The Hydrophobic Cysteine-rich Domain of SNAP25 Couples with Downstream Residues to Mediate Membrane Interactions and Recognition by DHHC Palmitoyl Transferases

Citation for published version:

Digital Object Identifier (DOI):
10.1091/mbc.E08-09-0944

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Molecular Biology of the Cell

Publisher Rights Statement:
This is an Open-Access article distributed under the Creative Commons Attribution Non-Commerical Share Alike 3.0 License.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The Hydrophobic Cysteine-rich Domain of SNAP25 Couples with Downstream Residues to Mediate Membrane Interactions and Recognition by DHHC Palmitoyl Transferases

*Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; †Division of Membrane Physiology, National Institute for Physiological Sciences, Okazaki 444-8787, Japan; ‡PRESTO, Japan Science and Technology Agency, Tokyo 102-0075, Japan; and §INSERM U845, Faculte de Medecine Paris Descartes–Site Necker, 75730 Paris Cedex 15, France

Submitted September 17, 2008; Revised December 11, 2008; Accepted January 12, 2009
Monitoring Editor: Thomas F.J. Martin

SNAP25 is synthesized as a soluble protein but must associate with the plasma membrane to function in exocytosis; however, this membrane-targeting pathway is poorly defined. SNAP25 contains a palmitoylated cysteine-rich domain with four cysteines, and we show that coexpression of specific DHHC palmitoyl transferases is sufficient to promote SNAP25 membrane association in HEK293 cells. siRNA-mediated knockdown of its SNARE partner, syntaxin 1A, does not affect membrane interaction of SNAP25 in PC12 cells, whereas specific cysteine-to-alanine mutations perturb membrane binding, which is restored by leucine substitutions. These results suggest a role for cysteine hydrophobicity in initial membrane interactions of SNAP25, and indeed other hydrophobic residues in the cysteine-rich domain are also important for membrane binding. In addition to the cysteine-rich domain, proline-117 is also essential for SNAP25 membrane binding, and experiments in HEK293 cells revealed that mutation of this residue inhibits membrane binding induced by coexpression with DHHC17, but not DHHC3 or DHHC7. These results suggest a model whereby SNAP25 interacts autonomously with membranes via its hydrophobic cysteine-rich domain, requiring only sufficient expression of partner DHHC proteins for stable membrane binding. The role of proline-117 in SNAP25 palmitoylation is one of the first descriptions of elements within substrate proteins that modulate DHHC specificity.

INTRODUCTION

The posttranslational thioester linkage of palmitate groups onto cysteine residues (S-palmitoylation) plays an important role in regulating protein interactions with intracellular membranes. In addition, palmitoylation can regulate the intracellular trafficking of proteins, protein microlocalization within membranes, and protein stability (Resh, 2006; Greaves and Chamberlain, 2007; Linder and Deschenes, 2007; Nadolski and Linder, 2007). The study of protein palmitoylation has been severely hindered in the past due to a lack of knowledge about the palmitoylating enzymes. However, 23 mammalian and seven yeast palmitoyl transferases (PATs) containing a signature DHHC-CRD (cysteine-rich domain) were recently identified (Lobo et al., 2002; Roth et al., 2002; Fukata et al., 2004; Huang et al., 2004; Keller et al., 2004; Mitchell et al., 2006) and shown to be responsible for the large majority of cellular palmitoylation, in yeast at least (Roth et al., 2006). Mutation of residues in the DHHC domain of these enzymes blocks activity, suggesting that this region of the proteins may form part of the catalytic site.

DHHC proteins have four or more predicted transmembrane domains (TMDs), with the DHHC-CRD putative catalytic domain predicted to be cytosolically exposed; this topology has been confirmed for the yeast enzyme Akr1p (Politis et al., 2005). The large number of DHHC proteins and the association of several of these proteins with the same intracellular compartments (predominantly ER/Golgi) suggest likely differences in substrate specificity and regulation. Indeed, some yeast enzymes were shown to exhibit preferences for certain types of substrate, and although some proteins were modified by more than one enzyme, others required a specific enzyme for palmitoylation (Hou et al., 2005; Smotrys et al., 2005; Roth et al., 2006). The identification of the DHHC family of PATs has reinvigorated the study of protein palmitoylation and provides essential information and tools to dissect the outcome(s) of protein palmitoylation in a cellular context.

