisted fertility programme, intention of undergoing 

139 follow-up and delivery at the hospital of reference, and no impediment for communication. 
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140 When excluding the women who withdrew from the study (n=28), were lost to follow-up (n=5), 

141 or had induced or spontaneous abortions (n=31) or foetal deaths (n=4), a total sample of 787 

142 (92%) women were followed up until delivery. Their children were enrolled at birth and 

143 monitored from then on (n=708, 83% at 12 months of age; n=536, 63% at 5 years of age). The 

144 final study population was made up of mothers with available Cu concentrations (n=656), and 

145 mother-child pairs with both maternal Cu concentrations in serum and child neuropsychological 

146 test scores at 12 months (n=651) and 5 years of age (n=490). Informed consent was obtained 

147 from all participants in each phase and the study was approved by the La Fe Hospital Ethics 

148 Committee. 

149

150 2.2 Copper concentrations 

151 Concentrations of Cu were determined in serum samples taken at the first trimester of 

152 pregnancy (mean ± standard deviation (SD) = 12.7 ± 1.5 weeks of gestation). After separation 

153 of serum by centrifugation, samples were stored at –80oC and transported frozen to the 

154 Karolinska Institutet, Sweden, for analysis. Approximately 120 µg of serum was diluted 1:25 in 

155 an alkaline solution containing 2% 1-butanol (anhydrous, 99.8%, Sigma-Aldrich, Schnelldorf, 

156 Germany), 0.05% EDTA (99.995%, Sigma-Aldrich), 0.05% Triton X-100 (BioXtra, Sigma-

157 Aldrich), 1% NH4OH (25%, Romil, Cambridge, UK), and 20 ng/g of internal standards (Sc-45, 

158 Ge-72, Rh-103; CPI International, Amsterdam, Netherlands). Samples were then sonicated and 

159 centrifuged for 5 minutes each. The concentrations of serum Cu were determined by inductively 

160 coupled plasma mass spectrometry (ICPMS; Agilent 7700x, Agilent Technologies, Tokyo, 

161 Japan) with the collision/reaction cell system in helium mode. Analytical quality control was 

162 performed by inclusion of reference materials (Seronorm: Trace Elements serum lot MI0181, 

163 Trace Elements whole blood L-1 lot 1406263 and L-2 lot 1406264, and Medisafe serum L-2 lot 

164 28342). The values obtained were within the analytical range for all reference materials. The 

165 limit of detection was 2.93 ng/g and no samples had concentrations below this value. Cu 

166 concentrations were corrected according to the variations in three daily measures of the 

167 SeronormTM (lot MI0181) reference material. The correction was performed by adding to each 

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354



7

168 measure the difference between the daily mean of the reference measures and the overall mean 

169 of the reference measures (Amorós et al., 2018a). 

170  

171 2.3 Child neuropsychological development

172 The neuropsychological development of the children was assessed at around 12 months of age 

173 (mean ± SD = 12.3 ± 0.7, range = 11.4–19.5 months) and at 5–6 years of age (mean ± SD = 5.8 

174 ± 0.16 years, range 5.5–6.9 years). For the measure at 12 months, the first edition of the Bayley 

175 Scales of Infant Development (BSID) was used. These scales assess age-appropriate mental and 

176 psychomotor development, including performance abilities, memory, early language skills, 

177 psychomotor skills and coordination. The BSID are composed of the mental scale (163 items) 

178 and the psychomotor scale (81 items). All testing was carried out at the children’s reference 

179 hospital (La Fe Hospital, Valencia), in the presence of their mothers, by four trained 

180 psychologists. 

181 For the measure at 5–6 years of age, a standardized version of the MSCA adapted to the Spanish 

182 population was used (McCarthy D, 2009). The verbal scale refers to cognitive tasks related to 

183 the processing of verbal information; the perceptual-performance scale refers to cognitive tasks 

184 related to perceptual information processing, including manual performance; the quantitative 

185 scale assesses numerical abilities; the global memory scale considers short-term retention of 

186 information (verbal, visual or numerical); the global motor scale refers to fine (e.g. drawing) 

187 and gross (e.g. balance or accuracy) abilities; the working memory scale refers to those 

188 cognitive tasks related to temporarily storing and managing the information required to carry 

189 out other cognitive tasks such as learning, reasoning and comprehension; and the executive 

190 function scale refers to those cognitive tasks that are critical to non-routine, goal-oriented 

191 situations that are performed by the pre-frontal cortex (Julvez et al., 2011, 2007). The sum of the 

192 first three scales provides a general cognitive scale. Testing was conducted by two 

193 psychologists using a strict protocol. 
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194 The raw scores of the two tests (BSID and MSCA) were standardized for the child’s age in days 

195 at test administration and for psychologist. Standardized residuals were then typified by having 

196 a mean ± SD of 100 ± 15 points to homogenize the scales.

