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Climate science celebrates three 40th anniversaries in 2019: release of the Charney17

report, publication of a key paper on anthropogenic signal detection, and the start of18

satellite temperature measurements. This confluence of scientific understanding and19

data led to the identification of a human fingerprint in atmospheric temperature.20

We discuss below the events commemorated by these anniversaries. Our focus is on21

understanding how the scientific advances arising from these events aided efforts to identify22

human influences on the thermal structure of the atmosphere.23

The Charney report24

In 1979, the U.S. National Academy of Sciences published the findings of an “Ad Hoc25

Study Group on Carbon Dioxide and Climate”. This is frequently referred to as the Char-26

ney report1. The authors did not have many of the scientific advantages available today:27

international climate science assessments based on thousands of relevant peer-reviewed sci-28

entific papers2,3,4, four decades of satellite measurements of global climate change5, land29

and ocean surface temperature datasets spanning more than 120 years6, estimates of natu-30

ral climate variability7,8, and sophisticated three-dimensional numerical models of Earth’s31

climate system. Nevertheless, the report’s principal findings have aged remarkably well.32

Consider conclusions regarding the equilibrium climate sensitivity (ECS): “We estimate33

the most probable global warming for a doubling of CO2 to be near 3◦C with a probable34

error of +/- 1.5◦C ”. These values are in accord with current understanding9 and are now35
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supported by multiple lines of evidence that were unavailable in 1979. Examples include36

observed patterns of surface warming, greenhouse gas and temperature changes on Ice Age37

timescales, and results from multi-model ensembles of externally forced simulations3,4,9.38

There is also better process-level understanding of the feedbacks contributing to ECS39

uncertainties10,11,12. Charney et al. understood that the factor of three spread in ECS was40

mainly due to uncertainties in the net effect of high and low cloud feedbacks13. Reliable41

assessment of cloud feedbacks required “comprehensive numerical modeling of the general42

circulations of the atmosphere and the oceans together with validation by comparison of43

the observed with the model-produced cloud types and amounts.” This conclusion foreshad-44

owed rigorous evaluation of model cloud properties with satellite data14. Such comparisons45

ultimately led to the elucidation of robust cloud responses to greenhouse warming15, and46

to the 2013 conclusion of the Intergovernmental Panel on Climate Change (IPCC) that “the47

sign of the net radiative feedback due to all cloud types is... likely positive”10.48

The ocean’s role in climate change featured prominently in the Charney report. The au-49

thors noted that ocean heat uptake would delay the emergence of a human-caused warming50

signal from the background noise of natural variability16. This delay, they wrote, meant that51

humanity “...may not be given a warning until the CO2 loading is such that an appreciable52

climate change is inevitable”. The finding that “On time scales of decades... the coupling53

between the mixed layer and the upper thermocline must be considered ” provided impetus54

for the development of atmosphere-ocean General Circulation Models (GCMs).55
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The authors also knew that scientific uncertainties did not negate the reality and serious-56

ness of human-caused climate change: “We have examined with care all known negative57

feedback mechanisms, such as increase in low or middle cloud amount, and have con-58

cluded that the oversimplifications and inaccuracies in the models are not likely to have59

vitiated the principal conclusion that there will be appreciable warming.” Although the60

GCMs available in 1979 were not yet sufficiently reliable for predicting regional changes,61

Charney et al. cautioned that the “associated regional climate changes so important to the62

assessment of socioeconomic consequences may well be significant”.63

In retrospect, the Charney report seems like the scientific equivalent of the handwriting64

on the wall. Forty years ago, its authors issued a clear warning of the potentially significant65

socioeconomic consequences of human-caused warming. Their warning was accurate, and66

remains more relevant than ever.67

Hasselmann’s optimal detection paper68

The second scientific anniversary marks the publication of a paper by Klaus Hasselmann69

entitled: “On the signal-to-noise problem in atmospheric response studies”17. This is now70

widely regarded as the first serious effort to provide a sound statistical framework for iden-71

tifying a human-caused warming signal.72

In the 1970s, there was recognition that GCM simulations yielded both “signal” and73