Although no general consensus sequence specifying palmitoylation exists, a compelling factor that decides whether...
a cysteine residue is palmitoylated is undoubtedly its proximity to the membrane. As previously discussed, the exclusive membrane localization of DHHC proteins implies that palmitoylated proteins require specific membrane-targeting signals to facilitate initial membrane interaction (Greaves and Chamberlain, 2006, 2007; Greaves et al., 2008). A number of studies have highlighted the importance of palmitoylation for correct sorting of proteins containing TMDs, e.g., (Hayashi et al., 2005; Lam et al., 2006; Abrami et al., 2008). In addition to TMD proteins, a number of signaling molecules utilize isoprenyl or myristoyl modifications (which are added in the cytosol) to mediate transient membrane interactions. For example, the farnesyl group of H- and N-Ras provides the proteins with a weak membrane affinity that allows the protein to “sample” a variety of intracellular membranes (Magee et al., 1987; Choy et al., 1999; Goodwin et al., 2005; Rocks et al., 2005). Palmitoylation only occurs when Ras associates with a membrane compartment (Golgí/ER containing the Ras PAT (Swarthout et al., 2005); palmitoylation “traps” Ras on that membrane, facilitating its forward transport (Rocks et al., 2005; Roy et al., 2005).

While primary membrane-targeting information in some proteins is obvious, such as TMDs or isoprenyl/myristoyl modifications, other palmitoylated proteins lack obvious membrane-targeting signals (Greaves and Chamberlain, 2006). This is the case with SNAP25, an essential component of the neuronal/neuroendocrine SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex that mediates exocytosis. In contrast to the large majority of SNAREs, SNAP25 lacks a TMD, and mutations within the palmitoylated cysteine-rich domain have been reported to block stable membrane association and targeting (Vogel et al., 2000; Washbourne et al., 2001). The mechanisms regulating SNAP25 membrane targeting before palmitoylation have been much debated. In particular, some studies have suggested a key role for syntaxin 1 (the SNARE partner of SNAP25) in driving initial membrane interaction of SNAP25 (Vogel et al., 2000; Washbourne et al., 2001); however, others (Gonzalo et al., 1999; Loranger and Linder, 2002) have refuted this idea. In particular, a minimal fragment of SNAP25 containing amino acids 85-120 (which includes the palmitoylated cysteines) was shown to target enhanced green fluorescent protein (EGFP) to the plasma membrane (Gonzalo et al., 1999). This region of SNAP25 lacks the SNARE motifs and hence syntaxin-binding sites, providing evidence that SNAP25 traffics independently of syntaxin (Loranger and Linder, 2002). In addition, a recent study reported that syntaxin 1A perturbed plasma membrane delivery of SNAP25 when expressed in the absence of the syntaxin 1A chaperone, munc18 (Medine et al., 2007).

To probe the mechanisms involved in SNAP25 membrane interactions further, we have performed a detailed mutagenic study of the 85-120 minimal membrane-targeting domain present within full-length SNAP25 and examined how specific DHHC enzymes regulate SNAP25 membrane interaction. Cysteine residues and specific surrounding amino acids are implicated in initial membrane binding, most likely via hydrophobic interactions with membranes. Initial access to the membrane interface is important to allow interaction with specific DHHC proteins, which palmitoylate SNAP25 and promote stable membrane attachment. Interestingly, conserved amino acids (in particular proline-117) appear to be important in determining the specificity of DHHC interaction.

MATERIALS AND METHODS

Plasmid Constructs, Antibodies, and Chemicals

Plasmid containing rat SNAP25 fused to an N-terminal EGFP tag was as previously described (Greaves et al., 2008). This construct (lacking the initiating methionine of SNAP25) was used as a template to produce all the SNAP25B substitution and deletion mutants used in this study by site-directed mutagenesis. This plasmid was also used as a template to amplify the nucleotide sequence coding for amino acids 93-120, which was then cloned into pEGFP-C2 using commercially available restriction sites that were present within the oligonucleotide primers used in the PCR reaction. SNAP25B(85-120) with a C-terminal EGFP tag was kindly provided by Dr. Maurine Linder (Washington University at St. Louis) (Gonzalo et al., 1999). Hemagglutinin (HA)-tagged mouse DHHC3, DHHC7, and DHHC17 clones in pEF-BOS-HA were as previously described (Fukata et al., 2004), DHHC-17/HDH3 mutations were introduced into the respective plasmids by site-directed mutagenesis (Greaves et al., 2008). The fidelity of all mutant constructs was confirmed by DNA sequencing (University of Dundee DNA sequencing service, Dundee, Scotland).

Anti-GFP mAb (IgL) was purchased from Clontech (Palo Alto, CA). Anti-SNAP25 and anti-syntaxin 1A antibodies were supplied by Synaptic Systems (Göttingen, Germany). Anti-HA mAb and COMPLETE protease inhibitor cocktail were from Roche (Leuven, East Sussex, United Kingdom). Subcellular proteome extraction kit (SPEK) was purchased from Merck Biosciences (Nottingham, United Kingdom).

Anti-GFP mAb (IgL) was purchased from Clontech (Palo Alto, CA). Anti-SNAP25 and anti-syntaxin 1A antibodies were supplied by Synaptic Systems (Göttingen, Germany). Anti-HA mAb and COMPLETE protease inhibitor cocktail were from Roche (Leuven, East Sussex, United Kingdom). Cells were maintained in a humidified atmosphere containing 5% CO2.