197

198 2.4 Other variables

199 The women completed two questionnaires during their pregnancy, one at the first trimester 

200 (mean ± SD) = 12.7 ± 1.5 weeks of gestation) and the other at the third trimester (mean ± SD = 

201 32.4 ± 2.0 weeks of gestation). Questionnaires were administered by trained interviewers and 

202 focused on sociodemographic, dietary, environmental and lifestyle information during 

203 pregnancy. The maternal covariates and potential confounders collected were: country of birth 

204 (Spain, other), age (<25, 25–29, 30–34, ≥35 years), body mass index before pregnancy (Kg/m2), 

205 level of education (primary, secondary, university), parity (0, 1, ≥2), area (urban, metropolitan, 

206 semi-urban, rural) and age (≤5, >5 years) of the residence, employment during pregnancy (non-

207 worker, worker), smoking at the beginning of pregnancy (no, yes) and season of sampling 

208 (Spring, Summer, Autumn, Winter). We also obtained data on paternal age, employment and 

209 level of education. 

210 Parental social class was defined during pregnancy as the highest occupational social class of 

211 both parents, according to a widely used Spanish adaptation of the International Standard 

212 Classification of Occupations, approved in 1988 (ISCO88) (Class I+II: managerial jobs, senior 

213 technical staff and commercial managers; class III: skilled non-manual workers; and class 

214 IV+V: manual and unskilled workers).

215 Information on diet during pregnancy was collected by using a validated semiquantitative food 

216 frequency questionnaire (FFQ) (Vioque et al., 2013). We obtained data (expressed in grams per 

217 day) on the intake of seafood, meat, cereals and pasta, legumes, nuts, fruits, vegetables, eggs, 

218 dairy products, potatoes and bread. Energy-adjusted intakes were computed using the residual 

219 method (Willett et al., 1985). Information related to the child’s gestational age, sex and 

220 anthropometric measures at birth was obtained from clinical records. Low birth weight was 

221 defined as less than 2,500 g, and preterm birth was considered to be less than 37 weeks of 
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222 gestation. Breastfeeding duration and attendance at nursery were obtained in a subsequent 

223 interview at the same time point as the neuropsychological development assessment when 

224 children were 12 months old. Breastfeeding (in weeks) was defined as receiving breast milk for 

225 at least 7 days, although it could be supplemented with any food or liquid, including nonhuman 

226 milk. The variable was categorized as non-breastfed vs. breastfed. Information about maternal 

227 and paternal working status, maternal and paternal smoking habits in the presence of the child, 

228 and a proxy of the maternal verbal intelligence quotient (IQ, based on the Similarities Subtest of 

229 the Weschler Adult Intelligence-Third Edition (WAIS-III)) was obtained at the same time point 

230 as the neuropsychological development assessment when children were 5–6 years old. 

231 Iron, selenium and zinc concentrations were analysed in the same serum maternal samples and 

232 by using the same method as for Cu, except that selenium was measured with the ICPMS 

233 collision/reaction cell system in helium and hydrogen mode.

234

235 2.5 Statistical analysis 

236 Univariate and multivariate linear regression models were built to examine the determinants of 

237 prenatal Cu exposure. In these models Cu was the dependent variable and the maternal 

238 characteristics were the independent ones (country of birth, age, BMI, educational level, parity, 

239 area of residence, employment during pregnancy, social class, smoking at the beginning of the 

240 pregnancy, season of sampling, gestational age, age of the residence, and intake of seafood, 

241 meat, cereals and pasta, legumes, nuts, fruits, vegetables, eggs, dairy products, potatoes and 

242 bread). The multivariate model was built following a backward elimination procedure, using all 

243 variables with a p-value < 0.1 for the univariate models as candidate covariates and retaining 

244 those with a p-value < 0.1 in the likelihood ratio test (LRT) for the multivariate model. 

245 Multivariate linear regression models were built in order to assess the relationship between Cu 

246 concentrations (as an explanatory/independent variable) and the different scales of the BSID and 

247 the MSCA (outcome variables). For these models we corrected the Cu concentrations for the 

248 gestational age at sampling, as a preliminary exploration of the data showed a linear increase in 

249 the Cu concentration of 9.4 µg/L per gestational day (95% confidence interval [CI]: 4.9, 13.9, p-
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250 value<0.001). In the first step, a core model was built for each scale with parental and child 

251 sociodemographic variables as possible covariates (specifically, parental age, educational level 

252 and working situation;  maternal country of birth, parity, BMI before pregnancy, social class, 

253 and maternal intelligence; sex, breastfeeding, and attendance to nursery). These multivariate 

254 models were built following a backward elimination procedure, using all variables with a p-

255 value < 0.1 for the univariate models as candidate covariates and retaining those with a p-value 

256 < 0.1 in the likelihood ratio test (LRT) for the multivariate models. In the second step, we 

257 introduced the Cu concentrations into these adjusted models and additional confounders were 

258 included if they changed the magnitude of the Cu main effect in a significant way, compared to 

259 the same potential confounder but randomized, that is, the same variable randomly reordered to 

260 simulate independence from Cu and the response variable, with a 5% significance level (Lee, 

261 2014). The potential confounder variables were those found to be determinants of the maternal 

262 Cu status. For comparability purposes, final models for the subscales of BSID and MSCA were 

263 fitted for the same pool of variables: those that were retained in any of individual models 

264 following the described procedure. Generalized additive models (GAM) using natural cubic 

265 splines with one internal knot were employed to assess the linearity of the relationship between 

266 child neuropsychological development and Cu concentrations by graphical observation and the 

267 Akaike information criterion (AIC). More than one knot was tested but in the end only one was 

268 used to avoid overfitting the potential non-linear relationships. 