“noise” when forced by changes in atmospheric CO2 or other external factors18. The sig-74
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nal was the climate response to the altered external factor. The noise arose from natural75

internal climate variability. Noise estimates were obtained from observations or by running76

an atmospheric GCM coupled to a simple model of the upper ocean. In the presence of77

intrinsic noise, statistical methods were required to identify areas of the world where first78

detection of a human-caused warming signal might occur.79

One key insight in Hasselmann’s 1979 paper was that analysts should look at the sta-80

tistical significance of global geographical patterns of climate change. Previous work had81

assessed the significance of the local climate response to a particular external forcing at82

thousands of individual model grid-points. Climate information at these individual loca-83

tions was correlated in space and in time, hampering assessment of overall significance.84

Hasselmann noted that “...it is necessary to regard the signal and noise fields as multi-85

dimensional vector quantities... and the significance analysis should accordingly be car-86

ried out with respect to this multi-variate statistical field, rather than in terms of individual87

gridpoint statistics”. Instead of looking for the needle in a tiny corner of a large haystack88

(and then proceeding to search the next tiny corner), Hasselmann advocated for a more89

efficient strategy – searching the entire haystack simultaneously.90

The paper pointed out that theory, observations, and models provide considerable in-91

formation about signal and noise properties. For example, changes in solar irradiance, vol-92

canic aerosols, and greenhouse gases produce signals with different patterns, amplitudes,93

and frequencies2,3,4,8,19. These unique signal characteristics (“fingerprints”) can be used to94
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distinguish climate signals from climate noise.95

Hasselmann’s paper was a statistical roadmap for hundreds of subsequent climate change96

detection and attribution (“D&A”) studies. These investigations identified anthropogenic97

fingerprints in a wide range of independently monitored observational datasets2,3,4. D&A98

research provided strong scientific support for the conclusion reached by the IPCC in 2013:99

“it is extremely likely that human influence has been the dominant cause of the observed100

warming since the mid-20th century”4.101

Forty years of satellite temperature data102

In November 1978, Microwave Sounding Units (MSUs) on NOAA polar-orbiting satellites103

began monitoring the microwave emissions from oxygen molecules. These emissions are104

proportional to the temperature of broad atmospheric layers5. A successor to MSU, the105

Advanced Microwave Sounding Unit (AMSU), was deployed in 1998. Estimates of global106

changes in atmospheric temperature can be obtained from MSU and AMSU measurements.107

Over their 40-year history, MSU and AMSU data have been essential ingredients in108

hundreds of research investigations. These datasets allowed scientists to study the size,109

significance, and causes of global trends and variability in Earth’s atmospheric temperature110

and circulation, to quantify the tropospheric cooling after major volcanic eruptions, to eval-111

uate climate model performance, and to assess the consistency between observed surface112

and tropospheric temperature changes2,3,4,20.113
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Satellite atmospheric temperature data were also a useful test-bed for Hasselmann’s114

signal detection strategy. They had continuous, near-global coverage5. Data products115

were available from multiple research groups, allowing uncertainties in temperature re-116

trievals to be quantified. Signal detection studies with MSU and AMSU revealed that117

human fingerprints were identifiable in the warming of the troposphere and cooling of the118

lower stratosphere8, confirming model projections made over 50 years ago21. Tropospheric119

warming is largely due to increases in atmospheric CO2 from fossil fuel use2,3,4,8,20, while120

lower stratospheric cooling over the 40-year satellite record22 is mainly attributable to an-121

thropogenic depletion of stratospheric ozone23.122

While enabling significant scientific advances, MSU and AMSU temperature data have123

also been at the center of scientific and political imbroglios. Some controversies were re-124

lated to differences between surface warming inferred from thermometers and tropospheric125

warming estimated from satellites. Claims that these warming rate differences cast doubt126

on the reliability of the surface data have not been substantiated20,24. Other disputes focused127

on how to adjust for non-climatic artifacts arising from orbital decay and drift, instrument128

calibration drift, and the transition between MSU and AMSU instruments5,20. More re-129

cently, claims of no significant warming since 1998 have been based on artfully selected130

subsets of satellite temperature data. Such claims are erroneous and do not call into ques-131

tion the reality of long-term tropospheric warming25.132
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A confluence of scientific understanding133