For all experiments, cells were plated onto 24-well plates or coverslips precoated with poly-d-lysine. Cells were transfected using Lipotectamine 2000 (Invitrogen) according to the manufacturer’s instructions; the ratio of DNA used was 2:1. PC12 cells were analyzed via hydrophobic interactions with membranes. Initial access to the membrane interface is important to allow interaction with specific DHHC proteins, which palmitoylate SNAP25 and promote stable membrane attachment. Interestingly, conserved amino acids (in particular proline-117) appear to be important in determining the specificity of DHHC interaction.

Cell Culture and Cell Transfection

PC12 cells were grown in RPMI1640 media with 10% horse serum and 5% fetal calf serum containing penicillin/streptomycin. Human embryonic kidney (HEK) cells were cultured in DMEM with 10% fetal calf serum with penicillin/streptomycin. All reagents were of an analytical grade from Sigma (Poole, Dorset, United Kingdom).

Small Interfering RNA Transfection

PC12 cells growing on poly-d-lysine-coated coverslips were fixed in 4% formaldehyde (in PBS) for 30 min at room temperature, washed in PBS, and permeabilized with 0.5 mCi/ml [3H]palmitic acid (Perkin Elmer-Cetus, Beaconsfield, United Kingdom) for 4 h, and EGFP-SNAP25 or the 117-120A mutant were subsequently immunoprecipitated using anti-GFP antibody coupled to magnetic microbeads (Miltenyi Biotech, Bisley, United Kingdom). The precipitated samples were resolved on duplicate gels and transferred to nitrocellulose membranes that were then either subjected to immunoblotting using anti-GFP or were exposed to film with the aid of a Kodak Biomax Transscan LE intensifier screen (Eastman Kodak, Rochester, NY) for detection of [3H]palmitate incorporation.

Immuno-fluorescence

PC12 cells growing on poly-d-lysine-coated coverslips were fixed in 4% formaldehyde (in PBS) for 30 min at room temperature, washed in PBS, and
Figure 1. The extent of membrane binding of SNAP25B in HEK293 cells is dependent on expression levels and is enhanced by coexpression of specific DHHC palmitoyl transferases. (A) HEK293 cells were transfected with a range of amounts of EGFP-SNAP25B plasmid as indicated. The total amount of transfected DNA in each condition was kept constant by including empty pEGFP-C2 vector in appropriate amounts. After ~20 h of transfection, the cells were fractionated into cytosol (C) and membrane (M) fractions. Distribution of SNAP25B in the recovered fractions was determined by immunoblotting with anti-GFP. Short and long denote short and long exposure times of the same immunoblot. (B) HEK293 cells were transfected with 0.8 µg EGFP-SNAP25B plasmid with or without 1.6 µg of HA-DHHC3, HA-DHHC7, or HA-DHHC17. Recovered cytosol (C) and membrane (M) fractions were analyzed by immunoblotting with anti-GFP and anti-HA. Left panel, representative immunoblots; right panel, average percentage membrane association of SNAP25B after cotransfection with the DHHCs compared with transfection in the absence of DHHC (n = 5). ** p < 0.005 and * p < 0.02, compared with the % membrane binding of EGFP-SNAP25B in the absence of DHHC expression. (C) EGFP-SNAP25B was transfected into HEK293 cells with or without HA-DHHC3 or HA-DHHC3(C157S) plasmids, and recovered cytosol (C) and membrane (M) fractions were analyzed by immunoblotting using anti-GFP and anti-HA antibodies. Left panel, representative immunoblots; right panel, average percentage change in membrane association of SNAP25B after cotransfection with the DHHCs compared with transfection in the absence of DHHC (n = 4). The effects of DHHC3 and DHHC3(C157S) cotransfection on SNAP25B membrane binding were significantly different (p < 0.004 using a Student’s t test). (D) HEK293 cells transfected with EGFP-SNAP25B with or without DHHC7 or DHHC7(C160S) cotransfection were analyzed as described for panel C. The effects of DHHC7 and DHHC7(C160S) cotransfection on SNAP25B membrane binding were significantly different (p < 0.01 using a Student’s t test). (E) HEK293 cells transfected with EGFP-SNAP25B with or without DHHC2, DHHC4, or DHHC3 were analyzed as described for panel C. The effects of DHHC2 and DHHC4 cotransfection on SNAP25B membrane binding were significantly different from DHHC3 cotransfection (p < 0.03 and p < 0.02, respectively, using a Student’s t test). Position of molecular-weight standards is shown on the left side of all panels. Note that polyacrylamide gels used in A and B were 10% gels that are used to highlight the different migrations of cytosolic and membrane-associated SNAP25B. In contrast, 4–12% precast gels were used in C–E; these gels do not resolve the different migrations of cytosolic and membrane-bound pools of SNAP25B. SNAP25B migrates at a slightly higher position on 4–12% gels than on 10% gels relative to the molecular-weight standards.

Quantification and Statistical Analysis
Quantification of band density on immunoblots was determined using ImageJ software (http://rsb.info.nih.gov/ij/). Data are expressed as average % membrane association ± SEs. Statistical analysis was performed using unpaired Student’s t test.

