Edinburgh Research Explorer

Comprehending monads

Citation for published version:
Wadler, P 1992, ‘Comprehending monads', Mathematical Structures in Computer Science, vol. 2, no. 04,
pp. 461-493. https://doi.org/10.1017/S0960129500001560

Digital Object Identifier (DOI):
10.1017/S0960129500001560

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Mathematical Structures in Computer Science

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75} ACCESS

Download date: 18. Apr. 2024

https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1017/S0960129500001560
https://www.research.ed.ac.uk/en/publications/157ba533-92b3-4842-b29b-93f55de5ade5

Mathematical Structures in Computer Science
http://journals.cambridge.org/MSC

Additional services for Mathematical Structures in Computer Science:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Comprehending monads

Philip Wadler

Mathematical Structures in Computer Science / Volume 2 / Issue 04 / December 1992, pp 461 - 493
DOI: 10.1017/S0960129500001560, Published online: 04 March 2009

Link to this article: http://journals.cambridge.org/abstract_S0960129500001560

How to cite this article:
Philip Wadler (1992). Comprehending monads. Mathematical Structures in Computer Science, 2, pp 461-493 doi:10.1017/
S0960129500001560

Request Permissions : Click here

RN IOURMNALS

Downloaded from http://journals.cambridge.org/MSC, IP address: 129.215.224.45 on 21 May 2013

Math. Struct. in Comp. Science (1992), vol. 2, pp. 461-493 Copyright © 1992 Cambridge University Press

Comprehending monads’

PHILIP WADLER

Department of Computing Science, University of Glasgow, G12 8QQ, Scotland.
wadler@dcs.glasgow.ac.uk.

Received 2 January 1991 ; revised 2 June 1992

Category theorists invented monads in the 1960’s to express concisely certain aspects of
universal algebra. Functional programmers invented list comprehensions in the 1970’s to
express concisely certain programs involving lists. This paper shows how list comprehensions
may be generalised to an arbitrary monad, and how the resulting programming feature can
express concisely in a pure functional language some programs that manipulate state, handle
exceptions, parse text, or invoke continuations. A new solution to the old problem of
destructive array update is also presented. No knowledge of category theory is assumed.

1. Introduction

Is there a way to combine the indulgences of impurity with the blessings of purity?

Impure, strict functional languages such as Standard ML (Milner 1984; Harper, Milner
and Tofte 1988) and Scheme (Rees and Clinger 1986) support a wide variety of features,
such as assigning to state, handling exceptions, and invoking continuations. Pure lazy
functional languages such as Haskell (Hudak, Peyton Jones and Wadler 1991) or Miranda¥
(Turner 1985) eschew such features, because they are incompatible with the advantages of
lazy evaluation and equational reasoning, advantages that have been described at length
elsewhere (Hughes 1989; Bird and Wadler 1988).

Purity has its regrets, and all programmers in pure functional languages will recall some
moment when an impure feature has tempted them. For instance, if a counter is required
to generate unique names, an assignable variable seems just the ticket. In such cases it is
always possible to mimic the required impure feature by straightforward though tedious
means. For instance, a counter can be simulated by modifying the relevant functions to
accept an additional parameter (the counter’s current value) and return an additional
result (the counter’s updated value).

This paper describes a new method for structuring pure programs that mimic impure
features. This method does not completely eliminate the tension between purity and
impurity, but it does relax it a little bit. It increases the readability of the resulting

T An earlier version of this paper appeared in ACM Conference on Lisp and Functional Programming, Nice,
June 1990.

} Miranda is a trademark of Research Software Limited.

http://journals.cambridge.org

P. Wadler 462

programs, and it eliminates the possibility of certain silly errors that might otherwise arise
(such as accidentally passing the wrong value for the counter parameter).

The inspiration for this technique comes from the work of Eugenio Moggi (Moggi
1989a and 1989b). His goal was to provide a way of structuring the semantic description
of features such as state, exceptions, and continuations. His discovery was that the notion
of a monad from category theory suits this purpose. By defining an interpretation of
J-calculus in an arbitrary monad, he provided a framework that could describe all these
features and more.

It is relatively straightforward to adapt Moggi’s technique of structuring denotational
specifications into a technique for structuring functional programs. This paper presents a
simplified version of Moggi’s ideas, framed in a way better suited to functional program-
mers than semanticists; in particular, no knowledge of category theory is assumed.

The paper contains two significant new contributions.

The first contribution is a new language feature, the monad comprehension. This gener-
alises the familiar notion of list comprehension (Wadler 1987), due originally to Burstall
and Darlington, and found in KRC (Turner 1982), Miranda, Haskell and other languages.
Monad comprehensions are not essential to the structuring technique described here, but
they do provide a pleasant syntax for expressing programs structured in this way.

The second contribution is a new solution to the old problem of destructive array
update. The solution consists of two abstract data types with ten operations between
them. Under this approach, the usual typing discipline (e.g., Hindley-Milner extended
with abstract data types) is sufficient to guarantee that array update may be implemented
safely by overwriting. To my knowledge, this solution has never been proposed before,
and its discovery comes as a surprise considering the plethora of more elaborate solutions
that have been proposed: these include syntactic restrictions (Schmidt 1985), run-time
checks (Holstrom 1983), abstract interpretation (Hudak 1986a and 1986b; Bloss 1989),
and exotic type systems (Guzman and Hudak 1990; Wadler 1990 and 1991). That monads
led to the discovery of this solution must count as a point in their favour.

Why has this solution not been discovered before? One likely reason is that the data
types involve higher-order functions in an essential way. The usual axiomatisation of
arrays involves only first-order functions (index, update, and newarray, as described in
Section 4.3), and so, apparently, it did not occur to anyone to search for an abstract data
type based on higher-order functions. Incidentally, the higher-order nature of the solution
means that it cannot be applied in first-order languages such as Prolog or OBJ. It also
casts doubt on Goguen’s thesis that first-order languages are sufficient for most purposes
(Goguen 1988).

Monads and monad comprehensions help to clarify and unify some previous proposals
for incorporating various features into functional languages: exceptions (Wadler 1985;
Spivey 1990), parsers (Wadler 1985; Fairbairn 1987; Frost and Launchbury 1989), and
non-determinism (Hughes and O’Donnell 1989). In particular, Spivey (1990) is notable for
pointing out, independently of Moggi, that monads provide a framework for exception
handling.

There is a translation scheme from A-calculus into an arbitrary monad. Indeed, there are
two schemes, one yielding call-by-value semantics and one yielding call-by-name. These

http://journals.cambridge.org

Comprehending monads 463

can be used to transform systematically languages with state, exceptions, continuations, or
other features into a pure functional language. Two applications are given. One is to derive
call-by-value and call-by-name interpretations for a simple non-deterministic language:
this fits the work of Hughes and O’Donnell (1989) into the more general framework
given here. The other is to apply the call-by-value scheme in the monad of continuations:
the result is the familiar continuation-passing style transformation. It remains an open
question whether there is a translation scheme that corresponds to call-by-need as opposed
to call-by-name.

A key feature of the monad approach is the use of types to indicate what parts of
a program may have what sorts of effects. In this, it is similar in spirit to Gifford and
Lucassen’s effect systems (Gifford and Lucassen 1988).

The examples in this paper are based on Haskell (Hudak, Peyton Jones and Wadler
1991), though any lazy functional language incorporating the Hindley-Milner type system
would work as well.

Since the original version of this paper appeared (Wadler 1990b), the ideas have been
developed further. A subsequent paper (Wadler 1992) explains how monads have been
applied in the Glasgow Haskell compiler, which is itself written in Haskell, and describes
the relationship between monads and continuation-passing style.

The remainder of this paper is organised as follows. Section 2 uses list comprehensions
to motivate the concept of a monad, and introduces monad comprehensions. Section 3
shows that variable binding (as in “let” terms) and control of evaluation order can
be modelled by two trivial monads. Section 4 explores the use of monads to structure
programs that manipulate state, and presents the new solution to the array update
problem. Two examples are considered: renaming bound variables, and interpreting a
simple imperative language. Section 5 extends monad comprehensions to include filters.
Section 6 introduces the concept of monad morphism and gives a simple proof of the
equivalence of two programs. Section 7 catalogues three more monads: parsers, exceptions,
and continuations. Section 8 gives the translation schemes for interpreting A-calculus in an
arbitrary monad. Two examples are considered: giving a semantics to a non-deterministic
language, and deriving continuation-passing style.

2. Comprehensions and monads
2.1. Lists

Let us write M x for the data type of lists with elements of type x. (In Haskell, this is
usually written [x].) For example, [1,2,3] :: M Int and [a’,‘D’,‘C’] :: M Char. We write
map for the higher-order function that applies a function to each elment of a list:

map :: (x > y) > (Mx > My).

(In Haskell, type variables are written with small letters, e.g., x and y, and type constructors
are written with capital letters, e.g., M.) For example, if code :: Char — Int maps a

19 MSC2

http://journals.cambridge.org

P. Wadler 464

character to its ASCII code, then map code [‘a’,D’,‘c’] = [97,98,99]. Observe that

U] mapid = id,
(@) map(g-f) = mapg -mapf.