The zeitgeist of 1979 was favorable for anthropogenic signal detection. From the Charney134

report, which relied on basic theory and early climate model simulations, there was clear135

recognition that fossil fuel burning would yield an appreciable global warming signal1.136

Klaus Hasselmann’s paper17 outlined a rational approach for detecting this signal. Satellite-137

borne microwave sounders began to monitor atmospheric temperature, providing global138

patterns of multi-decadal climate change and natural internal variability – information re-139

quired for successful application of Hasselmann’s signal detection method.140

Because of this confluence in scientific understanding, we can now answer the follow-141

ing question: when did a human-caused tropospheric warming signal first emerge from the142

background noise of natural climate variability? We addressed this question by applying143

a fingerprint method related to Hasselmann’s approach (see online Methods). An anthro-144

pogenic fingerprint of tropospheric warming is identifiable with high statistical confidence145

in all currently available satellite datasets (Figure 1). In two out of three datasets, finger-146

print detection at a 5-sigma threshold – the gold standard for discoveries in particle physics147

– occurs no later than 2005, only 27 years after the 1979 start of the satellite measurements.148

Humanity cannot afford to ignore such clear signals.149
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Figure 1: Signal-to-noise ratios (S/N) used for identifying a model-predicted anthropogenic
fingerprint in satellite measurements of annual-mean tropospheric temperature. The MSU
and AMSU measurements are from three different research groups: Remote Sensing Sys-
tems (RSS), the Center for Satellite Applications and Research (STAR), and the University
of Alabama at Huntsville (UAH). The grey and black horizontal lines are the 3σ and 5σ
thresholds that we use for estimating the signal detection time. By 2002, all three satellite
datasets yield S/N ratios exceeding the 3σ threshold. By 2016, an anthropogenic signal is
consistently detected at the 5σ threshold. Further details of the model and satellite data and
the fingerprint method are provided in the online Methods.
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Online Methods231

1 Satellite atmospheric temperature data232

In calculating the signal detection times shown in Figure 1, we used satellite estimates of233

atmospheric temperature produced by Remote Sensing Systems5,26, the Center for Satellite234

Applications and Research27,28, and the University of Alabama at Huntsville29,30. We refer235

to these groups subsequently as RSS, STAR, and UAH (respectively). All three groups236

provide satellite measurements of the temperatures of the mid- to upper troposphere (TMT)237

and the lower stratosphere (TLS). Our focus here is on estimating the detection time for an238

anthropogenic fingerprint in satellite TMT data. TLS is required for correcting TMT for239

the influence it receives from stratospheric cooling24 (see Section 3).240

Satellite datasets are in the form of monthly means on 2.5◦ × 2.5◦ latitude/longitude241

grids. At the time this analysis was performed, temperature data were available for the242

468-month period from January 1979 to December 2017. We used the most recent dataset243

versions from each group: 4.0 (RSS), 4.0 (STAR), and 6.0 (UAH).244

We note that studies of the size, patterns, and causes of atmospheric temperature changes245

have also relied on information from radiosondes20,31,32,33,34. Non-climatic factors, such246

as refinements over time in radiosonde instrumentation and thermal shielding, hamper the247

identification of true climate changes20,35. Additionally, radiosonde data have much sparser248

coverage than satellite data, particularly in the Southern Hemisphere. The spatially com-249

plete coverage of MSU and AMSU offers advantages for obtaining reliable estimates of250
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hemispheric- and global-scale temperature trends and patterns of temperature change.251