269 Effect modification by sex of the child and other nutrients (selenium, iron, zinc) was also 

270 assessed. To do so, the interaction effect was tested using the LRT for the linear model, and 

271 AIC scores were compared for the GAM models with and without interaction. We dichotomized 

272 the nutrient variables according to the first tertile for iron (938 µg/L) and for zinc (553 µg/L) 

273 and the breakpoint observed in our previous study about maternal selenium and child 

274 neuropsychological development (selenium concentration of 85 µg/L) (Amorós et al., 2018b).

275 Finally, some sensitivity analyses were performed by excluding preterm (n=33) and low birth 

276 weight (n=35) from the analysis and including the variable maternal serum selenium 

277 concentrations in the models due to its relationship with neurodevelopment observed in our 
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278 population (Amorós et al., 2018a, 2018b). We considered associations or interactions as 

279 statistically significant when p-values were < 0.05. All the analyses were performed using the R, 

280 version 3.3.0, software. R packages mgcv and ggplot2 were used to implement the GAM 

281 models and to plot the graphs, respectively.

282

283 3. Results 

284 The characteristics of the mothers and children are shown in Table 1. Eighty-eight per cent of 

285 the women were born in Spain, 25% had finished university studies and 48% belonged to the 

286 lowest social class. Fifty-two per cent of the children were boys and 15% were not breastfed. 

287 The mean ± SD of maternal Cu concentration was 1606 ± 272 μg/L. The maternal factors 

288 associated with higher Cu concentrations in the multivariate model were age (higher in the 

289 25−29-year-old group), higher BMI before pregnancy, being multiparous and higher gestational 

290 age at blood sampling (Table 1). The higher age of the residence and meat intake were 

291 positively associated with Cu concentrations in the univariate models but they did not remain 

292 significant in the multivariate models (Table 1). Linear models including Cu showed a better fit 

293 with the data (lower AIC score) for the association with children’s mental (BSID) and verbal 

294 (MSCA) scales, in comparison to the same multivariate models not including Cu or the GAM 

295 models, where the relation between the outcome and Cu was considered to be non-linear. For 

296 the rest of the scales, the linear model without including Cu as an explanatory variable had a 

297 lower AIC score than both the linear model including the Cu and the non-linear one. The 

298 estimated splines of the GAM in Figure 1 and 2 showed the linear relationship between Cu and 

299 the mental scale at 12 months (BSID) and the verbal scale at 5 years (MSCA). The estimated 

300 splines of the GAM showed associations with a range from an inverted U to horizontal shapes 

301 for the other scales (Figure 1 and 2). 

302 Table 2 shows the coefficients for the multivariate linear regression models between maternal 

303 Cu concentrations and the BSID and MSCA scores. These models were adjusted for parental 

304 and child sociodemographic, environmental and life style characteristics (Table 2). For BSID at 

305 12 months, the association between maternal Cu concentrations and mental scale was negative 
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306 (Beta: -0.051; 95%CI: -0.102, -0.001) and it reached the significance level (p=0.045), whereas 

307 for the psychomotor scale this association was close to null (Beta: 0.003; 95%CI: -0.044, 

308 0.051). Regarding the MSCA at 5 years, maternal Cu concentrations were marginally and 

309 negatively associated with the verbal scale (Beta: -0.044; 95%CI: -0.094, 0.006, p-

310 value=0.086). For the other scales, the associations were negative (except for working memory) 

311 but not statistically significant in any case. 

312 When we tested sex as a potential effect modifier, a statistically significant or close to 

313 significant linear interaction was observed for the mental (p=0.040) and psychomotor (p=0.074) 

314 scales, respectively, of the BSID at 12 months (Table 2). The linear regression coefficients were 

315 negative for males (Beta= -0.114; 95%CI: -0.185, -0.043 for the mental, and Beta= -0.058; 

316 95%CI: -0.121, 0.005 for the psychomotor scale) and positive but non-significant for females 

317 (Beta: 0.015; 95%CI: -0.058, 0.087 for the mental scale and Beta: 0.050; 95%CI: -0.022, 0.121 

318 for the psychomotor scale). The GAM plotted in Figure 3 showed an inverse linear relationship 

319 between Cu and the scores for boys, this association being flat or slightly ascending for girls. 

320 This interaction disappeared at 5 years of age (Table 2 and Figure 4). 

321 We also evaluated the maternal concentrations of other nutrients (iron, selenium and zinc) as 

322 potential effect modifiers. We observed statistically significant interactions for iron (Table 3). 

323 The association between Cu and the scores obtained by the children for the verbal, perceptual 

324 performance, global memory, global motor, general cognitive and executive function scales at 5 

325 years of age was negative for those children whose mothers had iron levels below the first tertile 

326 (938 µg/L). Similar pattern was observed for zinc but the only statistically significant 

327 interaction was found for the perceptive manipulative scale at 5 years of age. Selenium did not 

328 modify the associations between Cu and outcomes (data not shown). 

329 Sensitivity analyses excluding preterm and low birth weight infants from the models provided a 

330 similar pattern to that for the whole sample (Supplemental material Table 1). When the variable 

331 maternal selenium concentrations was included in the multivariate models the coefficients for 

332 the association between Cu and the mental (BSID) and verbal (MSCA) scores remained 
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333 negative but the p-values (p<0.1) became more distant from statistical significance 

334 (Supplemental material Table 2).  