Here id is the identity function, id x = x, and g-f is function composition, (g-f) x = g (f x).

In category theory, the notions of type and function are generalised to object and arrow.
An operator M taking each object x into an object M x, combined with an operator map
taking each arrow f :: x — y into an arrow map f :: M x — M y, and satisfying (i) and
(i), is called a functor. Categorists prefer to use the same symbol for both operators, and
so would write M f where we write map f.

The function unit converts a value into a singleton list, and the function join concate-
nates a list of lists into a list:

unit .2 x — M x,
join :: M (M x) — M x.

For example, unit 3 = [3] and join [[1,2], [3]] = [1, 2, 3]. Observe that

(iii) map f -unit = unit- f,
(iv) map f - join = join - map (map f).

Laws (iii) and (iv) may be derived by a systematic transformation of the polymorphic
types of unit and join. The idea of deriving laws from types goes by the slogan “theorems
for free” (Wadler 1989) and is a consequence of Reynolds’ abstraction theorem for
polymorphic lambda calculus (Reynolds 1983).

In categorical terms, unit and join are natural transformations. Rather than treat unit
as a single function with a polymorphic type, categorists treat it as a family of arrows,
unity :: x > M x, one for each object x, satisfying map f - unit, = unit, - f for any objects
x and y and any arrow f :: x — y between them. They treat join similarly. Natural
transformation is a simpler concept than polymorphic function, but we will stick with
polymorphism since it’s a more familiar concept to functional programmers.

2.2. Comprehensions

Many functional languages provide a form of list comprehension analogous to set com-
prehension. For example,

[Cey) [x—[L2], y < [3,4]] = [(1,3),(1,4),(23),2,4)]

In general, a comprehension has the form [t | g], where ¢ is a term and g is a qualifier. We
use the letters t, u, v to range over terms, and p, q, r to range over qualifiers. A qualifier is
either empty, A; or a generator, x « u, where x is a variable and u is a list-valued term;
or a composition of qualifiers, (p,q). Comprehensions are defined by the following rules:

(1) [t] A] = unitt,
2) [t|x«—u] = map(Ax.t)u,
G [tiea] join[[tlg] | p].

http://journals.cambridge.org

Comprehending monads 465

Note the reversal of qualifiers in rule (3): nesting g inside p on the right-hand side means
that, as we expect, variables bound in p may be used in g but not vice-versa.

For those familiar with list comprehensions, the empty qualifier and the parentheses in
qualifier compositions will appear strange. This is because they are not needed. We will
prove shortly that qualifier composition is associative and has the empty qualifier as unit.
Thus, we need not write parentheses in qualifier compositions, since ((p, g),7) and (p, (¢,r))
are equivalent, and we need not write (g, A) or (A, gq), because both are equivalent to the
simpler q. The only remaining use of A is to write [t | A], which we abbreviate [¢].

Most languages that include list comprehensions also allow another form of qualifier,
known as a filter, the treatment of which is postponed until Section 5.

As a simple example, we have:

[sqrx|x«[1,2,3]]
= {by (2)}

map (Ax.sqr x) [1,2, 3]
= {reducing map}

[1,4,9].

The comprehension in the initial example is computed as:

[Gay) | x < [1,2], y « [3,4]]

= {by (3)}

join[[(x,y) |y « [3,4]] | x « [1,2]]
= {by (2)}

join[map (4y.(x,y)) [3,4] | x « [1,2]]
= {by (2)}

join (map (Ax. map (Ay. (x, y)) [3,4]) [1,2])
= {reducing map}
join (map (2x. [(x, 3), (x,4)]) [1,2])
= {reducing map}
Jjoin [[(1,3), (1,4)],[(2,3), (2,4)]]
= {reducing join}
[(1,3),(1,4),(2,3),(2,4)].

From (i)-(iv) and (1)—(3) we may derive further laws:

4) [ftlq] = mapf[t|ql,
(%) [x]x« u] = u,
(6) [t1p, x < [ulqgl,r] = [tXlp q,1%]

In (4), function f must contain no free occurrences of variables bound by qualifier g,
and in (6) the term % stands for term ¢ with term u substituted for each free occurrence
of variable x, and similarly for the qualifier %. Law (4) is proved by induction over the
structure of qualifiers; the proof uses laws (ii)—(iv) and (1)-(3). Law (5) is an immediate
consequence of laws (i) and (2). Law (6) is again proved by induction over the structure
of qualifiers; the proof uses laws (1)—(4).

http://journals.cambridge.org

P. Wadler 466

As promised, we now show that qualifier composition is associative and has the empty
qualifier as a unit:

(I [t1Aq] = [tlql,
ar) [t1q,A] = [tlql,
{urr [t1(a),r] = [tlIp (g, 1]

First, observe that (I')-(I111'), respectively, are equivalent to the following:

) join-unit = id,
(I1) join - mapunit = id,
(I111) join - join = join - map join.

To see that (I1') and (I1) are equivalent, start with the left side of (II') and simplify:

[t1q, Al
= {by 3)}
Join[[t]A]lq]
= {by (1)}
join[unitt | q]
= {by (4)}
join (map unit [t | q]).

That (II) implies (I1') is immediate. For the converse, take [¢ | ¢] to be [x | x < u] and
apply (5). The other two equivalences are seen similarly.
Second, observe that laws (I)—(I1I) do indeed hold. For example:

join (unit [1,2]) = join [[1,2]] = [1,2],
join (map unit [1,2]) = join [[1], [2]] = [1,2],
Join (join [[[1], [211, [[311]) = join [[1], 2], [3]] = [1,2,3],
join (map join [[[1], [2]], [[3]]]) = join [[1,2], 3]] = [1,2,3].

Use induction over lists to prove (I) and (I1), and over lists of lists to prove (I11).

2.3. Monads

The comprehension notation suits data structures other than lists. Sets and bags are
obvious examples, and we shall encounter many others. Inspection of the foregoing lets
us isolate the conditions under which a comprehension notation is sensible.

For our purposes, a monad is an operator M on types, together with a triple of functions

map . (x—>y)—->Mx—>My),
unit . x—> Mx,
join 1 M (Mx)— M x,

satisfying laws (i)—(iv) and (I)—(I1I).

Every monad gives rise to a notion of comprehension via laws (1)—(3). The three laws
establish a correspondence between the three components of a monad and the three forms
of qualifier: (1) associates unit with the empty qualifier, (2) associates map with generators,

http://journals.cambridge.org

Comprehending monads 467

and (3) associates join with qualifier composition. The resulting notion of comprehension
is guaranteed to be sensible, in that it necessarily satisfies laws (4)—(6) and (I')-(I11').

In what follows, we will need to distinguish many monads. We write M alone to stand
for the monad, leaving the triple (map™,unit, join™) implicit, and we write [¢ |] to
indicate in which monad a comprehension is to be interpreted. The monad of lists as
described above will be written List.

As an example, take Set to be the set type constructor, map5® to be the image of a set
under a function, unit>* to be the function that takes an element into a singleton set, and
join3¢ to be the union of a set of sets:

mapS fx = {fx|xex)}
unit’ x = {x}
jointtx = |JX

The resulting comprehension notation is the familiar one for sets. For instance, [(x, y) |
X < X, y « ¥]5 specifies the cartesian product of sets X and y.
We can recover unit, map, and join from the comprehension notation:

(1) unit x = [x]
(2) mapfxX = [fx]|x«X]
(3) joinXx = [x|X X x<«X].

Here we adopt the convention that if x has type x, then X has type M x and X has type
M (M x).

Thus, not only can we derive comprehensions from monads, but we can also derive
monads from comprehensions. Define a comprehension structure to be any interpretation
of the syntax of comprehensions that satisfies laws (5)—(6) and (I')-(I1I'). Any monad
gives rise to a comprehension structure, via laws (1)—(3); as we have seen, these imply
(4)-(6) and (I')—(II1I'). Conversely, any comprehension structure gives rise to a monad
structure, via laws (1')—(3); it is easy to verify that these imply (i)—(iv) and (1)—(4), and
hence (I)-(III).

The concept we arrived at by generalising list comprehensions, mathematicians arrived
at by a rather different route. It first arose in homological algebra in the 1950’s with the
undistinguished name “standard construction” (sort of a mathematical equivalent of “hey
you”). The next name, “triple”, was not much of an improvement. Finally it was baptised
a “monad”. Nowadays it can be found in any standard text on category theory (Mac
Lane 1971; Barr and Wells 1985; Lambek and Scott 1986).

The concept we call a monad is slightly stronger than what a categorist means by that
name: we are using what a categorist would call a strong monad in a cartesian closed
category. Rougly speaking, a category is cartesian closed if it has enough structure to
interpret A-calculus. In particular, associated with any pair of objects (types) x and y there
is an object [x — y] representing the space of all arrows (functions) from x to y. Recall
that M is a functor if for any arrow f :: x — y there is an arrow mapf :: Mx —» M y
satisfying (i) and (ii). This functor is strong if it is itself represented by a single arrow
map :: [x — y] — [Mx — My]. This is all second nature to a generous functional
programmer, but a stingy categorist provides such structure only when it is needed.