2 Details of model output252

We used model output from phase 5 of CMIP, the Coupled Model Intercomparison Project36.253

The simulations analyzed here were contributed by 19 different research groups (see Sup-254

plementary Table S1). Our focus was on three different types of numerical experiment:255

1) simulations with estimated historical changes in human and natural external forcings;256

2) simulations with 21st century changes in greenhouse gases and anthropogenic aerosols257

prescribed according to the Representative Concentration Pathway 8.5 (RCP8.5), with ra-258

diative forcing of approximately 8.5 W/m2 in 2100, eventually stabilizing at roughly 12259

W/m2; and 3) pre-industrial control runs with no changes in external influences on climate.260

Details of these simulations are provided in Supplementary Tables S2 and S3.261

Most CMIP5 historical simulations end in December 2005. RCP8.5 simulations were262

typically initiated from conditions of the climate system at the end of the historical run.263

To avoid truncating comparisons between modeled and observed atmospheric temperature264

trends in December 2005, we spliced together synthetic satellite temperatures from the265

historical simulations and the RCP8.5 runs. Splicing allows us to compare actual and266

synthetic temperature changes over the full 39-year length of the satellite record. We use267

the acronym “HIST+8.5” to identify these spliced simulations.268
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3 Method used for correcting TMT data269

Trends in TMT estimated from microwave sounders receive a substantial contribution from270

the cooling of the lower stratosphere24,37,38,39. In Fu et al. (2004)24, a regression-based271

method was developed for removing the bulk of this stratospheric cooling component of272

TMT. This method has been validated with both observed and model atmospheric temper-273

ature data37,40,41. Here, we refer to the corrected version of TMT as TMTcr. The main text274

discusses corrected TMT only, and does not use the subscript cr to identify corrected TMT.275

For calculating tropical averages of TMTcr, Fu et al. (2005)38 used:276

TMTcr = a24TMT + (1− a24)TLS (1)

where a24 = 1.1. For the global domain considered here, lower stratospheric cooling makes277

a larger contribution to TMT trends, so a24 is larger24,39. In Fu et al (2004)24 and Johanson278

and Fu (2006)39, a24 ≈ 1.15 was applied directly to near-global averages of TMT and TLS.279

Since we are performing corrections on local (grid-point) data, we used a24 = 1.1 between280

30◦N and 30◦S, and a24 = 1.2 poleward of 30◦. This is approximately equivalent to use of281

the a24 = 1.15 for globally-averaged data.282

4 Calculation of synthetic satellite temperatures283

We use a local weighting function method developed at RSS to calculate synthetic satellite284

temperatures from model output42. At each model grid-point, simulated temperature pro-285

files were convolved with local weighting functions. The weights depend on the grid-point286
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surface pressure, the surface type (land or ocean), and the selected layer-average tempera-287

ture (TLS or TMT).288

5 Fingerprint method289

Detection methods generally require an estimate of the true but unknown climate-change290

signal in response to an individual forcing or set of forcings16,17,43,44,45,46. This is often291

referred to as the fingerprint F (x).292

We define F (x) as follows. Let S(i, j, x, t) represent annual-mean synthetic MSU tem-293

perature data at grid-point x and year t from the ith realization of the jth model’s HIST+8.5294

simulation, where:295

296

i = 1, . . . Nr(j) (the number of realizations for the jth model).297

j = 1, . . . Nm (the number of models used in fingerprint estimation).298

x = 1, . . . Nx (the total number of grid-points).299

t = 1, . . . Nt (the time in years).300

301

Here, Nr ranges from 1 to 5 realizations and Nm = 37 models. After transforming syn-302

thetic MSU temperature data from each model’s native grid to a common 10◦ × 10◦ lati-303

tude/longitude grid, Nx = 576 grid-points for corrected TMT. Nt is 39 years. We note that304

because the RSS TMT data do not have coverage poleward of 82.5◦, the latitudinal extent305
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of the regridded data is from 80◦N to 80◦S. This is the minimum common coverage in the306

three satellite datasets.307

The multi-model average atmospheric temperature change, S(x, t), was calculated by308

first averaging over an individual model’s HIST+8.5 realizations (where multiple realiza-309

tions were available), and then averaging over models. The double overbar denotes these310

two averaging steps. Anomalies were then defined at each grid-point x and year t with311

respect to the local climatological annual mean. The fingerprint F (x) is the first Empirical312