RESULTS
Membrane Binding of SNAP25B Is Inefficient in HEK293 Cells and Is Enhanced by Coexpression of Specific DHHC Palmitoyl Transferases
To probe the mechanisms involved in SNAP25 membrane interactions, we initially examined membrane binding of the protein in HEK293 cells, which lack neuronal-specific partner proteins of SNAP25. As a first step, we examined the distribution of EGFP-SNAP25B within cytosol and membrane fractions purified from transfected cells. This analysis demonstrated that SNAP25B was largely membrane associated at low expression levels (Figure 1A), in agreement with previous work showing efficient plasma membrane delivery of SNAP25 in HEK293 cells (Medine et al., 2007). However, as expression levels of EGFP-SNAP25B were increased, there was a gradual loss of relative membrane association (Figure 1A). This suggests that a factor(s) required for membrane targeting of SNAP25B is present in only limiting concentrations in HEK293 cells, and this cell type thus provides a useful model to examine proteins that regulate SNAP25B membrane interaction.

We recently showed that membrane association of cysteine-string protein (CSP) in HEK293 cells is enhanced after coexpression of its partner DHHC proteins (DHHC3, DHHC7, DHHC15, or DHHC17; Greaves et al., 2008). As SNAP25B is palmitoylated by the same enzymes as CSP (Fukata et al., 2006), we reasoned that inefficient membrane association of SNAP25B in HEK293 cells may also reflect limiting expression of these DHHC proteins. To test this idea, we examined the effects on SNAP25B membrane inter-

Vol. 20, March 15, 2009 1847
action of coexpressing DHHC3, DHHC7, or DHHC17. All three DHHC proteins promoted a significant increase in
the level of SNAP25B membrane binding (Figure 1B). This effect
was specific, as mutations within the putative catalytic
domains (DHHC to DHHS mutations) of DHHC3 and DHHC7
completely abolished the ability of the enzymes to en-
hance membrane binding of SNAP25B, and indeed both
mutants decreased SNAP25B membrane association (Fig-
ure 1, C and D).

As a further test of DHHC specificity, we examined the
effects on SNAP25B membrane binding of coexpressing
DHHC2 or DHHC4, enzymes that are not known to palmi-
toylate SNAP25B (Fukata et al., 2006). These enzymes had no
stimulatory effect on SNAP25B membrane binding (Figure
1E), despite being expressed at similar levels to DHHC3.
These results clearly demonstrate that specific palmitoyl
transferases are sufficient to drive stable membrane inter-
caction of SNAP25B in HEK293 cells.

Note that palmitoylation of SNAP25 leads to a decreased
rate of migration by SDS-PAGE that is visible under specific
gel conditions (Gonzalo and Linder, 1998). This band-shift
was visible for EGFP-SNAP25B when samples were re-
solved on 10% SDS-PAGE gels (as shown in Figure 1, A and
B). This observation shows that the increase in membrane
binding of SNAP25B promoted by DHHC3/DHHC7/
DHHC17 in HEK293 cells correlates with increased palmi-
toylation. The visualization of a palmitoylation-dependent band-shift in SNAP25 gives a more meaningful readout of
palmitoylation status than [3H]palmitate labeling. For exam-
ple, it is not easy to determine whether a change in
[3H]palmitate incorporation into a multiply palmitoylated
protein such as SNAP25 reflects: 1) an increase in the num-
ber of protein molecules that are palmitoylated, 2) an in-
creased extent of palmitoylation of a fixed pool of protein, or
3) a combination of these factors. By analyzing SNAP25
migration in purified cytosol and membrane fractions, we
have been confident that the number of SNAP25 molecules
that are palmitoylated is increased by DHHC coexpression.

Cysteine Residues and Flanking Hydrophobic
Amino Acids Are Important for SNAP25B Membrane Interactions

The previous section clearly demonstrated that the expres-
sion level of specific DHHC proteins regulates stable mem-
brane binding of SNAP25B in HEK293 cells. However, as
DHHC proteins are membrane associated, these results do
not offer any insight into the mechanism of initial membrane
interaction of SNAP25B. Syntaxin 1 has been proposed by
several groups to regulate membrane binding of SNAP25B,
and indeed the two proteins were reported to interact in the
cytosol of PC12 cells after synthesis (Vogel et al., 2000).
However, other groups have suggested that SNAP25 mem-
brane trafficking occurs independently of syntaxin (see e.g.,
Gonzalo et al., 1999; Loranger and Linder, 2002; Medine et
al., 2007), and we have shown that DHHC proteins are
sufficient to drive stable membrane attachment of SNAP25
in HEK293 cells in the absence of syntaxin 1 expression.
The major isoform of syntaxin 1 in PC12 cells is syntaxin 1A,
and to directly explore the role of this protein in SNAP25 mem-
brane binding in PC12 cells, we used siRNA specific for
syntaxin 1A to deplete cellular expression levels. Reduction
of syntaxin 1A by ~70% (Figure 2A) was found to have no
effect on SNAP25 membrane association (Figure 2B), despite
reports that endogenous SNAP25 is expressed at several-
fold excess above syntaxin 1 in this cell type (Xiao et al.,
2004).