20 MSC2

http://journals.cambridge.org

P. Wadler 468

It is needed here, as evidenced by Moggi’s requirement that a computational monad
have a strength, a function ¢ :: (x, M y) — M (x, y) satisfying certain laws (Moggi 1989a).
In a cartesian closed category, a monad with a strength is equivalent to a monad
with a strong functor as described above. In our framework, the strength is defined by
t(x,7) = [(x,y) | y « ¥]. (Following Haskell, we write (x,y) for pairs and also (x,y) for
the corresponding product type.)

Monads were conceived in the 1950%s, list comprehensions in the 1970’s. They have
quite independent origins, but fit with each other remarkably well. As often happens, a
common truth may underlie apparently disparate phenomena, and it may take a decade
or more before this underlying commonality is unearthed.

3. Two trivial monads
3.1. The identity monad

The identity monad is the trivial monad specified by

type [dx = x
map'd fx = fx
unitld x = x
joindx = «x,

so map', unit', and join are all just the identity function. A comprehension in the

identity monad is like a “let” term:

[t]x«—uld
= ((Ax.t)uw
= (let x=wuint).

Similarly, a sequence of qualifiers corresponds to a sequence of nested “let” terms:

[t|x—uy—0v]¥ = (et x=uin (let y = v in 1)).

Since y is bound after x, it appears in the inner “let” term. In the following, comprehensions
in the identity monad will be written in preference to “let” terms, as the two are equivalent.

In the Hindley-Milner type system, A-terms and “let” terms differ in that the latter may
introduce polymorphism. The key factor allowing “let” terms to play this role is that the
syntax pairs each bound variable with its binding term. Since monad comprehensions
have a similar property, it seems reasonable that they, too, could be used to introduce
polymorphism. However, the following does not require comprehensions that introduce
polymorphism, so we leave exploration of this issue for the future.

3.2. The strictness monad

Sometimes it is necessary to control order of evaluation in a lazy functional program.
This is usually achieved with the computable function strict, defined by

strictf x = if x % L then f x else L.

http://journals.cambridge.org

Comprehending monads 469

Operationally, strict f x is reduced by first reducing x to weak head normal form (WHNF)
and then reducing the application f x. Alternatively, it is safe to reduce x and f x in parallel,
but not allow access to the result until x is in WHNF.

We can use this function as the basis of a monad:

type Strx = x
mapS” fx = strict f x
units" x - = x
join’"x = x.

This is the same as the identity monad, except for the definition of mapS”. Monad laws
(i), (iii)—(iv), and (I)—(111) are satisfied, but law (ii) becomes an inequality,

map®” g - map®" f C map®" (g - f).

So Str is not quite a monad; categorists might call it a lax monad. Comprehensions for
lax monads are defined by laws (1)—(3), just as for monads. Law (5) remains valid, but
laws (4) and (6) become inequalities.

We will use Str-comprehensions to control the evaluation order of lazy programs. For
instance, the operational interpretation of

[tlx—uyev]

is as follows: reduce u to WHNTF, bind x to the value of u, reduce v to WHNF, bind y to
value of v, then reduce t. Alternatively, it is safe to reduce ¢, u, and v in parallel, but not
to allow access to the result until both u and v are in WHNF.

4. Manipulating state

Procedural programming languages operate by assigning to a state; this is also possible
in impure functional languages such as Standard ML. In pure functional languages,
assignment may be simulated by passing around a value representing the current state. This
section shows how the monad of state transformers and the corresponding comprehension
can be used to structure programs written in this style.

4.1. State transformers

Fix a type S of states. The monad of state transformers ST is defined by

type STx = S — (x,5)

mapST fx = As.[(fx5)] (x,5) < xs]"

unit’T x = I1s.(x,s)

joir’TX = s [(x,5")] (X5) « X5, (x,57) « x5

(Recall the equivalence of Id-comprehensions and “let” terms as explained in Section 3.1.)
A state transformer of type x takes a state and returns a value of type x and a new state.
The unit takes the value x into the state transformer As.(x,s) that returns x and leaves
the state unchanged. We have that

[y [x <%y T = Is.[((6)),8") | (x,5) « Xs, (1,5") < 317

20-2

http://journals.cambridge.org

P. Wadler 470

This applies the state transformer X to the state s, yielding the value x and the new state

s'; it then applies a second transformer 3 to the state s’ yielding the value y and the newer

state s”; finally, it returns a value consisting of x paired with y and the final state s”.
Two useful operations in this monad are

fetch . STS
fetch = 15.(s,9)
assign w §—>S8T(
assigns' = 1s.((),5).

The first of these fetches the current value of the state, leaving the state unchanged; the
second discards the old state, assigning the new state to be the given value. Here () is the
type that contains only the value ().

A third useful operation is
init i §->8Tx—-x
initsx = [x]|(x,s) « xs]".

This applies the state transformer X to a given initial state s; it returns the value computed
by the state transformer while discarding the final state.

4.2. Example: Renaming

Say we wish to rename all bound variables in a lambda term. A suitable data type Term
for representing lambda terms is defined in Figure 1 (in Standard ML) and Figure 2 (in
Haskell). New names are to be generated by counting; we assume there is a function

mkname :: Int — Name
that given an integer computes a name. We also assume a function
subst :: Name — Name — Term — Term

such that subst x’ x t substitutes x’ for each free occurrence of x in t.

A solution to this problem in the impure functional language Standard ML is shown
in Figure 1. The impure feature we are concerned with here is state: the solution uses a
reference N to an assignable location containing an integer. The “functions” and their
types are:

newname :: () — Name,
renamer .. Term — Term,
rename i Term — Term.

Note that newname and renamer are not true functions as they depend on the state.
In particular, newname returns a different name each time it is called, and so requires
the dummy parameter () to give it the form of a “function”. However, rename is a true
function, since it always generates new names starting from 0. Understanding the program
requires a knowledge of which “functions” affect the state and which do not. This is not
always easy to see — renamer is not a true function, even though it does not contain

http://journals.cambridge.org

Comprehending monads 471

datatype Term = Var of Name | Lam of Name * Term | App of Term * Term;

fun renamet =
let val N = ref0;

fun newname () let val n=IN;
val () =(N =n+1);

in mknamen

Il

end;

fun renamer (Var x) = Varx

| renamer (Lam(x,t)) = let val X = newname();
in Lam (X', subst x' x (renamer t))
end

| renamer (App (t,u)) = App (renamer t,renamer u);

in renamert
end;

Fig. 1. Renaming in an impure functional language (Standard ML)

data Term = Var Name | Lam Name Term | App Term T erm
newname i Int — (Name, Int)

newname n = (mknamen,n+ 1)

renamer :: Term — Int — (Term, Int)

renamer (Var x) n = (Varx,n)

renamer (Lamxt)n = let (x',n') = newnamen

(t',n") = renamertn'
in (Lamx' (substx' xt'),n")
renamer (Apptu)n = let (f',n') = renamertn
(',n") = renamer un’'
in (Appt'u,n")

rename 2 Term — Term
rename t = let (¢,n) = renamert0in ¢’

Fig. 2. Renaming in a pure functional language (Haskell)

any direct reference to the state N, because it does contain an indirect reference through
newname; but rename is a true function, even though it references renamer.

An equivalent solution in a pure functional language is shown in Figure 2. This explicitly
passes around an integer that is used to generate new names. The functions and their
types are:

newname :: Int — (Name, Int),
renamer . Term — Int — (Term,Int),
rename it Term — Term.

The function newname generates a new name from the integer and returns an incremented
integer; the function renamer takes a term and an integer and returns a renamed term

http://journals.cambridge.org

P. Wadler 472

data Term = Var Name | Lam Name Term | App Term T erm
newname :: ST Name

newname = [mknamen | n « fetch, () < assign(n+1)]157

renamer v Term — ST Term

renamer Varx) = [Varx]5T

renamer (Lamxt) = [Lamx (substx' xt')|x <« newname, ' < renamert]5T
renamer (Apptu) = [Appt'u |t « renamert, u' < renameru]5T

rename :: Term — Term

rename t = init O (renamert)

Fig. 3. Renaming with the monad of state transformers

(with names generated from the given integer) paired with the final integer generated. The
function rename takes a term and returns a renamed term (with names generated from 0).
This program is straightforward, but can be difficult to read because it contains a great
deal of “plumbing” to pass around the state. It is relatively easy to introduce errors into
such programs, by writing n where »’ is intended or the like. This “plumbing problem”
can be more severe in a program of greater complexity.

Finally, a solution of this problem using the monad of state transformers is shown in
Figure 3. The state is taken as S = Int. The functions and their types are now:

newname . ST Name,
renamer .. Term — ST Name,
rename v Term — Term.

