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Abstract 

The Dunning-Kruger effect (DKE) is the finding that, across a wide range of tasks, poor 

performers greatly overestimate their ability, while top performers make more accurate self-

assessments. The original account of the DKE involves the idea that metacognitive insight 

requires the same skills as task performance, so that unskilled people perform poorly and lack 

insight. However, global measures of self-assessment are prone to statistical and other biases 

that could explain the same pattern. We used psychophysical methods to examine 

metacognitive insight in simple movement and spatial memory tasks: pointing at a dot, or 

recalling its position after a delay. We measured task skill in an initial block, and self-

assessment in a second block, in which participants judged after every trial whether they had 

hit the target or not. Metacognitive calibration and sensitivity were related to task skill, but a 

path analysis showed that their net contribution to the DKE was weak. The major driver of 

the DKE was the level of task performance. In a second study, we again measured task skill 

in an initial block, but titrated task difficulty in the second block so that all participants 

performed at equivalent levels of success. Metacognitive measures were again related to task 

skill but the DKE pattern was eliminated. We present a simple model of these findings, 

showing that metacognitive differences can contribute to the DKE, but are neither necessary 

nor sufficient for it. This analysis clarifies and quantifies how metacognitive insight and other 

factors interact to determine this famous effect. 

 

Keywords: Dunning-Kruger effect; metacognition; performance monitoring; self-evaluation; 

overconfidence 
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Introduction 

“The fool doth think he is wise, but the wise man knows himself to be a fool.” 

William Shakespeare, As You Like It, Act V, Scene I. 

 

This quotation, like others expressing similar ideas, has the appeal of instant connection. We 

can readily bring to mind examples that fit the template; even if we temporarily overlook 

counter-examples of the diffident fool or the arrogant genius. In experimental psychology, the 

idea is encapsulated by the Dunning-Kruger effect (DKE), the finding that, across a wide 

range of tasks, the poorest performers greatly overestimate their own ability, whilst the top 

performers make more accurate self-assessments. This statement of inverse correlation might 

lack the poetry of Shakespeare, but it has gained an almost viral momentum in contemporary 

discourse, particularly in the wake of the 2016 US Presidential election. But, even as the 

DKE has been embraced by the wider public, there has been debate within the psychological 

literature. The pattern is not in doubt; the basic fact of relatively more overestimation 

amongst the objectively poorest performers is replicable across a wide range of cognitive and 

social tasks (see Dunning, 2011), and has recently been extended to the domain of political 

beliefs (Hall & Raimi, 2018). The debate is about the correct explanation for the effect, and 

in particular whether the DKE implies metacognitive differences between the skilled and the 

unskilled in a given domain. 

 

Theoretical accounts of the DKE 

The original, ‘dual-burden’ account offered by Kruger and Dunning (1999) hinges on the 

premise that, for many tasks, accurate appraisal of one’s own performance depends on the 

same skills required for accurate performance. For instance, to judge the grammaticality of a 

sentence correctly, one must have the grammatical knowledge needed to compose it. Kruger 

and Dunning argued that the lowest performers in a task suffer a dual burden: not only is their 

performance poor, but they have a corresponding metacognitive deficit that impedes the 

ability to distinguish accurate from inaccurate performance. Unable to discern their own 

errors, poor performers assume they make fewer errors than in fact they do, resulting in 

overestimation. Conversely, high performers, with better task skills, have more metacognitive 

insight, so make more accurate, better-calibrated self-estimates. However, when ranking 
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themselves relative to others, high performers may still fall prey to a ‘false consensus’ effect, 

mistakenly assuming that other people’s abilities are more similar to their own than they 

really are. High performers thus tend to underestimate themselves when using relative scales, 

but show less consistent under- or over-estimation when making absolute estimates 

(Ehrlinger, Johnson, Banner, Dunning, & Kruger, 2008). Low performers overestimate 

themselves on both relative and absolute scales. At its broadest, the DKE is characterised by 

greater overestimation of own performance in low performers relative to high performers, 

that is, by a negative correlation between task skill and estimation error. 

Competing accounts of the DKE focus on other mechanisms that might induce this 

pattern. One mechanism often invoked is regression to the mean (Ackerman, Beier, & 

Bowen, 2002; Burson, Larrick, & Klayman, 2006; Feld, Sauermann, & de Grip, 2017; 

Krueger & Mueller, 2002; Nuhfer, Cogan, Fleisher, Gaze, & Wirth, 2016; Nuhfer, Fleisher, 

Cogan, Wirth, & Gaze, 2017). The usual method for studying the DKE involves ranking 

people by task performance and examining the relationship with estimation error, as indexed 

by the subtraction of actual from estimated performance. A negative correlation is virtually 

guaranteed in this scenario; just as, for any two imperfectly correlated random variables, x 

correlates negatively with y-x (for a general primer, see Campbell & Kenny, 1999). In 

concrete terms, as long as participants do not have perfect insight into their performance, then 

any chance variations that increase errors will be inadequately tracked in self-estimation, 

pushing people down the ranks of performance and simultaneously biasing them towards 

over-estimation; and vice-versa for chance variations that reduce errors. This artefact is 

important to recognise, but relatively easy to eliminate. It is driven by unreliability in the 

measurement of performance, so it can be offset statistically by quantifying and controlling 

for this unreliability (Ehrlinger et al., 2008; Feld et al., 2017; Krueger & Mueller, 2002; 

Kruger & Dunning, 2002), or it can avoided entirely by using separate sub-sets of trials to 

index performance and to calculate estimation error (Burson et al., 2006; Feld et al., 2017; 

Klayman, Soll, González-Vallejo, & Barlas, 1999). If either of these steps is taken, the DKE 

is attenuated, but it is not eliminated, so further factors must also be at work. 