The lack of a detectable effect of syntaxin 1A knockdown
on SNAP25 membrane association in PC12 cells is consistent
with the finding that DHHC expression in HEK293 cells
(which do not express endogenous syntaxin 1) is sufficient to
drive stable membrane binding of SNAP25 (Figure 1). On
the basis of our recent results examining membrane binding
and palmitoylation of CSP (Greaves and Chamberlain, 2006;
Greaves et al., 2008), we reasoned that the hydrophobicity of
cysteine residues is important for initial mem-
brane contact of SNAP25B. A number of studies have exam-
ined the effects on SNAP25 membrane interactions of
mutating individual cysteine residues to alanine, serine,
or glycine. The general consensus from these studies is that
mutation of an individual cysteine reduces membrane bind-
ing/palmitoylation by ~50%, whereas mutation of any two
cysteines results in an ~90% reduction (Lane and Liu, 1997;
Gonelle-Gispert et al., 2000; Washbourne et al., 2001). How-
ever, no comprehensive analysis of the individual cysteine
residues has been performed in a cell type that endog-

Figure 2. Knockdown of syntaxin 1A expression in PC12 cells does not affect membrane binding of endogenous SNAP25. PC12 cells
were incubated in the presence of 100 nM random siRNA (−) or syntaxin 1A siRNA (+) for ~70 h. Cells were then either lysed
directly in SDS-dissociation buffer (A) of fractionated into cytosol
(C) and membrane (M) fractions (B). Recovered fractions were
analyzed by immunoblotting using antibodies against syntaxin 1A
or SNAP25 as indicated. Position of molecular-weight standards are
indicated on the left.
Fig. 3. Membrane binding of SNAP25B proteins with mutations in the cysteine-rich domain. (A) Schematic diagram of SNAP25B with the minimal membrane-targeting sequence (residues 85-120) shown in black. The sequence of amino acids 85-120 is given, with cysteine residues highlighted in bold and underlined. (B) C85, C88, C90, and C92 in full-length SNAP25B fused to the C-terminus of EGFP were mutated individually to alanine or leucine residues. The mutant constructs were transfected into PC12 cells, and 40 h later the cells were fractionated into cytosol (C) and membrane (M) fractions. Distribution of the cysteine mutants in the recovered fractions was analyzed by immunoblotting with anti-GFP. Top panel, representative immunoblots; bottom panel, averaged data for membrane binding; error bars, SE (n = 5 for C85A, C88A, C90A, and C92A; n = 6 for C92A and C92L). The level of membrane binding of the C85L, C88L, and C92L mutants was statistically different from the C85A, C88A, and C92A mutants, respectively: *p < 0.005 (Student's t test), **p < 0.0001, and ***p < 0.00001. (C) Distribution of SNAP25B wild-type and 4CL mutant in cytosol (C) and membrane (M) fractions from PC12 cells. (D) Distribution of SNAP25B wild-type, L87A/V89A, and L87V/V89L mutants in cytosol (C) and membrane (M) fractions purified from transfected PC12 cells. Top panel, representative immunoblot; bottom panel, averaged data for the % membrane binding (n = 3). The level of membrane binding of the L87A/V89A mutant was significantly reduced compared with wild-type SNAP25B (**p < 0.00007) and compared with L87V/V89L (*p < 0.002), and there was no significant difference between wild-type SNAP25B and the L87V/V89L mutant. (E) HEK293 cells were transfected with EGFP-SNAP25B/C85/C92A) mutant with or without DHHC3 transfection, and 20 h later the cells were fractionated into cytosol (C) and membrane (M) fractions, which were analyzed by immunoblotting using anti-GFP. The position of molecular-weight standards are shown on the left side of all figure parts.

Mutational Analysis of the Role of Amino Acids 93-120 in SNAP25B Membrane Binding