The monadic program is simply a different way of writing the pure program: expanding the
monad comprehensions in Figure 3 and simplifying would yield the program in Figure 2.
Types in the monadic program can be seen to correspond directly to the types in the
impure program: an impure “function” of type U — V' that affects the state corresponds
to a pure function of type U — ST V. Thus, renamer has type Term — Term in the
impure program, and type Term — ST Term in the monadic program; and newname
has type () — Name in the impure program, and type ST Name, which is isomorphic to
() = ST Name, in the pure program. Unlike the impure program, types in the monadic
program make manifest where the state is affected (and so do the S T-comprehensions).

The “plumbing” is now handled implicitly by the state transformer rather than explicitly.
Various kinds of errors that are possible in the pure program (such as accidentally writing
n in place of #') are impossible in the monadic program. Further, the type system ensures
that plumbing is handled in an appropriate way. For example, one might be tempted to
write, say, App (renamer t) (renamer u) for the right-hand side of the last equation defining
renamer, but this would be detected as a type error.

Safety can be further ensured by making ST into an abstract data type on which
map®T, unitST, join®T, fetch, assign, and init are the only operations. This guarantees that
one cannot mix the state transformer abstraction with other functions that handle the
state inappropriately. This idea will be pursued in the next section.

http://journals.cambridge.org

Comprehending monads 473

Impure functional languages (such as Standard ML) are restricted to using a strict
(or call-by-value) order of evaluation, because otherwise the effect of the assignments
becomes very difficult to predict. Programs using the monad of state transformers can be
written in languages using either a strict (call-by-value) or lazy (call-by-name) order of
evaluation. The state-transformer comprehensions make clear exactly the order in which
the assignments take effect, regardless of the order of evaluation used.

Reasoning about programs in impure functional languages is problematic (although
not impossible — see Mason and Talcott (1989) for one approach). In contrast, programs
written using monads, like all pure programs, can be reasoned about in the usual way,
substituting equals for equals. They also satisfy additional laws, such as the following
laws on qualifiers:

X « fetch, y « fetch = x « fetch, y < [x]5T,

() < assignu, y « fetch = () « assignu, y « [u]5T,
() « assignu, () < assignv = () « assignv,
and on terms:
nitu [t5T =,
initu[t| () < assignv, 15T = initv[t] q]57,
initult|q, () < assignv]ST = initu[t] q]57.

These, together with the comprehension laws (5), (6), and (I') — (I1I'), allow one to use
equational reasoning to prove properties of programs that manipulate state.

4.3. Array update

Let Arr be the type of arrays taking indexes of type Ix and yielding values of type Val.
The key operations on this type are

newarray . Val — Arr,
index o Ix — Arr = Val,
update i Ix — Val — Arr — Arr.

Here newarray v returns an array with all entries set to v; and index ia returns the value
at index i in array a; and updateiva returns an array where index i has value v and the
remainder is identical to a. In equations,

index i (newarrayv) = v,
indexi(updateiva) = v,
indexi(updatei’va) = indexia, ifi=1i.

The efficient way to implement the update operation is to overwrite the specified entry of
the array, but in a pure functional language this is only safe if there are no other pointers
to the array extant when the update operation is performed.

Now consider the monad of state transformers taking the state type S = Arr, so that

type ST x = Arr — (x, Arr).

Variants of the fetch and assign operations can be defined to act on an array entry

http://journals.cambridge.org

P. Wadler 474

specified by a given index, and a variant of init can be defined to initialise all entries in
an array to a given value:

fetch i Ix—> ST Val

fetchi = la.[(v,a)| v« indexia]®"
assign i Ix—> Val > ST

assigniv = Aa.((),updateiva)

init 0 Val - ST x — x

initvx = [x](x,a) « X (newarray v) 1.

A Str-comprehension is used in fetch to force the entry from a to be fetched before a is
made available for further access; this is essential in order for it to be safe to update a by
overwriting.

Now, say we make ST into an abstract data type such that the only operations on
values of type ST are mapST, unit5T, joinST, fetch, assign, and init. It is straightforward
to show that each of these operations, when passed the sole pointer to an array, returns
as its second component the sole pointer to an array. Since these are the only operations
that may be used to build a term of type ST, this guarantees that it is safe to implement
the assign operation by overwriting the specified array entry.

The key idea here is the use of the abstract data type. Monad comprehensions are not
essential for this to work, they merely provide a desirable syntax.

4.4. Example: Interpreter

Consider building an interpreter for a simple imperative language. The store of this
language will be modelled by a state of type Arr, so we will take Ix to be the type of
variable names, and Val to be the type of values stored in variables. The abstract syntax
for this language is represented by the following data types:

data Exp = Varlx| ConstVal | Plus Exp Exp
data Com = AsgnlxExp|SeqComCom |I1f ExpComCom
data Prog = Prog ComExp.

An expression is a variable, a constant, or the sum of two expressions; a command is an
assignment, a sequence of two commands, or a conditional; and a program consists of a
command followed by an expression.

A version of the interpreter in a pure functional language is shown in Figure 4. The
interpreter can be read as a denotational semantics for the language, with three semantic
functions:

exp . Exp— Arr — Val,
com . Com — Arr — Arr,
prog i Prog — Val.

The semantics of an expression takes a store into a value; the semantics of a command
takes a store into a store; and the semantics of a program is a value. A program consists of
a command followed by an expression; its value is determined by applying the command

http://journals.cambridge.org

Comprehending monads 475

exp

exp (Vari)a

exp (Constv) a
exp (Pluse;e))a

com
com (Asgnie)a

com(Seqcycr)a
com(Ifecicr)a

prog
prog (Prog ce)

Exp — Arr — Val
indexia

v
expeia-+expeya

Com — Arr — Arr

updatei(expea)a

comc; (comcy a)

if expea = 0 then comc; a else comcy a

Prog — Val
exp e (comc (newarray 0))

Fig. 4. Interpreter in a pure functional language

exp
exp (Vari)

exp (Const v)
exp (Pluse; e;)

com
com (Asgnie)
com (Seq c ¢3)
com(Ifecycy)

prog
prog (Progce)

Exp — ST Val
[v] v« fetchi]5T
[D]ST

[v1 +v2 |01 < expey, vy — expe; ST

Com — ST ()

[)|veexpe, () « assigniv
[0 10« comey, () < comey]
[0 |veexpe, () < if v =0 then comc; else comc, 157

]ST
ST

Prog — Val
init0[v | () « comc, v — expe]ST

Fig. 5. Interpreter with state transformers

exp
exp (Vari)

exp (Const v)
exp (Pluse; ey)

com
com (Asgnie)

com (Seq cy ¢3)
com(Ifecc)

prog
prog (Prog ce)

Il

Exp — SRVal
[v| v« fetchi]5R
[U]SR

[v1 + 02 | v) < expey, v; — expe, |58

Com — ST ()

[0] v« ro(expe), () « assigniv]ST

[0 10 < comey, () < come 5T

[0]v«ro(expe), () « if v =0 then comc, else comc, 15T

Prog — Val
init0[v | () « comc, v < ro(expe) 15T

Fig. 6. Interpreter with state transformers and readers

to an initial store where all variables have the value 0, and then evaluating the expression
in the context of the resulting store.

The interpreter uses the array operations newarray, index, and update. As it happens,
it is safe to perform the updates in place for this program, but to discover this requires
using one of the special analysis techniques cited in the introduction.

The same interpreter has been rewritten in Figure 5 using state transformers. The

http://journals.cambridge.org

P. Wadler 476

semantic functions now have the types:

exp :: Exp— ST Val,
com 1 Com— ST,
prog .. Prog — Val.

The semantics of an expression depends on the state and returns a value; the semantics
of a command transforms the state only; the semantics of a program, as before, is just
a value. According to the types, the semantics of an expression might alter the state,
although in fact expressions depend on the state but do not change it — we will return to
this problem shortly.

The abstract data type for ST guarantees that it is safe to perform updates (indicated
by assign) in place — no special analysis technique is required. It is easy to see how
the monad interpreter can be derived from the original, and (using the definitions given
earlier) the proof of their equivalence is straightforward.

The program written using state transformers has a simple imperative reading. For
instance, the line

com(Seqeicd) = [()]() « comey, ()« come 1T

can be read “to evaluate the command Seqc ¢y, first evaluate ¢; and then evaluate
¢2”. The types and the use of the ST comprehension make clear that these operations
transform the state; further, that the values returned are of type () makes it clear that
only the effect on the state is of interest here.

One drawback of this program is that it introduces too much sequencing. The line

exp(Pluseyes) = [vy 42| v < expey, va « expey 15T

can be read “to evaluate Pluse; e,, first evaluate e; yielding the value v, then evaluate
e, yielding the value v,, then add v; and v,”. This is unfortunate: it imposes a spurious
ordering on the evaluation of e; and e, (the original program implies no such ordering).
The order does not matter, since although exp depends on the state, it does not change
it. But, as already noted, there is no way to express this using just the monad of state
transformers. To remedy this we will introduce a second monad, that of state readers.