One such factor may be another regressive tendency, which can persist even when 

regression to the mean is controlled for. If participants have imperfect knowledge of their 

performance, their estimation errors need not be random, but may be systematically biased. 

For many abilities and tasks, at least those that are relatively easy, people tend to evaluate 

their relative standing optimistically, a bias known as the better-than-average effect (see 
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Kruger, 1999). If self-estimates are biased toward a high percentile, then higher performers 

will appear to be better-calibrated just by happening to perform closer to that percentile 

(Krueger & Mueller, 2002). This idea can be generalised to more difficult tasks, in which 

people’s relative estimates may instead show a pessimistic, worse-than-average effect 

(Kruger, 1999). Burson and colleagues (2006) contrasted difficult and easy tasks, for instance 

questions about years of Nobel prizes requiring precise (within 5 years) or approximate 

(within 30 years) answers. They broadly confirmed that increased difficulty reduced the 

average percentile self-estimate, so that poor performers now seemed better calibrated, 

reducing and even reversing the asymmetry of the classic DKE. 

Burson and colleagues (2006) argued that a sufficient account of the DKE is given by 

a ‘noise-plus-bias’ model, in which uncertainty of self-estimation (noise) is combined with a 

bias towards a task-specific default estimate. This model assumes that participants lack 

metacognitive insight into their performance, making their estimates uncertain, but that this is 

equally true for all participants, regardless of task skill. The model was proposed to account 

for relative self-estimates, so the fact that the DKE arises even for absolute estimates has 

been used to discount it (see Dunning, 2011). However, it would be possible to extend the 

noise-plus-bias model to absolute self-estimates, by proposing that people have task-specific 

biases to estimate a certain level of performance, not just a certain relative standing. If this 

default level is optimistic (i.e. higher than the true mean), then the poorest performers will 

overestimate, and the top performers will seem better calibrated, even if all participants are 

equally lacking in metacognitive insight. 

 

The question of metacognition 

Thus, to support the original, dual-burden account of the DKE, it is not enough just to show 

that the effect persists once regression-to-the-mean has been controlled for, or when absolute 

self-estimates are used. It is necessary to positively demonstrate metacognitive differences 

between high and low performers, and to show that they causally mediate the DKE. The 

original report by Kruger and Dunning (1999, Study 4) did include a proposed measure of 

metacognition. After completing a ten-item logical reasoning task and giving global ratings 

of how they thought they had performed, participants returned to their test sheets and tried to 

identify, item-by-item, which questions they had answered correctly. ‘Metacognitive skill’, 

measured by summing the total number of accurate identifications, correlated strongly with 
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task performance and with estimation error, and the latter relationship persisted even when 

the former was controlled for. However, Krueger and Mueller (2002) pointed out that this 

pattern could be also be explained by a general optimism bias. For instance, if all participants 

guessed that they had performed at 60% correct, with no metacognitive insight, they would 

mark six of the ten answers as correct at random. Every objectively correct item would have a 

.6 chance of being identified accurately, whilst every incorrect item would have only a .4 

chance of being identified accurately, so the overall accuracy of chance identifications would 

increase linearly with objective performance. Krueger and Mueller (2002) went on to 

replicate the mediational role of this measure of metacognition, but they showed that it 

disappeared for an adjusted score that took account of the confound with performance. 

 Burson and colleagues (2006) took a different approach to metacognition, 

distinguishing between metacognitive calibration and sensitivity. The typical measure of 

estimation error is concerned with calibration (divergence of estimated from actual 

performance), but is unreliable, because a person with no insight can appear to be well-

calibrated by guessing a value that happens to be close to their true performance. They 

proposed an alternative measure, of metacognitive sensitivity, given by the degree to which 

estimated performance tracks actual performance across participants. They calculated this 

correlation separately for top- and bottom-half performers. The results were mixed but, across 

three studies, bottom-half performers tended to show weaker correlations (lower sensitivity). 

However, Burson and colleagues warned that this correlation-based measure was also 

vulnerable to distortions. For instance, if the range of performance was more compressed 

amongst lower-half participants, then the measure of metacognitive sensitivity would be 

artificially reduced. They concluded that there was tentative evidence for reduced 

metacognitive sensitivity amongst poor performers, but that this did not imply poorer 

metacognitive calibration, and did not explain the DKE. 