Orthogonal Function (EOF) of the anomalies of S(x, t). F (x) was estimated over 1979 to313

2017, the same time period used for determining observed TMT changes.314

We seek to determine whether the pattern similarity between the time-varying observa-315

tions and F (x) shows a statistically significant increase over time. To address this question,316

we require control run estimates of internally generated variability in which we know a pri-317

ori that there is no expression of the fingerprint (except by chance).318

We obtain these variability estimates from control runs performed with multiple mod-319

els. Because the length of the 36 control runs analyzed here varies by a factor of up to320

4, models with longer control integrations could have a disproportionately large impact on321

our noise estimates. To guard against this possibility, the noise estimates rely on the last322

200 years of each model’s pre-industrial control run, yielding 7,200 years of concatenated323

control run data. Use of the last 200 years reduces the contribution of any initial residual324

drift to noise estimates.325
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Synthetic TMT data from individual model control runs are regridded to the same 10◦×326

10◦ target grid used for fingerprint estimation. After regridding, anomalies are defined327

relative to the local climatological annual means calculated over the full length of each328

control run. Since control run drift can bias S/N estimates, its removal is advisable. Here,329

we assume that drift behavior can be well-approximated by a least-squares linear trend, and330

drift is removed at each grid-point. Drift removal is performed over the last 200 control run331

years (since only the last 200 years are concatenated).332

Observed annual-mean TMT data are first transformed to the 10◦×10◦ latitude/longitude333

grid used for the model HIST+8.5 simulations and control runs, and are then expressed as334

anomalies relative to climatological annual means over 1979 to 2017. The observed tem-335

perature data are projected onto F (x), the time-invariant fingerprint:336

Zo(t) =
Nx∑
x=1

O(x, t)F (x) t = 1, 2, . . . , 39 (2)

where O(x, t) denotes the observed annual-mean TMT data. This projection is equivalent337

to a spatially uncentered covariance between the patterns O(x, t) and F (x) at year t. The338

signal time series Zo(t) provides information on the fingerprint strength in the observations.339

If observed patterns of temperature change are becoming increasingly similar to F (x),340

Zo(t) should increase over time. A recent publication47 provides figures showing both341

F (x) and the observed patterns of annual-mean trends in TMT (see Figure S5A and Figures342
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2A,C, and E in Santer et al., 2018).343

Hasselmann’s 1979 paper discusses the rotation of F (x) in a direction that maximizes344

the signal strength relative to the control run noise17. Optimization of F (x) generally345

leads to enhanced detectability of the signal48,49. In all cases we considered, we achieved346

detection of an externally-forced fingerprint in satellite TMT data without any optimization347

of F (x). We therefore show only non-optimized results in our Figure 1.348

Finally, we note that all model and observational temperature data used in the finger-349

print analysis are appropriately area-weighted. Weighting involves multiplication by the350

square root of the cosine of the grid node’s latitude50.351

6 Estimating detection time352

We assess the significance of changes in Zo(t) by comparing trends in Zo(t) with a null dis-353

tribution of trends. To generate this null distribution, we require a case in which O(x, t) is354

replaced by a record in which we know a priori that there is no expression of the fingerprint,355

except by chance. Here, we replaceO(x, t) by the concatenated noise data set C(x, t), after356

first regridding and removing residual drift from C(x, t) (as described above). The noise357

time series Nc(t) is the projection of C(x, t) onto the fingerprint:358

Nc(t) =
Nx∑
x=1

C(x, t)F (x) t = 1, . . . , 7200 (3)
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Our detection time Td is based on the signal-to-noise ratio, S/N. As in our previous359

work47, we calculate S/N ratios by fitting least-squares linear trends of increasing length360