4.5. State readers

Recall that the monad of state transformers, for a fixed type S of states, is given by

type STx = S — (x,S).
The monad of state readers, for the same type S of states, is given by
type SRx = S —x
map’Rfx = Is.[fx]|x«xs]!
unit’®x = ls.x
join®RX = s [x|X <« Xs, x < xs]1

Here X is a variable of type SR x, just as X is a variable of type ST x. A state reader of
type x takes a state and returns a value (of type x), but no new state. The unit takes the

http://journals.cambridge.org

Comprehending monads 477

value x into the state transformer As.x, which ignores the state and returns x. We have
that

[(p) | x <%y JIPR = As.[(x,p) [x —Xs, y « Fs]"
This applies the state readers X and J to the state s, yielding the values x and y, which
are returned in a pair.

It is easy to see that

[y [x <%y < TP = [(0)) |y <7, x < 3x]%,

so the order in which X and J are computed is irrelevant. A monad with this property is
called commutative, since it follows that

[t]1p, qI*® = [t]q,p]*®R

for any term ¢, and any qualifiers p and g such that p binds no free variables of g and
vice-versa. Thus, state readers capture the notion of order independence that we desire
for expression evaluation in the interpreter example.

Two useful operations in this monad are

fetch = SRS

fetch = ls.s

ro it SRx—>STx

rox = As.[(x,s)|x < xs]

The first is the equivalent of the previous fetch, but now expressed as a state reader rather
than a state transformer. The second converts a state reader into the corresponding state
transformer: one that returns the same value as the state reader, and leaves the state
unchanged. (The name ro abbreviates “read only™.)

In the specific case where S is the array type Arr, we define

fetch i Ix— SRVal
fetchi = Jla.indexia.

In order to guarantee the safety of update by overwriting, it is necessary to modify two
of the other definitions to use Str-comprehensions rather than Id-comprehensions:

mapSR fx = Ja[fx|x < Xal’"
rox = Ja.[(x,a) | x < Xa]5".
These correspond to the use of an Str-comprehension in the ST version of fetch.

Thus, for arrays, the complete collection of operations on state transformers and state
readers consists of

fetch 1 Ix— SRVal,
assign 1 Ix— Val - ST),
ro 2 SRx—> ST x,

init v Val - ST x — x,

together with mapS®, unitS®, joinS® and mapST, unit®”, join®T. These ten operations should
be defined together and constitute all the ways of manipulating the two mutually defined

http://journals.cambridge.org

P. Wadler 478

abstract data types SRx and ST x. It is straightforward to show that each operation of
type SR, when passed an array, returns a value that contains no pointer to that array once
it has been reduced to weak head normal form (WHNF); and that each operation of type
ST, when passed the sole pointer to an array, returns as its second component the sole
pointer to an array. Since these are the only operations that may be used to build values
of types SR and ST, this guarantees that it is safe to implement the assign operation by
overwriting the specified array entry. (The reader may check that the Str-comprehensions
in map®R and ro are essential to guarantee this property.)

Returning to the interpreter example, we get the new version shown in Figure 6. The
only difference from the previous version is that some occurrences of ST have changed
to SR and ro has been inserted in a few places. The new typing

exp :: Exp — SR Val

makes it clear that exp depends on the state but does not alter it. A proof that the two
versions are equivalent appears in Section 6.
The excessive sequencing of the previous version has been eliminated. The line

exp(Pluseje;) = [v; + vy | v; < expey, vy < expe; SR

can now be read “to evaluate Pluse; ey, evaluate e; yielding the value v; and evaluate e;
yielding the value v,, then add v; and v,”. The order of qualifiers in an S R-comprehension
is irrelevant, so it is perfectly permissible to evaluate e¢; and e, in any order, or even
concurrently.

The interpreter derived here is similar in structure to one in Wadler (1990a), which
uses a type system based on linear logic to guarantee safe destructive update of arrays.
(Related type systems are discussed in Guzman and Hudak (1990) and Wadler (1991).)
However, the linear type system uses a “let!” construct that suffers from some unnatural
restrictions: it requires hyperstrict evaluation, and it prohibits certain types involving
functions. By contrast, the monad approach requires only strict evaluation, and it places
no restriction on the types. This suggests that a careful study of the monad approach may
lead to an improved understanding of linear types and the “let!” construct.

5. Filters

So far, we have ignored another form of qualifier found in list comprehensions, the filter.
For list comprehensions, we can define filters by

[t|b] = ifb then [f] else [],
where b is a boolean-valued term. For example,

[x|x« [1,2,3], odd x]
= join[[x]oddx]|x« [1,2,3]]
join[[1]odd1],{2]|0dd2],[3 | 0dd3]]
join[[1],[1, [2]]
= [1,3].

http://journals.cambridge.org

Comprehending monads 479

Can we define filters in general for comprehensions in an arbitrary monad M ? The answer
is yes, if we can define [] for M. Not all monads admit a useful definition of [], but many
do.

Recall that comprehensions of the form [¢] are defined in terms of the qualifier A, by
taking [t] = [t | A], and that A is a unit for qualifier composition:

(1A q] = [t1q] = [t]q, Al

Similarly, we will define comprehensions of the form [] in terms of a new qualifier, §, by
taking [] = [t | @], and we will require that @) is a zero for qualifier composition:

[t10,q] = [t10] = [t]q. 0]

Unlike [t|A], the value of [¢|(] is independent of ¢!
Recall that for A we introduced a function unit :: x — M x satisfying the laws

(iii) map f - unit = unit - f,
(I join-unit = id,
(InH join-mapunit = id,

and then defined [t | A] = unitt.
Similarly, for ¢ we introduce a function

zero 1y — M x,

satisfying the laws

(v) map f - zero = zero-g,
vy join-zero = zero,
V) join-mapzero = zero,
and define
) [t]0] = zerot.

Law (v) specifies that the result of zero is independent of its argument, and can be
derived from the type of zero (again, see Reynolds (1983), Wadler (1989)). In the case
of lists, setting zeroy = [] makes laws (IV) and (V) hold, since join[] = [] and
join[[],...,[1] = []. (This ignores what happens when zero is applied to L, which will
be considered below.)

Now, for a monad with zero we can extend comprehensions to contain a new form of
qualifier, the filter, defined by

(8) [t|b] = if b then [f] else [],

where b is any boolean-valued term. Recall that laws (4) and (6) were proved by induction
on the form of qualifiers; we can show that for the new forms of qualifiers, defined by (7)
and (8), they still hold. We also have new laws

©) [tlb,c] = [t](BAO],
(10) [rlq,b] = [t]b q],

where b and ¢ are boolean-valued terms, and g is any qualifier not binding variables free
in b.

http://journals.cambridge.org

P. Wadler 480

When dealing with L as a potential value, more care is required. In a strict language,
where all functions (including zero) are strict, there is no problem. But in a lazy language, in
the case of lists, laws (v) and (IV) hold, but law (V) is an inequality, join-map zero C zero,
since join (map zero) L = L but zero L = []. In this case, laws (1)—(9) are still valid, but
law (10) holds only if [t | g] # L. In the case that [t | g] = L, law (10) becomes an
inequality, [t | g, b1 C [t | b, q].

As a second example of a monad with a zero, consider the strictness monad Str defined
in Section 3.2. For this monad, a zero may be defined by zeroS” y = L. It is easy to verify
that the required laws hold; unlike with lists, the laws hold even when zero is applied to
L. For example, [x—1 | x > 1]57 returns one less than x if x is positive, and L otherwise.

6. Monad morphisms

If M and N are two monads, then h :: M x — N x is a monad morphism from M to N if
it preserves the monad operations:

h-mapM f = mapN f - h,
h-unitM = unitV,
h-joinM = join" - h?,

where h? = h - map™ h = map™ h - h (the two composites are equal by the first equation).
Define the effect of a monad morphism on qualifiers as follows:

h(A) = A,
h(x—u = x<« (hu),
h(p, q) = (hp), (hq).

It follows that if & is a monad morphism from M to N, then

(11) hielqI™ = [t] (hg) ¥

for all terms ¢t and qualifiers q. The proof is a simple induction on the form of qualifiers.

As an example, it is easy to check that unit™ :: x — M x is a monad morphism from
Id to M. It follows that

[[e]x—ul = [t]x [u]"M

This explains a trick occasionally used by functional programmers, where one writes the
qualifier x « [u] inside a list comprehension to bind x to the value of u, that is, to achieve
the same effect as the qualifier x < u in an Id comprehension.

As a second example, the function ro from Section 4.5 is a monad morphism from SR
to ST. This can be used to prove the equivalence of the two interpreters in Figures 5
and 6. Write expST :: Exp — ST Val and exp®R :: Exp — SR Val for the versions in the
two figures. The equivalence of the two versions is clear if we can show that

ro-exp’®R = expST.

http://journals.cambridge.org

Comprehending monads 481

The proof is a simple induction on the structure of expressions. If the expression has the
form (Plusey ey), we have that

ro (expSR (Pluse; e3))
= {unfolding expS®}
ro v + vy | vy — expSRey, vy « expSRe, |5R
= {by (11}
[v1 + 02 | 01— ro(expSRey), vy «— ro (expR ;) 15T
= {hypothesis}
o1+ 02 | v1 — expST ey, vy — expST € 15T
= {folding expST}
expST (Pluse; ey).

The other two cases are equally simple.