 

Foundations for an empirical test 

The original hypothesis that the DKE is due to differences in metacognitive insight linked to 

task ability remains open to debate. Indeed, no study (to our knowledge) has had 

metacognitive measures that could furnish a fair test of this hypothesis. For this purpose, we 

require adequate measures of metacognition embedded within tasks that elicit the DKE. The 

defining character of the DKE is a relative overestimation of own-performance amongst the 
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least skilled participants; and the range of tasks on which this pattern has been replicated is 

wide. The majority of these tasks have emphasised high-level intellectual or social expertise, 

such as logical reasoning, judgement of humour, or domain-specific (or general) knowledge 

(see Dunning, 2011, for an overview). In principle, though, the same pattern might be 

expected for any domain of skilled performance, if certain task conditions are met. 

First, the task should be within the competence of participants, yet neither too easy 

nor too difficult, so that between-participant variations in performance can be measured 

across the range. Second, test-retest reliabilities should be high enough that these variations 

in performance can be meaningfully linked to differences in task skill. Third, and crucially, 

feedback should be sparse enough that participants have some uncertainty about their level of 

success. Dunning (2011, p276) has described this critical condition as the absence of a 

‘direct-access cue’: a lack of direct feedback. He pointed out that many intellectual tasks do 

not have a directly observable outcome, whereas physical tasks often do, which may help 

explain why correlations of self-evaluation with real ability are often stronger for physical 

tasks (Mabe & West, 1982). For the intellectual task of judging the comedy value of jokes, 

for instance, there is no direct feedback; but for the physical task of shooting basketballs, we 

can just see how each ball lands. However, it is important to note that this is not an intrinsic 

difference between domains; we could just as well reverse it by occluding the view of the 

hoop after each ball is launched, and by providing a live comedy audience to give direct 

feedback on how each joke lands. The critical condition is the lack of direct feedback, not the 

domain of expertise. 

 For metacognitive differences to drive the DKE, it should also be plausible that 

insight could draw on some of same processes that underlie task performance. This is almost 

guaranteed by the condition that direct feedback is unavailable. If we cannot judge our 

success by observing an outcome directly, our recourse must be to the internal process that 

informed our response, and/or to indirect cues correlated with it. In a test of knowledge, our 

certainty about the rightness of our response could be a function of the clarity of our semantic 

representation, which we may introspect upon directly, or infer from our ease of retrieval, or 

behavioural correlates such as decision speed (Dunning & Perretta, 2002; Kelley & Lindsay, 

1993). Provided – and this is not guaranteed – that our representations are generally clearer 

for correct responses, then our sense of certainty will roughly track our chance of success, 

and we will have some metacognitive insight. The overlap between cognitive and 

metacognitive processes could only ever be partial (by definition, second-order 
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metacognition cannot be identical with first-order cognition), and it may vary from task-to-

task. But there is no reason to think it should be specific to intellectual expertise, excluding 

simpler cognitive and physical skills (Augustyn & Rosenbaum, 2005). In any case, the 

predicted relationship between skill and insight is an empirical matter. It cannot just be 

asserted for any task; it needs to be tested, using adequate measures of metacognition. 

 

A novel approach to the DKE 

In establishing such measures, we pick up on Burson and colleagues’ (2006) conceptual 

distinction between sensitivity and calibration as separable sub-components of metacognitive 

insight. Sensitivity implies an ability to detect variations in one’s performance, whilst 

calibration reflects the correspondence or divergence between one’s subjective criterion for 

success, and the objective criterion. If we combine this with item-by-item self-estimation, we 

can frame a classical psychophysical analysis. The metacognitive task is to discriminate 

successful items or trials (hits) from unsuccessful ones (misses), given a varying signal 

strength (size of response error on some task-relevant dimension). Over sufficient trials, we 

can fit a logistic function to the probability of hit reports across levels of response error. If the 

participant has no insight, or if the response errors do not span the subjective transition from 

hits to misses, the fit will fail. But if the fit is good, then the function will define a threshold 

(at which the probability of reporting a hit is .5), and a just noticeable difference (for a .25 

change in probability of reporting a hit). The threshold will quantify the participant’s 

subjective criterion for success (calibration) and the just noticeable difference will quantify 

their sensitivity. These metacognitive measures are in principle independent from 

performance, providing an adequate basis for testing the relation between task performance 

and metacognition, and thus the role of metacognition in determining the DKE. 

 In the present study, we move away from higher-level intellectual skills, to the more 

tractable domains of movement and spatial memory: pointing at a dot on a screen, or 

recalling its position after a delay. These tasks give continuous measures of response error, 

and permit large numbers of trials, with online (trial-by-trial) reports of perceived success or 

failure, sufficient for a psychophysical analysis of metacognitive insight at the participant 

level. The tasks are simple, but they fulfil the core requirements for the DKE to emerge. They 

are within the competence of participants, yet not at floor or ceiling, and test-retest 

reliabilities are high enough to establish between-participant differences in skill. We have 
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implemented the tasks with sparse feedback, so that participants have some uncertainty about 

their performance. Finally, it is plausible that metacognitive insight on these tasks might 

depend on the same core competencies as performance. For instance, to point accurately to 

target dots, one must have a precise forward model of movement, to enable the rapid 

detection and correction of errors. Participants with more precise forward models will be 

more accurate in pointing, and better equipped to evaluate their accuracy. In remembering dot 

positions, participants with a more precise spatial memory will be more accurate, but may 

also have more diagnostic variation in their sense of certainty on occasions that their 

representation is less precise. 