L years to Zo(t), and then comparing these with the standard deviation of the distribution361

of non-overlapping L-length trends in Nc(t). Thus the numerator of the S/N ratio mea-362

sures the trend in the pattern agreement between the model-predicted “human influence”363

fingerprint and observations; the denominator measures the trend in agreement between364

the fingerprint and patterns of natural climate variability. Detection occurs after Ld years,365

when the S/N ratio first exceeds some stipulated signal detection threshold, and then re-366

mains continuously above that threshold for all values of L > Ld. For example, Ld = 10367

would signify that Td = 1988 – i.e., that detection of a human-caused tropospheric warming368

fingerprint occurred in 1988, 10 years after the start of the satellite temperature record.369

We estimated Td with both 3σ and 5σ signal detection thresholds. A 3σ threshold370

was used by Hansen et al. (1988) for detection of an anthropogenic signal in surface371

temperature51. A more stringent 5σ threshold is often employed as the gold standard for372

scientific discovery in particle physics∗ For detection at a 3σ threshold, there is a chance373

of roughly one in 741 that the “match” between the model-predicted anthropogenic finger-374

print and the observed patterns of tropospheric temperature change could actually be due375

to natural internal variability (as represented by the 36 models analyzed here). With a 5σ376

detection threshold, this probability decreases to roughly one in 3.5 million†.377

∗For example, in detecting the existence of the Higgs boson. See, e.g., https: //understandinguncertainty.
org/explaining-5-sigma-higgs-how-well-did-they-do.
†These are so-called complementary cumulative probabilities – see, e.g., https: //en.wikipedia.org/wiki/
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We make three assumptions in order to calculate Td. First, we assume that our knowl-378

edge of observed tropospheric temperature change is derived from the latest MSU and379

AMSU dataset versions produced by RSS, UAH, and STAR. Second, we assume that large380

ensembles of forced and unforced simulations performed with state-of-the-art climate mod-381

els provide the best current estimates of a human fingerprint and natural internal climate382

variability47. Third, we assume that although the strength of the fingerprint in the observa-383

tions changes over time, the fingerprint pattern itself is relatively stable47.384

At the 3σ threshold, Td = 1998 for RSS and STAR and 2002 for UAH (Figure 1).385

This means that Ld is 20 years for RSS and STAR and 24 years for UAH. With a more386

stringent 5σ threshold the detection time is longer: Td = 2003 for STAR, 2005 for RSS,387

and 2016 for UAH, yielding Ld values of 25, 27, and 38 years, respectively. The UAH388

results are noteworthy. Even though UAH tropospheric temperature data have consistently389

shown less warming than other datasets24,52,53,54, UAH still yields confident 5σ detection390

of an anthropogenic fingerprint.391

Finally, we note that detection times for an anthropogenic signal in surface temperature392

are available elsewhere43,44,45,51 and have been the topic of recent discussion‡.393

Standard normal table#Cumulative. Probabilities are based on a one-tailed test. A one-tailed test is appropri-
ate here, since we seek to determine whether natural variability could yield larger time-increasing similarity
with the fingerprint pattern than the similarity we obtained by comparing the fingerprint with satellite data.
‡Another scientific anniversary received considerable attention in 2018 – the 30th anniversary of the

publication of of a seminal paper by Jim Hansen and his colleagues at the NASA/Goddard Institute for Space
Studies51. Some of the recent reporting on the 1988 Hansen et al. paper focused on the paper’s prediction
that “the global greenhouse warming should rise above the level of natural climate variability within the next
several years”. This prediction was for global-mean changes in surface temperature. It relied on a comparison
of observed changes with multiple estimates of natural variability.
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