All of this extends straightforwardly to monads with zero. In this case we also require
that h-zero™ = zeroV : define the action of a morphism on a filter by hb = b, and observe
that (11) holds even when g contains filters.

7. More monads

This section describes four more monads: parsers, expressions, input-output, and con-
tinuations. The basic techniques are not new (parsers are discussed in Wadler (1985),
Fairbairn (1987) and Frost and Launchbury (1989), and exceptions are discussed in
Wadler (1985) and Spivey (1990)), but monads and monad comprehensions provide a
convenient framework for their expression.

7.1. Parsers

The monad of parsers is given by

type Parsex = String — List (x, String)

mapP@e fx = M. [(fx i) | (x,i) < xi]Ls

unitPerse x = AL [(x,i)]

joinPasex = [0 | (%) «Xi, (x,i") < xi']

Here String is the type of lists of Char. Thus, a parser accepts an input string and returns
a list of pairs. The list contains one pair for each successful parse, consisting of the value
parsed and the remaining unparsed input. An empty list denotes a failure to parse the
input. We have that

[(p) [x %y <717 = 20 [((x), ") | (x,7) < Xi, (y,1") < yi']"

This applies the first parser to the input, binds x to the value parsed, then applies the
second parser to the remaining input, binds y to the value parsed, then returns the pair
(x,y) as the value together with input yet to be parsed. If either X or ¥ fails to parse its
input (returning an empty list), then the combined parser will fail as well.

There is also a suitable zero for this monad, given by

ZerOParse y = . []List'

http://journals.cambridge.org

P. Wadler 482

Thus, []7%* is the parser that always fails to parse the input. It follows that we may use
filters in Parse-comprehensions as well as in List-comprehensions.

The alternation operator combines two parsers:

M :: Parsex — Parsex — Parse x
X1y = M (Xi)H F).

(Here +- is the operator that concatenates two lists.) It returns all parses found by the
first argument followed by all parses found by the second.

The simplest parser is one that parses a single character:

next .. ParseChar
next = i [(head i,taili) | not (null i)]=',

Here we have a List-comprehension with a filter. The parser next succeeds only if the
input is non-empty, in which case it returns the next character. Using this, we may define
a parser to recognise a literal:

lit .2 Char — Parse ()
lite = [0]¢ < next, ¢ = ¢/,

Now we have a Parse-comprehension with a filter. The parser lit ¢ succeeds only if the
next character in the input is c.

As an example, a parser for fully parenthesised lambda terms, yielding values of the
type Term described previously, can be written as follows:

term :: Parse Term
term = [Varx| x < name
[[Lamxt| () « lit*C, () « lit*A’, x < name, () « lit*’,
t < term, () « lit*)y]Perse
Bl Apptu| () « lit‘C, t « term, u « term, () < lit ‘)]Ferse

] Parse

name .. Parse Name
name = [c|c« next,‘a’ <c,c<‘z]Puse

Here, for simplicity, it has been assumed that names consist of a single lower-case letter,
so Name = Char; and that ‘A’ and " are both characters.

7.2. Exceptions

The type Maybe x consists of either a value of type x, written Just x, or an exceptional
value, written Nothing:

data Maybex = Justx | Nothing.

http://journals.cambridge.org

Comprehending monads 483

(The names are due to Spivey (Spivey 1990).) The following operations yield a monad:

mapM@e f (Just x) = Just(f x)
mapM®be f Nothing = Nothing
unitMarbe x = Justx
joinMavbe (Just (Justx)) = Justx
joinMaybe (Just Nothing) = Nothing
joinMabe Nothing = Nothing.

‘We have that

[(x,)) | x « X, y « y]Marbe

returns Just (x, y) if X is Just x and y is Just y, and otherwise returns Nothing.
There is also a suitable zero for this monad, given by

Maybe

zero y = Nothing.

Hence [|M@% = Nothing and [x]M%% = Just x. For example, [x—1 | x > 1]M®b¢ returns
one less than x if x is positive, and Nothing otherwise.

Two useful operations test whether an argument corresponds to a value and, if so
return that value:

>

exists ;' Maybex — Bool
exists (Justx) = True

exists Nothing = False

the i1 Maybex — x
the (Just x) = X

Observe that
[thex | existsX MW = %

for all X :: Maybe x. If we assume that (the Nothing) = L, it is easily checked that the is a
monad morphism from Maybe to Str. We have that

the[x— 1] x> 1]Mob — [x —1|x>1]5"

as an immediate consequence of the monad morphism law. This mapping embodies the
common simplification of considering error values and L to be identical.
The biased-choice operator chooses the first of two possible values that is well defined:
("N :t Maybex — Maybe x — Maybe x
x?y = if existsX then X else 7.
The ? operation is associative and has Nothing as a unit. It appeared in early versions

of ML (Gordon, Milner and Wadsworth 1979), and similar operators appear in other
languages. As an example of its use, the term

the ([x — 1 | x > 1]Mavbe 9 [Marbe)

returns the predecessor of x if it is non-negative, and zero otherwise.

http://journals.cambridge.org

P. Wadler 484

In Wadler (1985) it was proposed to use lists to represent exceptions, encoding a value
x by the unit list, and an exception by the empty list. This corresponds to the mapping

List :t Maybex — Listx
list (Justx) = [x]-s
list Nothing = []Eist,

which is a monad morphism from Maybe to List. We have that
list(x?y) < (listX) H (listy),

where < is the sublist relation. Thus, exception comprehensions can be represented by
list comprehensions, and biased choice can be represented by list concatenation. The
argument in Wadler (1985) that list comprehensions provide a convenient notation for
manipulating exceptions can be mapped, via this morphism, into an argument in favour
of exception comprehensions!

7.3. Input and output

Fix the input and output of a program to be strings (e.g., the input is a sequence of
characters from a keyboard, and the output is a sequence of characters to appear on a
screen). The input and output monads are given by:

type Inx = String — (x, String)
type Outx = (x,String — String).

The input monad is a function from a string (the input to the program) to a pair of a
value and a string (the input to the rest of the program). The output monad is a pair of
a value and a function from a string (the output of the rest of the program) to a string
(the output of the program).

The input monad is identical to the monad of state transformers: fixing the state
to be a string and the operations map, unit, and join to be identical to those in the
state-transformer monad. Two useful operations in the input monad are

eof i InBool
eof = Ai.(nulli,i)
read :: InChar

read = A (head i,taili).

The first returns true if there is more input to be read, the second reads the next input
character.
The output monad is given by

map® fx = [(fx,o0t)]| (x,0t) < x]/
unit®“x = (x,40.0)
join®x = [(x,0t-of)| (X, 0t) <X, (x,0t') « X].

The second component of the pair is an output transformer, which given the output of
the rest of the program produces the output of this part. The unit produces no output of

http://journals.cambridge.org

Comprehending monads 485

its own, so its output transformer is the indentity function. The join operation composes
two output transformers. A useful operation in the output monad is

write 1 Char — Out ()
writec = ((),40.c :0).

This adds the character to be written onto the head of the output list.

Alternative definitions of the output monad are possible, but these do not behave as
well as the formulation given above. One alternative treats output as a state transformer,

type Out’' x = String — (x, String),
taking map, unit, and join as in the state transformer monad. The write operation is now

write 1 Char — Out ()
writec = lo.((),c : o).

This formulation is not so good, because it is too strict: output will not appear until the
program terminates. Another alternative is

type Out”x = (x, String)

map® fx = [(fx,0)](x,0) « %]

unit®"’ x = (x[]

join®'% = [(x,0H)| (%0) « X, (x,0) « x]H
write ¢ = (0, [c]).

This formulation is also not so good, because in the worst case the time to perform the
concatenation () operations is quadratic in the size of the output.

Finally, the output and input monads can be combined into a single monad:
type InOutx = String — (x, String, String — String).

Suitable definitions of map, unit, and join are left to the reader. Useful operations on this
monad are:

in i Inx — InOut x

inXx = Ai.[(x,i,%0.0) | (x,{) « xi]™
out it Outx — InOut x

outx = Ai.[(x,i,0t) | (x,0t) « x]
fun ;2 InOut () — (String — String)
funx = Ai.[ot[]] (0,7, 0t) « %i]".

The first two are monad morphisms from In and Out to InOut: they take input-only
and output-only operations into the input-output monad. The last takes a value in the
input-output monad into a function from the input to the output.

http://journals.cambridge.org

P. Wadler 486

7.4. Continuations

Fix a type R of results. The monad of continuations is given by

type Contx = (x—>R)—>R
mapC fx = Ak.X(Ax.k(f x))
unitcon x = Ak.kx

join®ox = Jk.X(Ax. % (Ax. k x)).

A continuation of type x takes a continuation function k :: x — R, which specifies how
to take a value of type x into a result of type R, and returns a result of type R. The unit
takes a value x into the continuation Ak.k x, which applies the continuation function to
the given value. We have that

[(ey) | x <%y < V]I = kX (x5 (Ay.k (x,).