The data presented in the previous section support the notion that cysteine residues in SNAP25B play an important role in initial membrane interaction of SNAP25B. However, previous work, analyzing SNAP25B truncation mutants, mapped the minimal membrane-targeting sequence of SNAP25B to residues 85-120 (Gonzalo et al., 1999), which includes the palmitoylated cysteine residues at positions 85, 88, 90, and 92 (Figure 3A) and the downstream 28 amino acids. It is not clear whether residues 93-120 play a direct role in membrane binding of full-length SNAP25B (e.g., by forming an essential part of the DHHC-binding site). As a first step to dissect the role of residues 93-120 in membrane binding of SNAP25B, we examined the possibility that residues downstream of the palmitoylated cysteines mediate initial membrane interactions of SNAP25B. Thus, PC12 cells were transfected with S25(85-120)-EGFP or EGFP-S25(93-120) constructs, and the protein distribution was analyzed by confocal imaging. Figure 4A shows that, in contrast to the S25(85-120) construct that was efficiently targeted to the plasma membrane (Gonzalo et al., 1999), the S25(93-120) construct showed a dispersed localization that was distributed throughout the cytoplasm and the nucleus of PC12 cells. These data demonstrate that region 93-120 of SNAP25B does not contain strong autonomous membrane-targeting information.
data (pressed as % membrane association. The graph shows averaged membrane (M) fractions. The distribution of the EGFP-tagged proteins in isolated fractions was examined by immunoblotting with anti-GFP. The position of molecular-weight standards are shown on the left side. (C) The relative levels of the mutant proteins in cytosol and membrane fractions were quantified by densitometry and expressed as % membrane association. The graph shows averaged data (n = 3); error bars, SE. The level of membrane association of 113-116A and 117-120A were statistically different from wild-type SNAP25B: * p < 0.005 (Student's t test), ** p < 0.002.

Figure 4. Mutational analysis of SNAP25B membrane targeting. (A) The distribution of S25(85-120)-EGFP and EGFP-S25(93-120) constructs in PC12 cells was examined by confocal imaging. Scale bars, 5 μm. (B) Residues 93-120 present within full-length SNAP25B fused to the C-terminus of EGFP were mutated in blocks of four amino acids to alanine (any alanines already present in this region were mutated to leucine). The constructs were transfected into PC12 cells, and 40 h later the cells were fractionated into cytosol (C) and membrane (M) fractions. The distribution of the EGFP-tagged proteins in isolated fractions was examined by immunoblotting with anti-GFP. The position of molecular-weight standards are shown on the left side. (C) The relative levels of the mutant proteins in cytosol and membrane fractions were quantified by densitometry and expressed as % membrane association. The graph shows averaged data (n = 3); error bars, SE. The level of membrane association of 113-116A and 117-120A were statistically different from wild-type SNAP25B: * p < 0.005 (Student's t test), ** p < 0.002.

an alanine-scanning mutagenesis approach. This represents the first analysis of the role of these amino acids in the trafficking of full-length SNAP25B and is important because it has been questioned whether trafficking of the isolated 85-120 domain faithfully represents trafficking of wild-type SNAP25B (Vogel et al., 2000). Residues 93-120 were mutated in blocks of four amino acids to alanine (any alanines already present in this region were mutated to leucine). The constructs were transfected into PC12 cells, and cytosol and membrane fractions prepared. As shown in Figure 4, B and C, the majority of amino acids between residues 93-120 were dispensable for membrane binding, with the exception of the C-terminal eight amino acids (residues 113-120). We also confirmed these results using a cell homogenization-based fractionation approach (Supplementary Figure S1). These results agree well with the work of Linder’s group studying SNAP25B fragments, which showed a decrease in membrane binding when amino acids Q116, P117, and R119 were mutated together within the context of the SNAP25B(85-120) construct (Gonzalo et al., 1999). Note that we consistently observed a lower expression level of the 113-116A and 117-120A mutants compared with wild-type EGFP-SNAP25B in PC12 cells, suggesting that turnover of these mutants may be increased, perhaps because of a loss of membrane binding. As an independent measure of membrane targeting and to detect any changes in intracellular localization of the various SNAP25B mutants, we also examined transfected cells by confocal imaging. All membrane-bound mutants (93-96A, 97-100A, 101-104A, 105-108A, and 109-112A) were targeted efficiently to the plasma membrane. Scale bars, 5 μm.

Figure 5. Intracellular localization of EGFP-SNAP25B proteins mutated within the minimal membrane-targeting sequence. The indicated plasmids were transfected into PC12 cells, and 40 h later the distribution of expressed proteins was examined by confocal imaging. Note that all constructs with the exception of 113-116A and 117-120A were targeted efficiently to the plasma membrane. Scale bars, 5 μm.
membrane binding (Figure 7B). In contrast, replacing P117 with glycine, aspartic acid, lysine, leucine or serine all significantly inhibited membrane binding (Figure 7B).

Importance of the Spacing Between Cysteine Residues and Downstream Elements in the Membrane Targeting Domain for Efficient Membrane Binding of SNAP25B

Mutational analyses presented thus far have highlighted the importance of cysteine residues as well as downstream amino acids (in particular P117) for membrane binding of SNAP25B. We next investigated whether these two regions of the SNAP25 membrane-targeting domain are coupled. For this, a series of deletion mutants were constructed, in which a number of amino acids were removed between the cysteine-rich domain and P117. The specific amino acids that were removed were chosen because they were found to be nonessential for SNAP25B membrane binding (Figure 4) and because they were roughly equidistant from the two domains of interest. Removal of amino acids 101–104 or 105–108 had no detectable effect on membrane binding of EGFP-SNAP25B (Figure 8A). When longer deletions were constructed, we found that the removal of seven amino acids (Δ101–107) caused a marked loss of SNAP25B membrane binding (Figure 8B). These results show that the spacing between the cysteine-rich domain and residues downstream (P117) is important, suggesting that these two regions of the membrane-targeting domain are functionally coupled.