In Experiment 1, we propose to assess the DKE in movement and memory, using 

online self-estimation across hundreds of trials. This will allow for an aggregate analysis of 

estimation error, to determine whether the DKE generalises to these novel tasks, and to an 

online estimation method. Crucially, it will also support a rigorous, theoretically-grounded, 

psychophysical analysis, to quantify metacognitive calibration and sensitivity in every 

participant. These innovations allow us to mount the first adequate test of the now-famous, 

dual-burden account of the DKE: that less skilled participants not only perform more poorly, 

but have less metacognitive insight, and that this mediates the inverse correlation between 

task skill and estimation error. 

  



Page 10 of 43 

Experiment 1: Methods 

Our tasks were developed through extensive piloting. Our methods and predictions were then 

preregistered on the Open Science Framework https://osf.io/ccgsz/ (see Supplemental 

materials S1). Experiment 1 was approved by the Psychology Research Committee, 

University of Edinburgh (approval#105-16171). We report how we determined our sample 

size, all data exclusions, all manipulations, and all measures. 

 

Participants and power 

A sample size of 84 would provide .80 power to detect a correlation of .30, our minimum 

expected effect size of interest, based on pilot data. A total of 101 healthy participants were 

recruited amongst students and alumni of the University of Edinburgh, mostly in their early 

20’s (min 18, 1st quartile 20, median 21, 3rd quartile 23, max 42 years), and mostly female (82 

female, 19 male) and right-handed (94 right-handed, 7 left-handed, by self-report). After 

exclusions, the final sample had 80 participants for the Movement task, and 62 for the 

Memory task.1 

 

Procedure 

Each task, Movement and Memory, had a baseline block and a main block. Task order 

(Movement or Memory first) was alternated between participants. In each task, participants 

sat in front of a touchscreen (340 x 270 mm, 1024 x 768 pixels, ~0.33 mm per pixel), under 

dim ambient lighting, with the preferred hand resting on a start button 350 mm from the 

screen, and ~150 mm in front of the body midline. The Memory task also used a wireless 

mouse, to the preferred side of the start button. 

Movement task. The basic task was to point to a target dot presented on screen. The 

dot size was medium (14 pixel radius) in the baseline block, and small or large (10 or 18 

pixel radius) in the main block. The purpose of the baseline block was to provide experience 

                                                           

1Data were lost for three participants in the Movement task, and two participants in the Memory task, due to 

computer errors at testing. Fifteen participants failed to complete the Movement task due to an excess of time-

errors. Three further participants were excluded for the Movement task, and thirty-seven participants for the 

Memory task, due to an inability to fit a significant binomial logistic regression to online self-estimations. 

https://osf.io/ccgsz/
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of the task, and to obtain an independent measurement of performance. The task experienced 

in the baseline block was not identical to that in the main block, because different target sizes 

were used, but it was neither easier nor harder than the main block task, because the average 

target size was the same. 

On each trial, a white dot was shown on a black screen, with its centre positioned 

randomly within a 700 pixel virtual square around the screen centre. Dot presentation was 

initiated by the participant depressing the start button. The dot disappeared as soon as the 

participant released the button to initiate a response, so the participant could not directly 

observe whether or not their hand landed on target. The response was a paced reaching 

movement to the position of the dot, aiming to synchronize arrival with an auditory tone (100 

ms, 500 Hz), which onset 450 ms after the initiation of the response (i.e. button release). If a 

touch was registered within 350 ms, or if no touch was registered within 500 ms, a time-error 

message (“TOO FAST” or “TOO SLOW”) was shown, and the trial was recycled. This 

narrow time window was imposed to limit the scope to trade speed against accuracy, ensuring 

that differences in task skill would be measurable in terms of accuracy. The baseline block 

continued until 100 valid responses were recorded, or was aborted after 150 total trials. 

If the baseline block was completed successfully, the participant progressed to the 

main block. Dot size (small or large) on each trial was selected pseudo-randomly, and the 

main block continued until 100 valid trials were recorded for each target size, or was aborted 

if more than 300 trials were performed in total. After each valid movement, a dialog box 

appeared with two buttons, the upper (green) button labelled “HIT” and the lower (red) 

button labelled “MISS”. The participant had to press one of the two buttons to report whether 

they thought that they hit the target location or not, providing an online record of self-

estimation. 

Online self-estimation is our focus in the present study; but we also collected more 

standard global estimates, immediately before and after the main block. Prospective global 

estimates, as well as retrospective estimates, have often been used in the context of the DKE 

(e.g. Edwards, Kellner, Sistrom, & Magyari, 2003; Feld et al., 2017; Parker, Alford, & 

Passmore, 2004; Simons, 2013; Tenenberg & Murphy, 2005), but they have an additional 

role in our design. It is possible that our use of online trial-by-trial reporting during the main 

block could affect retrospective global estimates, perhaps making them more accurate than 

usual, because of closer attention to performance during the task. The inclusion of 
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prospective estimates provides at least one global self-assessment that could not be 

influenced by the online reporting method. 