335

336 4. Discussion

337 In this Spanish birth cohort study, we observed a negative association between maternal Cu 

338 concentrations and some domains of child neuropsychological development assessed at 12 

339 months and 5 years of age. Boys seemed to be more susceptible to Cu neurotoxicity, since they 

340 obtained poorer scores than girls on the mental scale at 12 months of age with increasing 

341 maternal Cu. The association between Cu and the scores obtained by the children at 5 years of 

342 age was negative for those whose mothers had lower iron levels.    The mean ± SD of Cu 

343 concentration in our population was 1606 ± 272 µg/L. These concentrations were similar to 

344 those observed for healthy pregnant women in Jordania (mean ± SD: 1750 ± 420 µg/L) 

345 (Awadallah et al., 2004) and in another study in Spain (1470.53 ± 340.61 µg/L) (Izquierdo 

346 Alvarez et al., 2007), higher than healthy pregnant women in China (median: 1026.3 µg/L) 

347 (Zhang et al., 2013) and lower than pregnant women in Poland (mean: 1980 µg/L) (Polanska et 

348 al., 2017). All of these studies measured Cu in plasma or serum at the first trimester of 

349 pregnancy. 

350 Although there is no consensus on Cu reference ranges for pregnancy, some studies have 

351 established them in different populations. Thus, the reference ranges established for healthy 

352 women in the first trimester of pregnancy were 936.1–3033.2 µg/L in Australia (Wilson et al., 

353 2018), 340.54–2250.70 µg/L in Turkey (Kilinc et al., 2010) and 890.7–3660.0 µg/L in China 

354 (Liu et al., 2017). Abbassi-Ghanavati et al. (2009) performed a review of different studies 

355 published between 1975 and 2008 on Cu during pregnancy and established the reference range 

356 for the first trimester as 1120–1990 µg/L (Abbassi-Ghanavati et al., 2009). The Cu 

357 concentrations observed in our study were within the ranges established in all of these previous 

358 studies. 

359 The literature exploring the association between prenatal or early postnatal Cu concentrations 

360 and child neuropsychological development is very scarce and the results obtained are 
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361 controversial. Forns et al. (2014) explored the association between urinary Cu measured at the 

362 first and the third trimester of pregnancy and child neuropsychological development assessed at 

363 4 years of age in the INMA study in Sabadell, Spain (n=485), but did not find any significant 

364 association (Forns et al., 2014). A possible explanation for this lack of significant results could 

365 be that the biomarker used for the Cu exposure assessment is not a good proxy of the Cu 

366 transferred from the mother to the foetus, since only 2% of the Cu is excreted via urine 

367 (Ellingsen, DG., Moller LB., Aaseth J., 2005). 

368 In another study conducted in a Polish mother-child cohort (n=539), Cu was measured in 

369 plasma at each trimester of pregnancy, at delivery and in cord blood (Polanska et al., 2017). The 

370 authors did not find any statistically significant association between the different measures of 

371 Cu and any of the different domains (cognitive, language and psychomotor) of the Bayley test 

372 assessed at 1–2 years of age. Cu levels observed in this population (mean: 1980±570 µg/L in 

373 plasma) was a bit higher that in our study. 

374 Pujol et al. (2016) measured indoor and outdoor airborne Cu at schools in Barcelona (Spain) 

375 and used magnetic resonance imaging to assess children’s behaviour with the Attentional 

376 Network Test at 9 years of age and anatomical damage in the brain (n=263). They observed that 

377 higher Cu exposure was associated with poorer motor performance and altered structure of the 

378 basal ganglia (Pujol et al., 2016). A further study on the same population described a genetic 

379 component influencing the association between airborne Cu and children’s inattentiveness 

380 (Alemany et al., 2017). Both outdoor and indoor Cu exposure increased inattentiveness in 

381 rs1061472-CC and rs1801243-CC carriers for the ATPase copper transporting beta (ATP7B) 

382 gene. This gene encodes an ATPase that regulates the amount of Cu leaving the cell. 

383 A case-control study conducted in Bratislava (Slovakia) reported higher plasma Cu levels and 

384 Cu/Zn ratio in 6–7 year old children with Attention-deficit hyperactivity disorder (ADHD) than 

385 in controls (Viktorinova et al., 2016). However, the limited sample size of this study (n=58 

386 children with ADHD and n=50 healthy) and the lack of multivariate logistic models warrant the 

387 need to confirm these results by further studies. 
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388 We observed that children’s sex modified the association between maternal Cu and the scores 

389 obtained by the children for the mental scale in the Bayley test. Boys obtained poorer scores 

390 than girls with increased maternal Cu. This modifying effect was similar for the psychomotor 

391 scale but the p-value for the interaction was only close to the significance level (p = 0.07), 

392 although this sex-related modifying effect diminished at 5 years of age. Similarly, an inverse 

393 association was observed between children’s blood Cu concentrations and a poorer working 

394 memory in boys, but not in girls, at 12 years of age in China (Zhou et al., 2015). In addition, an 

395 experimental study conducted with mice seems to support the hypothesis that males are more 

396 sensitive to the toxic effects of Cu, male mice being the ones that experimented more severe 

397 toxic symptoms in behavioural observation, pathological examination and blood biochemical 

398 assay due to exposure to nano-copper particles (Chen et al., 2006). However, another study 

399 conducted with adolescents in Belgium observed that urinary Cu was related to poorer attention 

400 and short-term memory in girls, but not in boys (Kicinski et al., 2015). 