Differential Effects of Specific DHHC Proteins on Membrane Binding of SNAP25B Mutants

We used the ability of DHHC enzymes to rescue SNAP25B membrane association in HEK293 cells to probe the role of residues 117-120 of SNAP25B in stable membrane binding; for example, one possibility would be that these residues are important for DHHC recognition. For this, SNAP25B(117-120A) and SNAP25B(Δ101–107) were transfected into HEK293 cells either with DHHC3, DHHC7, DHHC17, or empty vector. Recovered cytosol and membrane fractions were resolved on 10% SDS-PAGE gels to allow visualization of the palmitoylation-dependent band-shift. Results presented (Figure 9) clearly show that both DHHC3 and DHHC7 enhanced membrane binding of the 117-120A and Δ101–107 mutants and also that a band-shift occurs for membrane-bound protein, consistent with palmitoylation. In contrast, cotransfection of DHHC17 only very weakly stimulated membrane binding of the SNAP25 mutants (Figure 9), suggesting that residues 117-120 and the spacing of these residues from the cysteine-rich domain are particu-
larly important for recognition of SNAP25B by DHHC17. Note that experiments with wild-type SNAP25 were performed in parallel, confirming that DHHC17 is active against wild-type SNAP25B under identical conditions (data not shown).

Finally, we used [3H]palmitate-labeling experiments to directly examine palmitoylation of wild-type SNAP25 and the 117-120A mutant by coexpressed DHHC3 and DHHC17. Figure 9C shows that wild-type SNAP25 was robustly palmitoylated when coexpressed with DHHC3 and DHHC17. In contrast, the 117-120A mutant was efficiently palmitoylated by DHHC3 but not detectably by DHHC17.

DISCUSSION

On the basis of the results of this study, we propose that specific DHHC proteins mediate stable membrane binding of SNAP25B. The pathway involved in SNAP25 membrane binding has been a controversial area of investigation, and in particular it has been debated over a number of years whether syntaxin 1 regulates initial membrane interactions of SNAP25 (Gonzalo et al., 1999; Vogel et al., 2000; Washbourne et al., 2001; Loranger and Linder, 2002). Our results clearly show that membrane interaction of SNAP25B in HEK293 cells is not inefficient because of low expression of syntaxin isoforms, but instead most likely results from a paucity of specific SNAP25B-palmitoylating enzymes. The finding that DHHC proteins mediate membrane binding of SNAP25B is particularly relevant as, unlike tail-anchored proteins such as syntaxin 1, DHHC proteins are polytopic membrane proteins that are membrane-inserted cotranslationally. This essentially rules out a coordinated interaction of newly synthesized DHHC and SNAP25B in the cytosol that would facilitate initial membrane targeting of SNAP25B.

Mutational analyses of SNAP25B membrane binding are consistent with the notion that membrane association of unpalmitoylated SNAP25B is mediated by hydrophobic interactions of the cysteine-rich domain with the membrane. Replacement of single cysteines with alanine residues had a marked effect on membrane binding, particularly when C85 or C88 were substituted. However, membrane binding was restored when these cysteines were replaced by more hydrophobic leucine residues, demonstrating that cysteines are not just sites for palmitate attachment but that other features of the cysteine residues (presumably hydrophobicity) also contribute to membrane binding. The finding that C85A and
C88A mutations had a larger effect on membrane binding than C90A and C92A mutations is consistent with previous work studying palmitoylation and membrane binding in Cos-7 cells, which showed that C85S and C88S mutations resulted in a greater loss in SNAP25B palmitoylation and membrane binding than mutation of C90S or C92S (Lane and Liu, 1997). The cysteine residues in the cysteine-rich domain of SNAP25 are part of an overall hydrophobic domain, and we also found that L87 and V89, which sit adjacent to C88, are important for SNAP25 membrane interaction. In a similar manner to the cysteine residues, the hydrophobicity of L87 and V89 appears to be important for membrane binding, as alanine mutation of these residues inhibits membrane binding, whereas switching the residues (and hence maintaining hydrophobicity) does not have a deleterious effect on membrane interaction. It was interesting that individual cysteine-to-leucine mutants never restored SNAP25 membrane binding exactly to wild-type levels. This might suggest that the presence of multiple closely spaced cysteines plays an additional role in stable membrane binding by increasing the likelihood that palmitoylation of a cysteine residue will occur, and this is likely to be important for proteins with a weak membrane affinity such as SNAP25.