The prospective estimates were absolute, with one rating screen for each dot size 

(small and large), with the wording, “MOVEMENT TASK: YOU WILL HAVE HALF A 

SECOND TO REACH AND HIT A DOT OF THIS SIZE. OUT OF 100 ATTEMPTS, HOW 

MANY TIMES DO YOU THINK YOU WILL HIT THE DOT?”. The experimenter 

emphasised that the question related only to movements that were on-time, and that a ‘hit’ 

was a touch at the place that the dot had been shown. The participant touched a horizontal 

scale (0-100) to make their estimate, and a line appeared at the touched location. The 

participant could revise their estimate by retouching, or press “submit” to record the 

response. The order of rating screens (small or large dot first) was alternated between 

participants. For the retrospective ratings, the first two screens were identical to the 

prospective ratings except that the wording was in the past tense. Two further retrospective 

screens then asked for relative (percentile) estimates for each dot size: “OUT OF 100 

HEALTHY ADULTS DOING THIS TASK, HOW DO YOU THINK YOU WILL 

COMPARE, IF 0 IS WORST AND 100 IS BEST?”. 

Memory task. The Memory task followed a similar format except that the instruction 

was to memorize the position of the dot and then release the button. Once the button was 

released, a dynamic white-noise mask filled the screen for 1000 ms, after which the screen 

returned to black except for a white crosshair cursor (6 pixel radius) at the screen centre. The 

participant used the mouse to guide the cursor to the remembered position, clicking to 

confirm their response, with no time limit. The prospective and retrospective self-estimates 

were identical to those for the Movement task, except for the precise wording, for instance, 

“MEMORY TASK: YOU WILL HAVE TO REMEMBER AND CLICK THE POSITION 

OF A DOT OF THIS SIZE. OUT OF 100 ATTEMPTS, HOW MANY TIMES DO YOU 

THINK YOU WILL HIT THE DOT?”. 

 

Data treatment and dependent variables 

The first ten valid trials of baseline blocks were discarded as practice. For every other valid 

trial, response error was expressed as the number of pixels deviation from the boundary of the 

dot, with responses within the boundary coded as negative and responses beyond the 
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boundary as positive. Response error was then converted into a binary hit (1) or miss (0), 

defining a hit within a six pixel penumbra around the dot.2 

The percentage hit rate in the baseline block is a measure of performance that is 

independent from the calculation of estimation errors, and provides our general index of task 

skill. Performance in the main block is used in the calculation of estimation error. There were 

four global measures of self-estimated performance. The online self-estimations provided an 

overall online estimated hit rate, and the global rating screens provided prospective and 

retrospective absolute estimates, and a retrospective relative estimate. To convert these into 

estimation errors, we subtracted the actual hit rate in the main block; or, for the relative 

estimate, the main block hit rate expressed as a percentile relative to other participants in the 

analysis. Positive estimation errors reflect overestimation and negative estimation errors 

underestimation. 

For the psychophysical analysis of metacognitive insight, we fitted a binomial logistic 

regression to predict the self-estimation report (hit or miss) from the objective response error, 

for each participant. From this function, we calculated the subjective error threshold (SET) 

for distinguishing a hit from a miss, as the response error for which the probability of 

reporting a hit was .5. Lower SETs represent more conservative criteria for success and 

higher SETs more liberal criteria (a SET of six would be perfectly calibrated to the objective 

criterion for a hit). Variations in SET may reflect real differences in where participants 

perceive the boundary between accurate and inaccurate performance to be, and it will also be 

affected by more general response biases. For instance, a general (optimistic) bias to report a 

hit, unless one is certain that the response was unsuccessful, will push the value of SET 

upwards. Overall, SET can be interpreted as indicating how strict or lenient participants are in 

assessing their own performance. We also calculated the just noticeable difference (JND), 

following convention, as half of the stimulus (response error) difference associated with a 

change in the probability of reporting a hit between .75 and .25 (i.e. the semi-interquartile 

difference). Lower JNDs reflect steeper psychophysical functions, representing higher 

sensitivities of self-estimation; higher JNDs reflect more shallow functions, representing 

lower sensitivities. 

                                                           

2Pilot testing with fully visible dots found that this penumbra was needed for an effective alignment of the 

objective criterion with the subjective impression of the fingertip overlapping the dot; and, in the Memory task, 

six pixels was the radius of the response cursor. 
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Figure 1 shows worked examples of this analysis for the Movement task, for one 

participant with good metacognitive insight, and one with poor insight. Participant 32 (Figure 

1a) has a steep transition from hit to miss responses (JND = 5.55 pixels), calibrated almost-

perfectly to the objective threshold of 6 pixels (SET = 6.09 pixels). The transition for 

Participant 49 (Figure 1b) is much more shallow (JND = 16.96 pixels), and miss reports do 

not reach a majority until the objective error is quite large (SET = 43.63 pixels). In these 

examples, metacognitive sensitivity (JND) and calibration (SET) are both relatively low 

(Participant 32) or relatively high (Participant 49); but in principle these measures could vary 

independently. Participants were excluded at the binary logistic regression stage if either type 

of self-report (hit or miss) was too infrequent to model reliably (fewer than ten reports overall 

for that category), or if the regression did not find a significant effect of response error, as 

assessed by the Wald test (p > 0.05). In these cases, neither SET nor JND could be 

meaningfully estimated.3 

Our main inferential analyses were based on ranked data (i.e. Spearman, rather than 

Pearson correlations). This makes minimal distributional assumptions, allowing us to pre-

specify our analyses fully, and to avoid data transformation and unnecessary exclusions. 