401 A possible mechanism of these sex-related differences in Cu neurotoxicity could be the 

402 interaction with hormones. Some epidemiological studies have evidenced the endocrine 

403 disrupting capability of Cu. Thus, Jain (2014) observed a gender differential effect of Cu on 

404 thyroid hormones in a US population: Cu was associated with an increase in free thyroxine 

405 (FT4) in males and an increase in total triiodothyronine (TT3) in females (Jain, 2014). Chang et 

406 al. (2011) observed a negative correlation between Cu levels and total testosterone in 

407 40−60-year-old men (Chang et al., 2011). More research is highly warranted on this issue, as 

408 gender seems to play a role in the influence of Cu neurotoxicity. 

409 We also observed that the association between maternal Cu and child neuropsychological 

410 development assessed at 5 years of age was modified by maternal iron concentrations. 

411 Specifically, this association was negative for children whose mothers had iron levels below the 

412 first tertile (938µg/L), even though this level is not considered as iron-deficient (the 

413 thresholds used to classify individuals as iron deficient typically range from 500-600 µg/L in 

414 plasma) (World Health Organization (WHO)/Centers for Disease Control (CDC), 2004). One of 

415 the transport mechanisms of iron, and other metals such as Cu, into the brain and in the 
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416 proximal portion of the small intestine seems to be mediated by the same divalent metal 

417 transporter, the divalent metal-ion transporter 1 (DMT1) (Skjørringe et al., 2012). The 

418 interaction between the Cu and iron homeostasis has been observed in rat duodenum where 

419 DMT1 expression was strongly induced in response to dietary iron deficiency and significantly 

420 higher liver Cu levels were additionally observed (Collins et al., 2005). Similarly, Garcia et al. 

421 (2007) observed that the brains of young rats subjected to iron deficiency had elevated copper 

422 levels (Garcia et al., 2007). We also observed effect modification with the maternal zinc levels, 

423 but the interaction between zinc and Cu was only statistically significant for one of the scales at 

424 5 years old. In this case, all the women with zinc levels below the first tertile (553 µg/L) would 

425 be considered as zinc-deficient, since the suggested lower cut-off for zinc concentrations is 700 

426 µg/L (Hess et al., 2007). The DMT1 is also able to transport zinc, but with less affinity than for 

427 iron or Cu (Espinoza et al., 2012), and some inhibitory interaction between Cu and zinc has 

428 been also observed (Nadella et al., 2006; Ojo et al., 2009). Although these results could be of 

429 interest to understand the possible mechanisms of Cu neurotoxicity, they should be taken with 

430 caution and confirmed by further studies.

431 In our population, higher maternal Cu concentrations were associated with age, BMI before 

432 pregnancy, parity, gestational age at blood sampling, and social class. Increasing levels of Cu 

433 during pregnancy have been reported previously by other studies (Aaseth et al., 2001; Izquierdo 

434 Alvarez et al., 2007; Polanska et al., 2017). The reason for this increase in Cu concentrations 

435 could be related to the elevation of serum ceruloplasmin throughout pregnancy (Skarżyńska et 

436 al., 2018), which is a copper-containing protein with both antioxidant and prooxidant properties 

437 (Uriu-Adams and Keen, 2005), or to the iron depletion through pregnancy (Gulec and Collins, 

438 2014).  

439 The association between Cu status and BMI observed in our study could be explained by the 

440 relationship between Cu and lipids found in previous studies. Thus, a positive association 

441 between Cu and triglycerides has been observed in umbilical cord serum (Bastida et al., 2000; 

442 Wells et al., 2014) and between Cu and cholesterol in adults (Ghayour-Mobarhan et al., 2005). 
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443 Nulliparous women those with an age between 25 and 29 years and those belonging to the 

444 lowest social class had the highest Cu concentrations. The relationship between maternal age 

445 and some indicator of economic status (such as income or automobile possession) and cord 

446 blood Cu concentrations was examined by Parajuli et al. (2012); however they did not obtain 

447 any statistically significant result (Parajuli et al., 2012). The literature on this topic is very 

448 scarce. 

449 A limitation of our study could be the drop in participation rate from birth to the age of 5 years, 

450 when we assessed neurodevelopment (61% of the children recruited at birth were monitored at 5 

451 years of age). We evaluated the parental differences between the included and the excluded 

452 population and observed significant differences for parental age, BMI before pregnancy, 

453 maternal education and social class. Overall, parents whose children were evaluated at 5 years 

454 of age were older, better educated and belonged to a higher social class. The loss to follow-up in 

455 cohort studies could represent another bias in estimating some exposure-outcome associations; 

456 additionally, this loss is usually more frequent among the less advantaged population (Howe et 

457 al., 2013). 