This can be read as follows: evaluate X, bind x to the result, then evaluate y, bind y to
the result, then return the pair (x, y).
A useful operation in this monad is

callce it ((x » Conty) — Contx) — Cont x
calleccg = Ak.g (Ax. Ak . kx)k.

This mimics the “call with current continuation” (or call/cc) operation popular from
Scheme (Rees and Clinger 1986). For example, the Scheme program

(call/cc(lambd a(esc)(/x(if (= y0)(esc42)y))))

translates to the equivalent program

callce (Aesc. [x/z | z « if y = 0 then esc42 else y]¢°™).

Both of these programs bind esc to an escape function that returns its argument as the
value of the entire callcc expression. They then return the value of x divided by y, or
return 42 if y is zero.

8. Translation

In Section 4, we saw that a function of type U — V in an impure functional language
that manipulates state corresponds to a function of type U — ST V in a pure functional
language. The correspondence was drawn in an informal way, so we might ask, what
assurance is there that every program can be translated in a similar way? This section
provides that assurance, in the form of a translation of A-calculus into an arbitrary monad.
This allows us to translate not only programs that manipulate state, but also programs
that raise exceptions, call continuations, and so on. Indeed, we shall see that there are
two translations, one call-by-value and one call-by-name. The target language of both
translations is a pure, non-strict A-calculus, augmented with M-comprehensions.

We will perform our translations on a simple typed lambda calculus. We will use T,
U, V to range over types, and K to range over base types. A type is either a base type,

http://journals.cambridge.org

Comprehending monads 487

function type, or product type:
T, UV == K|U->V)|(U,VW).

We will use t, u, v to range over terms, and x to range over variables. A term is either a
variable, an abstraction, an application, a pair, or a selection:

Luv = x| (Ax.0) | (tu) | (w,v) | (fstt) | (snd).

In the following, we usually give the case for (fstt) but omit that for (snd t), since the two
are nearly identical. We will use 4 to range over assumptions, which are lists associating
variables with types:

A = x10:Ty,....x5 2 Ty
We write the typing A -t :: T to indicate that under assumption A the term t has type
T. The inference rules for well-typings in this calculus are well known, and can be seen
on the left hand sides of Figures 8 and 10.
The call-by-value translation of A-calculus into a monad M is given in Figure 7. The

translation of the type T is written T" and the translation of the term ¢ is written ¢*. The
rule for translating function types,

U->V)y =U ->MV",

can be read “a call-by-value function takes as its argument a value of type U and returns
a computation of type V”. This corresponds to the translation in Section 4, where a
function of type U — V in the (impure) source language is translated to a function of
type U — M V in the (pure) target language. Each of the rules for translating terms has
a straightforward computational reading. For example, the rule for applications,
tw = [yIf e xeu,y— (Y,

can be read “to apply ¢ to u, first evaluate ¢ (call the result f), then evaluate u (call the
result x), then apply f to x (call the result y) and return y”. This is what one would expect
in a call-by-value language — the argument is evaluated before the function is applied. If

xt T,y Tyt i T
is a well-typing in the source language, then its translation
xg Tl xy Ty b MT”

is a well-typing in the target language. Like the arguments of a function, the free
variables correspond to values, while, like the result of a function, the term corresponds
to a computation. Figure 8 demonstrates that the call-by-value translation preserves well-
typings: a term that is well-typed in the source language translates to one that is well-typed
in the target language.

The call-by-name translation of A-calculus into a monad M is given in Figure 9. Now
the translation of the type T is written T and the translation of the term ¢ is written ¢'.
The rule for translating function types,

U->W = MU 5> MV,

http://journals.cambridge.org

P. Wadler 488

Types
K" = K
U-V)y = U ->MV)
o, vy = (U,V)
Terms
x* = [x]M
(Ax.v)" = [(Ax.0")]M
(tw)" = Wlfet,xeu,y(Fx™
(u,0)* = [y |xeuw,yev M
(fstr)” = [(fstz) [z <"]™
Assumptions
(g Ty, Xy 0Ty = xp 1], x, 0 T
Typings
At T) = A+t =MT"
Fig. 7. Call-by-value translation.
A x:TkFx:T) = A, x T F[xMaMT*
A4, x2Ukov V) = A, x: UF MV*
AF (Ax.v) (U —>V) = AF[Uxo) M MU > MV
Akt (U ->V)) = A'Ft" MU > MV
AFu: U = A Fu MU
(AF (tu) 2 V)" = AF[y|fet,x—u,y=(Ffx) M MV*
AtFwu::U) = A tFtu MU
AFv V) = A kv MV
(AF () = (U, V) = AF[xy)|xeu,y=o M MU,V
Akt (U, V) = ARt MU,V
(AF (fstt) :: U)" = AF[(fstz)|z+—t'M:MU*

Fig. 8. The call-by-value translation preserves well-typing.

can be read “a call-by-name function takes as its argument a computation of type U and
returns a computation of type V. The rule for applications,

tw' = [ylf<t,y<FuH™,

can be read “to apply ¢ to u, first evaluate ¢ (call the result f), then apply f to the term
u (call the result y) and return y”. This is what one would expect in a call-by-name

http://journals.cambridge.org

Comprehending monads 489
Types
Kf = K
U->W = MU -MVhH
u,mt = MU, MV
Terms
xt = X
(Ax. v)f = [(Ax.ohHM
(tu)f = Ifethy—(Fuh™
(w,v)" = [@hoh)M
(fsto)t = [x|zethxe—(fstz)M
Assumptions

(1 Ty Xy = Tt =

Typings

X1

SMT),. . xg : MT)

(AFt=T) = AT oM TT

Fig. 9. Call-by-name translation.

A xTkx:T)

A, x::Ukov:W)f

A, x MT FxMT?

A, x oMUV oMYV

(AF (x.0) = (U = V)T

(AFt (U - V)
(AFu:U)f

ATF[Ax. oM = M MUY > M VT

ATt o MMUY - MV
AtFut oMUt

(AF (tuw) =M

(AFu::U)f
AFv Wt

Il

ATF[y|fethye—(Fu)M oMVT

At +ut MUY
At ot MYt

(AF (u,v) - (U, V)T

(AFt U,)t

AT [w,oh M oMM UT, M VT

ATE s MM U, MV

(AF (fstt) - U)T

ATF x|zt x — (fstz)]M :: MUT

Fig. 10. The call-by-name translation preserves well-typing.

language — the argument u is passed unevaluated, and is evaluated each time it is used.
The well-typing in the source language given previously now translates to

X1 ::MTIT,...,x,, ::MT,}LI-tT ::MTT,

which is again a well-typing in the target language. This time both the free variables and
the term correspond to computations, reflecting that in a call-by-name language the free

http://journals.cambridge.org

P. Wadler 490

variables correspond to computations (or closures) that must be evaluated each time they
are used. Figure 10 demonstrates that the call-by-name translation preserves well-typings.

In particular, the call-by-value interpretation in the strictness monad St¢r of Section 3.2
yields the usual strict semantics of A-calculus, whereas the call-by-name interpretation in
the same monad yields the usual lazy semantics.

If we use the monad of, say, state transformers, then the call-by-value interpretation
yields the usual semantics of a A-calculus with assignment. The call-by-name interpretation
yields a semantics where the state transformation specified by a variable occurs each time
the variable is accessed. This explains why the second translation is titled call-by-name
rather than call-by-need. Of course, since the target of both the call-by-value and call-
by-name translations is a pure non-strict A-calculus, there is no problem with executing
programs translated by either scheme in a lazy (i.e., call-by-need) implementation.

8.1. Example: Non-determinism

As a more detailed example of the application of the translation schemes, consider a
small non-deterministic language. This consists of the A-calculus as defined above with its
syntax extended to include a non-deterministic choice operator (L) and simple arithmetic:

tbuv = | wUv)|n| (u+v),

where n ranges over integer constants. This language is typed just as for lambda calculus.
We assume a base type Int, and that the additional constructs are typed as follows: for
any type T, if u :: T and v :: T then (uUv) :: T; n :: Int; and if u :: Int and v :: Int,
then (u 4 v) :: Int. For example, the term

(Aa.a+a) (1U2))

has the type Int. Under a call-by-value interpretation we would expect this to return
either 2 or 4 (ie, 1 + 1 or 2 + 2), whereas under a call-by-name interpretation we would
expect this to return 2 or 3or 4 (ie, 1 +1or1+42o0r2+1 or2+2).

We will give the semantics of this language by interpreting the A-calculus in the set
monad, as specified in Section 2.3. In what follows we will write {¢ | g } in preference to
the more cumbersome [t | ¢]5¢.