Kruger & Dunning’s original (1999) report of the DKE divided participants into sub-groups 

using performance quartiles. However, where we wish to form sub-groups, we will use 

performance tertiles (low, middle, high). This allows more participants per subgroup, but 

should not alter the overall patterns observed. 

  

                                                           

3Three participants were excluded from the Movement task, and 37 participants from the Memory task, by these 

criteria. See Supplemental materials S2 for consideration of the influence of these exclusions on our findings. 
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Experiment 1: Results 

Estimation errors and performance 

The DKE is assessed via the relationship between performance and estimation errors. The 

expected pattern is a negative correlation, with poorer performers showing more 

overestimation than good performers. In the present study, we have two measures of 

performance (hit rate in the main block, and in the baseline block), and four measures of 

estimation error (online, prospective absolute, retrospective absolute, and retrospective 

relative). All eight pairings of performance and estimation error are plotted in Figure 2a for 

the Movement task, and in Figure 2b for the Memory task. Each panel shows the mean 

estimation error for each tertile of performance, and the correlation across all participants. 

The correlations are all negative, but vary in strength. Negative correlations are 

stronger if the measure of performance is taken from the main block (upper rows in Figures 

2a and 2b). This is expected, because this measure of performance is also used in the 

calculation of estimation error, so these correlations are prone to regression to the mean. To 

remove this artefact, we should index performance by hit rate in the baseline block. Baseline 

performance is sufficiently related to that in the main block (ρ = .58 and .79 for Movement 

and Memory tasks respectively), that we can meaningfully treat baseline performance as an 

index of task skill. When estimation errors are plotted as a function of baseline performance, 

the pattern of negative correlation persists, albeit at a reduced level (lower rows in Figures 2a 

and 2b). 

Negative correlations are generally stronger when self-estimation is relative, 

presumably because a relative estimate is affected not only by uncertainty over one’s own 

performance, but also by uncertainty over other people’s. To the extent that the DKE is 

driven by uncertainty of estimation, it will be inflated for relative estimates. Negative 

correlations persist when self-estimates are absolute, though these are generally more modest, 

and the tendency to under- or overestimation in top performers is less consistent, as 

previously noted (Dunning, 2011; Ehrlinger et al., 2008). Most importantly for present 

purposes, negative correlations are obtained for online self-estimation (lower left panels of 

Figures 2a and 2b; ρ = -.30 and -.58 for Movement and Memory tasks respectively). 
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Online self-estimation 

 

 

Main block 

hit rate 

Estimated 

hit rate Online EE SET JND 

Main block 

hit rate 
- .09 -.60 -.49 -.56 

Estimated 

hit rate 
.20 - .71 .74 -.25 

Online EE -.74 .45 - .95 .17 

SET -.38 .70 .86 - .27 

JND -.75 -.15 .57 .45 - 

Table 1. Experiment 1. Spearman’s ρ for correlations amongst performance and online self-

estimation measures in the main block for the Movement task (n=80) (unshaded upper cells), 

and the Memory task (n=62) (shaded lower cells). The significance threshold would be ≥ .22 

for the Movement task and ≥ .26 for the Memory task (two-tailed, uncorrected, alpha = .05). 

Values exceeding this threshold are shown in bold. 

 

We now focus on online self-estimation. Table 1 shows the inter-correlations amongst key 

measures from the main block. In both tasks, the relationship between hit rate and online 

estimated hit rate, was non-significant (Movement task, ρ = .09, n = 80, p = .45; Memory 

task, ρ = .20, n = 62, p = .15). At face-value, participants seem to have no insight into their 

own performance. However, lack of insight at an individual level cannot be inferred from this 

result, because global estimation error conflates possible influences of metacognitive 

sensitivity and calibration (and other task-induced biases: Burson et al., 2006; Krueger & 

Mueller, 2002). Our online self-estimation method allows us to disentangle these aspects of 

metacognition, via the measures SET and JND. The fact that these measures could be 

meaningfully extracted for the majority of participants actually demonstrates that they did 

have significant insight into their performance. 
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In both tasks, participants with higher hit rates showed sharper sensitivity to response 

error (lower JND), and a more conservative SET criterion for claiming a hit. Table 1 further 

shows strong positive relationships between online estimation error and our metacognitive 

measures, especially SET. This pattern, in which metacognitive sensitivity and calibration are 

associated both with task performance and with estimation errors, makes it possible that they 

could partially or wholly account for the DKE. 