458 As a positive feature of our study, its longitudinal nature has made it possible to obtain 

459 sufficient information on maternal and child characteristics that may be related to Cu exposure 

460 and neuropsychological development, including the interactions with other nutrients. In 

461 addition, because the study population was followed up over time, it was possible to detect 

462 changes in certain variables such as smoking, which may affect children’s cognitive 

463 development. We have also obtained a longitudinal assessment of child neuropsychological 

464 development, which has allowed us to evaluate whether Cu neurotoxicity persists over time. 

465 In conclusion, this study provides some evidence of the adverse effects of prenatal exposure to 

466 Cu on child neuropsychological development. We observed a negative association between 

467 maternal Cu status at the first trimester of pregnancy and mental development assessed at 12 

468 months of age. This effect persisted until 5 years of age, when we observed the same association 

469 with the verbal scale. In addition, boys seemed to be more sensitive to Cu exposure than girls, 

470 obtaining poorer scores on the mental scale at 12 months of age. Some nutrient, such as iron, 
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471 seems to influence the association between Cu and child neuropsychological development. Cu is 

472 a trace element that is necessary for foetus and child development; however, its oxidant 

473 capabilities could trigger deleterious effects. In fact, we have observed these associations at 

474 levels within the reference range established by previous studies. The results of this study add 

475 important information to the body of scientific knowledge on the possible neurotoxic capability 

476 of Cu during pregnancy. However, further studies of a similar nature are warranted to confirm 

477 these results and the possible sex-specific differences in exposure to this metal. 
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499 Figure captions:

500 Figure 1: Generalized additive models of the association between maternal serum Cu 

501 concentrations and the children’s scores for the Bayley Scales of Infant Development at 12 

502 months of age

503 Figure footnote: Bayley scales adjusted for sex, BMI before pregnancy, parity, type of zone of 

504 residence, parental age, BMI before pregnancy, social class, season of sampling and attendance 

505 at nursery.

506

507 Figure 2: Generalized additive models of the association between maternal serum Cu 

508 concentrations and the children’s scores on the McCarthy Scales of Children’s Abilities at 5–6 

509 years of age

510 Figure footnote: McCarthy scales adjusted for BMI before pregnancy, sex, maternal country of 

511 birth, maternal age, parental educational level, parity, type of zone, maternal working situation 

512 during pregnancy, social class, breastfeeding, smoking during pregnancy, maternal intelligence, 

513 main care provider, maternal smoking at evaluation and paternal working situation at 

514 evaluation.

515

516 Figure 3: Generalized additive models of the association between maternal serum Cu 

517 concentrations and the children’s scores for the Bayley Scales of Infant Development at 12 

518 months of age according to sex

519 Figure footnote: models adjusted for the same variables as Figure 1

520

521 Figure 4: Generalized additive models of the association between maternal serum Cu 

522 concentrations and the children’s scores on the McCarthy Scales of Children’s Abilities at 5–6 

523 years of age according to sex

524 Figure footnote: models adjusted for the same variables as Figure 2

525
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Table 1: Maternal sociodemographic, environmental and dietary characteristics 
associated with maternal Cu concentrations. The INMA Project (Valencia, Spain, 
2003−2005).

Univariate analysis Multivariate analysis
N (%)

Beta 95%CI p-value Beta 95%CI p-value
Spain

579 (88.3)
Country of 
birth 

Other 77 (11.7) 37.62 -27.06 102.3 0.255
<25 68 (10.4)
25-29 223 (34.0) 61.97 -11.61 135.55 0.099 82.46 12.17 152.75 0.022
30-34 267 (40.7) 14.41 -57.74 86.56 0.696 22.32 -48.4 93.04 0.536

Age (years)

≥35 98 (14.9) 87.92 4.09 171.75 0.04 66.56 -17.82 150.94 0.122
BMI (Kg/m2) 23.8 (4.6)1 16.69 12.34 21.03 <0.001 15.2 10.87 19.53 <0.001

Primary 207 (31.6)
Secondary 285 (43.4) -48.32 -96.81 0.17 0.051

Educational 
level

University 164 (25.0) -76.69 -132.2 -21.18 0.006
0 361 (55.0)
1 243 (37.0) 73.33 29.56 117.1 0.001 60.46 16.22 104.7 0.007

Parity

≥2 52 (7.9) 122.94 44.7 201.18 0.002 83.89 4.86 162.92 0.037
Urban

62 (9.5)

Metropolitan 315 (48.1) -18.83 -92.96 55.3 0.619
Semi-Urban 240 (36.6) -11.03 -87.04 64.98 0.776

Area of 
residence

Rural 38 (5.8) 20.75 -89.17 130.67 0.711
Non-worker 108 (16.5)Employment 

during 
pregnancy

Worker 548 (83.5) -18 -74.17 38.17 0.53
I+II 156 (23.8)
III 181 (27.6) -6.74 -64.78 51.31 0.82 -23.7 -79.36 31.96 0.404

Social Class 

IV+V 319 (48.6) 51.8 -0.11 103.7 0.051 29.67 -21.72 81.06 0.258
No 395 (60.2)Smoking at the 

beginning of 
pregnancy

Yes 261 (39.8) -33.39 -75.88 9.1 0.124
Spring 220 (33.6)
Summer 168 (25.6) -18.5 -73.24 36.24 0.508
Autumn 113 (17.3) 21.42 -40.42 83.26 0.497