The call-by-value interpretation for this language is provided by the rules in Figure 7,
choosing M to be the monad Set, together with the rules:

wlov) = u"Uuv
n’ = {n}
w+v)" = {x+y|xeu,yv}

These rules translate a term of type T in the non-deterministic language into a term
of type SetT in a pure functional language augmented with set comprehensions. For
example, the term above translates to

If«{Ga{x+y|x «{a},y «{a}})},
x « {1} U {2},
ye—=(x}

which has the value {2,4}, as expected.

http://journals.cambridge.org

Comprehending monads 491

x* = Jlk.kx
Ax.v)" = Ak.k(Ax.v")
(tu) = Ak.t" (Af.u" (Ax. f xk))
w,v)" = ik.u (Ax.v" (Ay.k(x,)))
(fstt)" = Jk.t" (Az.k(fstz))
Fig. 11. Call-by-value continuation-passing style transformation
x = X
(Ax.v)f = Jk.k(x.vh)
(twf = Jk.t' (Af.fu'k)
W)t = Ikk@toh
(fst)t = Ikt (Jz.fstz k)

Fig. 12. Call-by-name continuation-passing style transformation

The call-by-name translation of the same language is provided by the rules in Figure 9.
The rules for (uU v), n, and (u + v) are the same as the call-by-value rules, replacing (—)*
with (—)'. Now the same term translates to

If —{Ga{x+)y |x «ay <a}}
y=f({1yu{2h},

which has the value {2, 3,4}, as expected.

A similar approach to non-determinism is taken by Hughes and O’Donnell (1989).
They suggest adding a set type to a lazy functional language, where a set is actually
represented by a non-deterministic choice of one of the elements of the set. The primitive
operations they provide on sets are just map, unit, and join of the set monad, plus set
union (U) to represent non-deterministic choice. They address the issue of how such sets
should behave with respect to L, and present an elegant derivation of a non-deterministic,
parallel, tree search algorithm. However, they provide no argument that all programs in a
traditional, non-deterministic functional language can be encoded in their approach. Such
an argument is provided by the translation scheme above.

8.2. Example: Continuations

As a final example, consider the call-by-value interpretation under the monad of contin-
uations, Cont, given in Section 7.4. Applying straightforward calculation to simplify the
Cont-comprehensions yields the translation scheme given in Figure 11, which is simply
the continuation-passing style transformation beloved by many theorists and compiler
writers (Plotkin 1975; Appel and Jim 1989).

Each of the rules retains its straightforward operational reading. For example, the rule
for applications,

(tw)' = Jk.t" (if.u" (Ax. f xk)),

http://journals.cambridge.org

P. Wadler 492

can still be read “to apply ¢ to u, first evaluate t (call the result f), then evaluate u (call
the result x), then apply f to x (call the result y) and return y”.

A similar calculation using the other translation scheme yields a call-by-name version
of continuation-passing style. This is less well known, but can be found in Reynolds
(1974) and Plotkin (1975).

Acknowledgements

I thank Eugenio Moggi for his ideas, and for the time he took to explain them to me. I
thank John Launchbury for his enthusiasm and suggestions. And for helpful comments
I thank Arvind, Stephen Bevan, Olivier Danvy, Kevin Hammond, John Hughes, Carsten
Kehler Holst, Michael Johnson, Austin Melton, Nikhil, Simon Peyton Jones, Andy Pitts,
Andre Scedrov, Carolyn Talcott, Phil Trinder, attenders of the 1989 Glasgow Summer
School on Category Theory and Constructive Logic, and an anonymous referee.

REFERENCES

Appel, A. and Jim, T. (1989) Continuation-passing, closure-passing style. In: 16th ACM Symposium
on Principles of Programming Languages, Austin, Texas.

Barr, M. and Wells, C. (1985) Toposes, Triples, and Theories. Springer Verlag.

Bird, R. and Wadler, P. (1988) Introduction to Functional Programming. Prentice Hall.

Bloss, A. (1989) Update analysis and the efficient implementation of functional aggregates. In: 4th
Symposium on Functional Programming Languages and Computer Architecture, ACM, London.

Fairbairn, J. (1987) Form follows function. Software — Practice and Experience, 17(6) 379-386.

Frost, R. and Launchbury, J. (1989) Constructing natural language interpreters in a lazy functional
language. The Computer Journal, 32(2) 108-121.

Gifford, D. K. and Lucassen, J. M. (1986) Integrating functional and imperative programming. In:
ACM Conference on Lisp and Functional Programming, Cambridge, Massachusetts, 28-39.

Goguen, J. A. (1988) Higher order functions considered unnecessary for higher order programming.
Technical report SRI-CSL-88-1, SRI International.

Gordon, M., Milner, R. and Wadsworth, C. (1979) Edinburgh LCF. LNCS 78, Springer-Verlag.

Guzman, J. and Hudak, P. (1990) Single-threaded polymorphic lambda calculus. In: IEEE Sympo-
sium on Logic in Computer Science, Philadelphia.

Harper, R., Milner, R. and Tofte, M. (1988) The definition of Standard ML, version 2. Report
ECS-LFCS-88-62, Edinburgh University, Dept. of Computer Science.

Holmstrom, S. (1983) A simple and efficient way to handle large data structures in applicative
languages. In: Proceedings SERC/Chalmers Workshop on Declarative Programming, University
College London.

Hudak, P. (1986a) A semantic model of reference counting and its abstraction (detailed summary).
In: ACM Conference on Lisp and Functional Programming, Cambridge, Massachusetts, 351-363.

Hudak, P. (1986b) Arrays, non-determinism, side-effects, and parallelism: a functional perspective.
In: J. H. Fasel and R. M. Keller, editors, Workshop on Graph Reduction, Santa Fe, New Mexico,
LNCS 279, Springer-Verlag.

Hudak, P.,, Peyton Jones, S. and Wadler, P, editors, (1991) Report on the Programming Language
Haskell: Version 1.1. Technical report, Yale University and Glasgow University.

Hughes, J. (1989) Why functional programming matters. The Computer Journal, 32(2) 98-107.

http://journals.cambridge.org

Comprehending monads 493

Hughes, J. and O’Donnell, J. (1989) Expressing and reasoning about non-deterministic functional
programs. In: K. Davis and J. Hughes, editors, Functional Programming, Glasgow 1989 (Glasgow
workshop, Fraserburgh, August), Workshops in Computing, Springer Verlag.

Lambek, J. and Scott, P. (1986) Introduction to Higher Order Categorical Logic. Cambridge Univer-
sity Press.

Mac Lane, S. (1971) Categories for the Working Mathematician. Springer-Verlag.

Mason, I. and Talcott, C. (1989) Axiomatising operational equivalence in the presence of side effects.
In: IEEE Symposium on Logic in Computer Science, Asilomar, California.

Milner, R. (1984) A proposal for Standard ML. In: ACM Symposium on Lisp and Functional
Programming, Austin, Texas.

Moggi, E. (1989a) Computational lambda-calculus and monads. In: IEEE Symposium on Logic in
Computer Science, Asilomar, California. (A longer version is available as a technical report from
the University of Edinburgh.)

Moggi, E. (1989b) An abstract view of programming languages. Course notes, University of Edin-
burgh.

Plotkin, G. (1975) Call-by-name, call-by-value, and the A-calculus. Theoretical Computer Science, 1
125-159.

Rees, J. and Clinger, W., editors, (1986) The revised® report on the algorithmic language Scheme.
ACM SIGPLAN Notices, 21(12) 37-79.

Reynolds, J. C. (1974) On the relation between direct and continuation semantics. In: Colloquium
on Automata, Languages and Programming, Saarbriicken, LNCS 14, Springer-Verlag.

Reynolds, J. C. (1983) Types, abstraction, and parametric polymorphism. In: R. E. A. Mason, editor,
Information Processing 83, North-Holland, Amsterdam, 513-523.

Schmidt, D. A. (1985) Detecting global variables in denotational specifications. ACM Transactions
on Programming Languages and Systems, 7 299--310.

Spivey, M. (1990) A functional theory of exceptions. Science of Computer Programming, 14(1) 25-42.

Turner, D. A. (1982) Recursion equations as a programming language. In: J. Darlington, P.
Henderson, and D. A. Turner, editors, Functional Programming and its Applications, Cambridge
University Press.

Turner, D. A. (1985) Miranda: A non-strict functional language with polymorphic types. In: Pro-
ceedings of the 2nd International Conference on Functional Programming Languages and Computer
Architecture, Nancy, France, LNCS 201, Springer Verlag.

Wadler, P. (1985) How to replace failure by a list of successes. In: 2nd Symposium on Functional
Programming Languages and Computer Architecture, Nancy, LNCS 273, Springer-Verlag.

Wadler, P. (1987) List comprehensions. In: S. L. Peyton Jones, The Implementation of Functional
Programming Languages, Prentice Hall.

Wadler, P. (1989) Theorems for free! In: 4th Symposium on Functional Programming Languages and
Computer Architecture, ACM, London.

Wadler, P. (1990a) Linear types can change the world! In: M. Broy and C. Jones, editors, Pro-
gramming Concepts and Methods (IFIP Working Conference, Sea of Gallilee, Israel, April), North
Holland.

Wadler, P. (1990b) Comprehending monads. In: ACM Conference on Lisp and Functional Program-
ming, Nice.

Wadler, P. (1991) Is there a use for linear logic? In: Conference on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM), ACM, New Haven, Connecticut.

Wadler, P. (1992) The essence of functional programming. In: Proceedings of the 19th Annual
Symposium on Principles of Programming Languages, Albuquerque, N.M.

http://journals.cambridge.org