We assess the DKE with respect to baseline performance, to eliminate regression to 

the mean. Figure 3 shows how baseline performance relates to our online self-estimation 

measures. The top row shows the full scattergrams for the online DKE already seen in the 

lower left panels of Figures 2a and 2b. The lower rows show our measures of metacognitive 

insight. Insight was generally poorer for the Memory task than for the Movement task, with 

higher JNDs, indicating lower sensitivity to own performance, and higher SETs, indicating 

more lax criteria for self-estimation. Participants thus had less insight into their performance 

in the Memory task, probably because this task was even more cryptic than the Movement 

task in terms of available feedback. The high number of participants excluded from the 

Memory task (n =37), due to a failure to fit a significant logistic regression, could also reflect 

generally less insight in this task.4 

Crucially, in both tasks, participants in the top tertile showed sharper sensitivity to 

their performance (lower JND), and a SET which was both more conservative and better 

calibrated to the objective criterion for success (response error of six pixels or less). The 

lower tertile of performance included some participants with good metacognitive insight, but 

also featured some participants who were very insensitive (high JND) and/or had a very lax 

criterion (high SET). Poorer performance is therefore associated with poorer metacognitive 

insight in both tasks, consistent with the hypothesis that the DKE arises from metacognitive 

differences between more and less skilled participants (Kruger & Dunning, 1999). 

 

Does metacognitive insight mediate the DKE? 

A causal role for metacognitive differences cannot be tested directly, because the observed 

relationships are correlational; but we can test for a pattern of mediation that would support a 

                                                           

4See Supplemental materials S2 for consideration of the influence of these exclusions on our findings. 
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causal role. The DKE is represented by the negative relationship between baseline 

performance and online estimation error (lower left panels of Figures 2a and 2b). For each 

task, we assessed the influence of the variables mediating this relationship, via a path analysis 

with robust maximum likelihood estimation (Rosseel, 2012).5 

 According to the dual-burden account of the DKE (Kruger & Dunning, 1999), low 

skill entails poor performance and poor metacognitive insight, which together induce inflated 

estimation errors. In the present data, hit rate in the baseline block is the measure of task skill, 

and hit rate in the main block is the measure of task performance, while metacognitive insight 

is broken down into metacognitive calibration (SET) and sensitivity (JND). We can thus 

specify three indirect paths mediating between task skill and estimation error: a path via SET 

and a path via JND, which together give the total metacognitive path; and a third path via task 

performance. These indirect paths are shown in Figure 4, along with the estimated strength 

and significance of each. 

 In both tasks, SET and JND are higher amongst less skilled participants, and mediate 

the relationship between skill and estimation error (i.e. the DKE), but in opposing directions. 

Positive metacognitive calibration (high SET) tends to induce overestimation, promoting the 

DKE, but poor metacognitive sensitivity (high JND) tends to counteract it. The overall 

mediating effect of metacognition is negative, promoting the DKE, but this net influence is 

not significant in either task (Movement task -.13, p = .17; Memory task -.09, p = .31). The 

mediation by task performance is stronger, considerably so in the Memory task, and highly 

significant (Movement task -.18, p < .0005; Memory task -.51, p < .0005). 

  

                                                           

5Our pre-registered analysis for this section was based on a series of semi-partial correlations. Following the 

suggestion of an anonymous reviewer, we have replaced this with a path analysis, which offers richer insights 

into the indirect paths mediating the DKE. 
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Experiment 1: Discussion 

This first experiment replicated all essential features of the DKE for two novel tasks, of 

movement and memory. This extends the generality of the DKE, suggesting that it is a near 

ubiquitous pattern for tasks that are neither trivially easy nor unreasonably difficult, and for 

which the available feedback is sufficiently cryptic to leave some uncertainty of self-

estimation. In these novel tasks, we replicated prior observations that the DKE is inflated if 

the index of performance is drawn from the same trials in which estimation error is measured, 

presumably due mainly to regression to the mean (Burson et al., 2006; Feld et al., 2017; 

Klayman et al., 1999). We also confirmed that the pattern is stronger for relative than for 

absolute global estimates (see Dunning, 2011). However, we further showed that the effect 

does not depend on uncertainties in making global estimates, because it is also replicated with 

a series of online reports of perceived success or failure in individual trials. 

 Metacognitive insight was generally better for the Movement task than for the 

Memory task, but metacognitive sensitivity and calibration were robustly related to actual 

performance in both tasks (Table 1), and the relationships remained significant when using 

the baseline measure of performance from a distinct set of trials (Figure 3). At least some low 

performers had very poor metacognitive sensitivity (high JND), whereas high performers had 

generally good sensitivity. Similarly, some low performers had very lax standards for 

reporting a hit (high SET), whilst high performers were relatively conservatively calibrated. 

These more conservative criteria were closer to the (non-arbitrary) objective criterion for 

success, so it seems reasonable to suggest that the self-estimations of high performers were 

not just more conservative, but better calibrated in absolute terms. It would thus seem that the 

unskilled are indeed less sensitive to their own performance, and unduly optimistic in their 

metacognitive calibration, as originally hypothesised by Kruger & Dunning (1999). 

 The critical question is whether these metacognitive differences mediate the negative 

correlation between task skill and estimation error (i.e. the DKE). A path analysis showed 

that lax metacognitive calibration (high SET) did promote the DKE, but that this was largely 

counteracted by an opposing effect of poor metacognitive sensitivity (high JND). Intuitively, 

a high JND indicates a shallower psychophysical function, which attenuates the importance 

of the precise point of transition represented by SET (see Supplemental materials S3, for a 

full explanatory model). In both tasks, the total effect of metacognitive factors was weakly to 

promote the DKE, but was not statistically significant. Task performance (hit rate) in the 
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main block mediated the majority of the DKE, and this indirect path between task skill and 

estimation error was highly significant in both tasks. 