Season of 
sampling

Winter 154 (23.5) -1.99 -58.13 54.15 0.944
Gestational age (weeks) 12.7 (1.5)1 9.41 4.94 13.88 <0.001 7.64 3.35 11.93 <0.001

≤5 194 (29.7)
Age of the 
residence 
(years) 

>5 459 (70.3) 56.32 11.18 101.46 0.015

Seafood 74.5 (35.1) 1 0.15 -0.44 0.75 0.613

Meat 121.7 (40.8) 1 0.59 0.08 1.1 0.0235

Cereals and 
pasta 11.4 (45.9) 1 0.22 -0.24 0.67 0.356

Legumes 28.3 (21.9) 1 -0.23 -1.19 0.73 0.635

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59



Nuts 4.2 (7.0) 1 -1.31 -4.32 1.7 0.394

Fruits 273.1 (173.6) 1 0 -0.12 0.12 0.979

Vegetables 202.5 (108.3) 1 -0.11 -0.31 0.08 0.252

Eggs 19.4 (9.6) 1 -0.36 -2.54 1.81 0.745
Dairy products 431.6 (218.1) 1 -0.01 -0.11 0.08 0.804
Potatoes 54.4 (35.2) 1 0.43 -0.16 1.03 0.153

Bread 83.2 (49.8) 1 0.16 -0.27 0.58 0.472

For interpretability of the parameters of the model: the sample mean ± SD of maternal Cu is 
1606 ± 272 µg/L
1mean (standard deviation)
Dietary variables expressed in grams per day
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Table 2: Linear regression analysis between maternal Cu concentrations (increase of 10 µg/L) and the scores for the Bayley scales at 12 months 
and the McCarthy Scales of Children’s Abilities at 5 years of age for all children and stratified by children’s sex.

All children Male Female

Bayley test Beta 95%CI p-value Beta 95%CI Beta 95%CI
p-value 
Cu*sex

Mental -0.051 -0.102 -0.001 0.045 -0.114 -0.185 -0.043 0.015 -0.058 0.087 0.040
Psychomotor 0.003 -0.044 0.051 0.890 -0.058 -0.121 0.005 0.050 -0.022 0.121 0.074

McCarthy scales
Verbal -0.044 -0.094 0.006 0.086 -0.079 -0.153 -0.006 0.014 -0.058 0.087 0.118
Perceptual performance -0.032 -0.082 0.017 0.198 -0.040 -0.111 0.032 0.023 -0.092 0.047 0.469
Quantitative -0.006 -0.058 0.046 0.827 -0.010 -0.086 0.067 0.005 -0.070 0.080 0.631
Global Memory -0.037 -0.089 0.016 0.171 -0.049 -0.127 0.029 -0.014 -0.088 0.059 0.457
Global Motor -0.043 -0.096 0.011 0.119 -0.055 -0.134 0.024 -0.036 -0.111 0.039 0.513
General cognitive -0.038 -0.087 0.011 0.127 -0.059 -0.132 0.013 -0.001 -0.070 0.067 0.226
Fine motor -0.018 -0.067 0.031 0.468 -0.029 -0.093 0.036 -0.001 -0.077 0.076 0.296
Executive function -0.025 -0.079 0.028 0.354 -0.053 -0.134 0.028 0.013 -0.060 0.086 0.266
Working memory 0.005 -0.045 0.056 0.835 -0.017 -0.091 0.057 0.023 -0.048 0.094 0.406

1p-value for the interaction between Cu and sex.
Bayley scales adjusted for sex, BMI before pregnancy, parity, type of zone of residence, parental age, BMI before pregnancy, social class, season of sampling 
and attendance at nursery.
McCarthy scales adjusted for BMI before pregnancy, sex, maternal country of birth, maternal age, parental educational level, parity, type of zone, maternal 
working situation during pregnancy, social class, breastfeeding, smoking during pregnancy, maternal intelligence, main care provider, maternal smoking at 
evaluation and paternal working situation at evaluation.
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Table 3: Linear regression analysis between maternal Cu concentrations (increase of 10 µg/L) and the scores for both the Bayley scales at 12 
months and the McCarthy Scales of Children’s Abilities at 5 years of age, stratified by maternal iron and zinc concentrations (<1st tertile vs. >1st 
tertile).

Iron Zinc
<1st tertile >1st tertile <1st tertile >1st tertile

Beta 95%CI Beta 95%CI
pvalue 
Cu*Fe Beta 95%CI Beta 95%CI

pvalue 
Cu*Zn

Bayley test
Mental -0.010 -0.096 0.076 -0.063 -0.123 -0.002 0.696 -0.051 -0.144 0.041 -0.046 -0.104 0.012 0.318
Psychomotor -0.032 -0.126 0.062 0.015 -0.040 0.069 0.396 0.008 -0.080 0.096 -0.004 -0.060 0.051 0.898