A role for cysteine residues and flanking hydrophobic amino acids in regulating initial membrane interaction of SNAP25 agrees with our previous work implicating cysteine hydrophobicity in initial membrane attachment of CSP (Greaves and Chamberlain, 2006). This close association of cysteine-rich domains with the membrane is an attractive idea as it would ensure that cysteines are in intimate membrane contact, which appears to be an important factor in determining palmitoylation sites. It is not clear whether SNAP25B is self-sufficient for initial membrane interaction or if additional “chaperones” regulate movement of the newly synthesized protein to membranes. If additional molecules are required, then these are likely to be widely expressed (as they are not limiting in HEK293 cells). Thus, we propose that SNAP25B utilizes a similar mechanism of membrane binding/palmitoylation as previously proposed by us for CSP (Greaves and Chamberlain, 2006; Greaves et al., 2008). One interesting difference, however, is that CSP and SNAP25B membrane binding differ in their sensitivity to brefeldin A (BFA; Gonzalo and Linder, 1998; Greaves and SNAP25B membrane binding differ in their sensitivity to brefeldin A (BFA; Gonzalo and Linder, 1998; Greaves et al., 2008); membrane binding of SNAP25B is sensitive to BFA, whereas CSP is resistant. As DHHC proteins retain their activity after BFA treatment of both PC12 and HEK293 cells (Greaves et al., 2008), we propose that this difference in sensitivity might reflect a difference in initial membrane interactions; for example, SNAP25B might have a high affinity for intact Golgi membranes, whereas CSP has a more general membrane affinity.

Ras proteins have been suggested to undergo a dynamic cycle of palmitoylation and depalmitoylation that regulates localization between the plasma membrane and intracellular membranes (Goodwin et al., 2005; Rocks et al., 2005), and a similar cycle was proposed for other palmitoylated peptides (Rocks et al., 2005). In this cycle, depalmitoylation of plasma membrane-localized protein results in release into the cytosol, where the protein can bind to intracellular membranes and be repalmitoylated and transported again to the plasma membrane. Such a palmitoylation cycle could be an intriguing pathway to regulate SNAP25 localization and hence exocytosis efficiency. However, although the half-life of palmitate attachment to SNAP25 was suggested to be shorter than the half-life of the protein in PC12 cells (Lane and Liu, 1997), no turnover of palmitate on SNAP25 was detected in cortical neurons (Kang et al., 2004). Thus, it is unclear at this stage whether a similar palmitoylation cycle might operate for SNAP25, but the membrane-binding properties of the hydrophobic cysteine-rich domain of SNAP25 could be well suited to coordinate such a cycle.

In addition to the cysteine-rich domain, stable membrane binding of SNAP25B in PC12 cells is also dependent on downstream residues (P117) and their spacing from the palmitoylated cysteines. P117 was also identified by Linder and coworkers as part of a group of amino acids important for trafficking of the isolated 85-120 membrane-targeting domain, and it was suggested that this region of SNAP25 might be important to allow binding to a palmitoyl transferase (Gonzalo et al., 1999). The results presented here support these suggestions and, intriguingly, suggest that the region of SNAP25B containing P117 may also play an important role in determining DHHC specificity: at similar DHHC expression levels, this region of SNAP25B was important for palmitoylation and stable membrane binding induced by DHHC17 but not DHHC3 or DHHC7. This observation to our knowledge represents the first description of intrinsic substrate elements that might modulate DHHC specificity. At this stage we do not know why P117 is particularly important for efficient palmitoylation by DHHC17. The most obvious possibility is that this region of SNAP25 supports the direct interaction of SNAP25 and DHHC17. Alternatively, P117 may be important in promoting the association of SNAP25 with specific membranes or membrane domains that sequester DHHC17. Although DHHC3, DHHC7, and DHHC17 are all localized to the Golgi in HEK293 cells (Greaves et al., 2008), it is not known whether the proteins are associated with the same or different Golgi cisternae. Similarly, it is not known whether these DHHC proteins are present in the same Golgi subdomains; for example, the ankyrin repeat region of DHHC17 might target the protein to actin-rich regions of the Golgi. Thus, P117 may also be important in ensuring efficient targeting of SNAP25B to the same membrane compartment or subcompartment that DHHC17 resides in.

The reduced membrane binding of the 117-120A and Δ101–107 mutants in PC12 cells is consistent with an important role for DHHC17 in regulating SNAP25 palmitoylation in this cell type. Attempts to deplete DHHC proteins by siRNA in PC12 cells have thus far proved unsuccessful. However, it is worth noting that depletion of DHHC17 in Drosophila was recently reported to cause mislocalization of SNAP25 (Ohyama et al., 2007; Stowers and Isacoff, 2007), supporting the notion that DHHC17 regulates SNAP25 palmitoylation in vivo.

ACKNOWLEDGMENTS

We are grateful to Dr. Maurine Linder for the gift of S25(85-120)-EGFP plasmid. This work was funded by the following grants to L.H.C.: Wellcome Trust Research Career Development fellowship Grant 070835, Medical Research Council Senior Research Fellowship Grant G0601397, Tenovus Scotland research grant S06/1, and Diabetes UK Grant BDA:RD06/0003167.

REFERENCES

Vol. 20, March 15, 2009 1853

SNAP25 Membrane Interactions