McCarthy scales
Verbal -0.108 -0.190 -0.025 -0.018 -0.078 0.041 0.024 -0.039 -0.122 0.044 -0.057 -0.116 0.002 0.770
Perceptual performance -0.126 -0.207 -0.045 -0.007 -0.064 0.050 0.013 -0.132 -0.216 -0.047 0.005 -0.050 0.061 0.028
Quantitative -0.039 -0.123 0.046 0.020 -0.041 0.080 0.241 -0.051 -0.137 0.034 0.031 -0.028 0.091 0.143
Global Memory -0.105 -0.192 -0.019 0.007 -0.054 0.068 0.026 -0.049 -0.141 0.043 -0.016 -0.075 0.043 0.677
Global Motor -0.119 -0.206 -0.032 0.009 -0.052 0.071 0.025 -0.045 -0.134 0.044 -0.030 -0.091 0.032 0.698
General cognitive -0.119 -0.201 -0.036 0.000 -0.058 0.059 0.008 -0.071 -0.156 0.014 -0.017 -0.075 0.040 0.290
Fine motor -0.062 -0.150 0.026 0.019 -0.037 0.076 0.146 -0.069 -0.153 0.016 0.022 -0.036 0.081 0.120
Executive function -0.091 -0.185 0.004 0.007 -0.056 0.071 0.025 -0.066 -0.156 0.024 -0.002 -0.068 0.063 0.205
Working memory -0.021 -0.107 0.065 0.028 -0.033 0.089 0.170 -0.028 -0.111 0.056 0.035 -0.027 0.097 0.094

1p-value for the interaction between Cu and Fe.
Bayley scales adjusted for sex, BMI before pregnancy, parity, type of zone of residence, parental age, BMI before pregnancy, social class, season of sampling 
and attendance at nursery.
McCarthy scales adjusted for BMI before pregnancy, sex, maternal country of birth, maternal age, parental educational level, parity, type of zone, maternal 
working situation during pregnancy, social class, breastfeeding, smoking during pregnancy, maternal intelligence, main care provider, maternal smoking at 
evaluation and paternal working situation at evaluation.
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Supplemental Table 1: Sensitivity analysis of the association between maternal Cu concentrations (increase of 10 µg/L) and the scores for the 
Bayley scales at 12 months and the McCarthy Scales of Children’s Abilities at 5 years of age, excluding preterm and low birth weight infants

Term infants Appropiate weight
Bayley test beta 95%CI p-value beta 95%CI p-value

Mental -0.043 -0.093 0.007 0.093 -0.053 -0.103 -0.002 0.040
Psychomotor 0.010 -0.038 0.059 0.679 0.006 -0.042 0.053 0.819

McCarthy scales
Verbal -0.049 -0.101 0.003 0.065 -0.053 -0.103 -0.002 0.042
Perceptual performance -0.044 -0.094 0.007 0.089 -0.033 -0.084 0.017 0.194
Quantitative -0.019 -0.072 0.034 0.474 -0.006 -0.059 0.046 0.810
Global Memory -0.046 -0.100 0.009 0.098 -0.043 -0.097 0.011 0.117
Global Motor -0.055 -0.109 -0.001 0.046 -0.039 -0.093 0.015 0.152
General cognitive -0.050 -0.100 0.001 0.052 -0.043 -0.093 0.006 0.082
Fine motor -0.031 -0.080 0.019 0.225 -0.023 -0.072 0.027 0.372
Executive function -0.035 -0.089 0.020 0.210 -0.025 -0.078 0.028 0.359
Working memory -0.005 -0.056 0.046 0.850 0.005 -0.046 0.055 0.857

Bayley scales adjusted for sex, BMI before pregnancy, parity, type of zone of residence, parental age, BMI before pregnancy, social class, season of sampling 
and attendance at nursery.
McCarthy scales adjusted for BMI before pregnancy, sex, maternal country of birth, maternal age, parental educational level, parity, type of zone, maternal 
working situation during pregnancy, social class, breastfeeding, smoking during pregnancy, maternal intelligence, main care provider, maternal smoking at 
evaluation and paternal working situation at evaluation
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Supplemental Table 2: Sensitivity analysis of the association between maternal Cu concentrations (increase of 10 µg/L) and the scores for the 
Bayley scales at 12 months and the McCarthy Scales of Children’s Abilities at 5 years of age, including maternal serum selenium concentrations 
in the models

Bayley test beta 95%CI p-value
Mental -0.047 -0.098 0.005 0.074
Psychomotor 0.008 -0.040 0.056 0.738

McCarthy scales
Verbal -0.042 -0.093 0.009 0.107
Perceptual performance 0.008 -0.040 0.056 0.738
Quantitative -0.042 -0.093 0.009 0.107
Global Memory -0.028 -0.079 0.022 0.265
Global Motor -0.008 -0.061 0.045 0.767
General cognitive -0.033 -0.086 0.021 0.228
Fine motor -0.038 -0.092 0.017 0.175
Executive function -0.036 -0.085 0.014 0.158
Working memory -0.015 -0.064 0.035 0.559

Bayley scales adjusted for sex, BMI before pregnancy, parity, type of zone of residence, parental age, BMI before pregnancy, social class, season of sampling 
and attendance at nursery.
McCarthy scales adjusted for BMI before pregnancy, sex, maternal country of birth, maternal age, parental educational level, parity, type of zone, maternal 
working situation during pregnancy, social class, breastfeeding, smoking during pregnancy, maternal intelligence, main care provider, maternal smoking at 
evaluation and paternal working situation at evaluation
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