 Given this suggestive pattern, we can ask a deeper experimental question about 

underlying causes. Specifically, we can seek to disentangle the two parts of the proposed 

dual-burden of the unskilled. One part is a lack of metacognitive insight, which we have 

confirmed, but which may play a minor role. The other is simply that performance itself is 

poor. As noted in Kruger and Dunning’s (1999) original report, incompetent individuals are 

at the bottom of the distribution, so it is nearly impossible for them to underestimate their 

relative rank (see also Krajč and Ortmann, 2008). On absolute scales too, low skill 

participants may be prone to overestimate just because they perform more poorly, having 

relatively more errors to mistake for successes. This potential bias, which we will call the 

‘performance artefact’, would cause regressive estimates, but is conceptually and practically 

distinct from the well-mapped, and relatively easily controlled artefact of regression to the 

mean. Our path analysis for Experiment 1 suggests that this performance artefact may 

substantially govern the DKE. 

 These considerations highlight a broader confound, intrinsic to the DKE, yet which 

has received remarkably little explicit consideration. The effect is widely understood as a 

relationship between task skill and estimation error, but the measurement of estimation error 

has only ever been done in situations in which high and low skill participants differ in their 

success at the task. This confounds the broader concept of task skill (ability for a class of 

task) with a narrow measure of task performance (level of success at current instance of task), 

so does not disentangle skill- and performance-driven effects. This might seem a subtle 

distinction, but it could be crucial to a correct understanding of the DKE. If a performance 

artefact exists such that a high rate of errors boosts overestimation, and vice-versa for a low 

rate of errors, then to study the effects of task-skill uncontaminated by this artefact, we 

should really compare estimation errors between high and low skill participants when they 

perform the task at equivalent rates of success. 

 A similar argument applies to our psychophysical measures of metacognition. We 

have implicitly assumed that these reflect relatively stable characteristics, which differ 

between people with different levels of task skill. But imagine instead that metacognition is 

more-or-less modulated by the current level of task performance. In particular, rather than 

having a fixed criterion for success (SET), a person might adopt a more conservative criterion 
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when objectively more successful, and a more lenient criterion when less successful. In 

plainer terms, we might expect much from ourselves when a task is easy, but give ourselves 

more leeway when conditions are difficult. For instance, in a general knowledge quiz, we 

might be satisfied only with exact answers in our specialist area, but happy with strong 

hunches for questions outside of our expertise. When aiming for a dot, we might want to land 

comfortably inside the boundary of a big dot, but be happy to clip the outside edge of a 

smaller dot. Again, one way to disentangle the effects of task skill from those of performance 

per se would be to study the predictive effects of task skill after differences in performance 

have been eliminated. 

This is the purpose of Experiment 2. We set out to test whether specific correlations 

between baseline performance and three measures of online self-estimation for the Movement 

task of Experiment 1 would be replicated if between-participant differences in performance 

(i.e. success rate) in the main block were experimentally eliminated. That is, we tested 

whether these relationships were driven by task skill, or by task performance. 
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Experiment 2: Methods 

The critical correlations from Experiment 1, under replication in Experiment 2, were between 

baseline performance and online estimation error (ρ = -.30), baseline performance and SET (ρ 

= -.26), and baseline performance and JND (ρ = -.37). Our methods and predictions were 

preregistered on the Open Science Framework https://osf.io/ccgsz/(see Supplemental 

materials S1). Experiment 2 was approved by the Psychology Research Committee, 

University of Edinburgh, as an extension to Experiment 1 (approval#105-16171). We report 

how we determined our sample size, all data exclusions, all manipulations, and all measures. 

Only the Movement task was used in Experiment 2. All methods were exactly as for 

Experiment 1, except in the details described below.  

 

Participants and power 

Our plan was to calculate a Bayes factor after every ten participants (or nearest break point in 

testing) using the replication test for correlation developed by Wagenmakers, Verhagen & Ly 

(2016), to test between the hypothesis that the previously observed correlation was replicated 

and the null hypothesis of no correlation.6 Our primary stopping rule was to terminate data 

collection at the point that the Bayes factors for all three target correlations were sensitive, 

according to the cut-offs suggested by Jeffreys (1939) (i.e. greater than 3 or less than 1/3). 

Our secondary stopping rule, defined on frequentist grounds, was that we would stop data 

collection after 88 valid datasets, if the primary stopping condition had not been met. With a 

one-tailed alpha of .05 (because the direction of correlation is known), this would provide 

high power to replicate the correlation with online estimation error (power .90 for ρ = -.30 at 

n=88), and with JND (power .98 for ρ = -.37 at n=88), and adequate power to replicate the 

correlation with SET (power .80 for ρ = -.26 at n=88) (Faul, Erdfelder, Buchner, & Lang, 

2009; Faul, Erdfelder, Lang, & Buchner, 2007). 

In fact, our primary stopping rule was met after 81 participants had been tested. These 

participants were students of the University of Edinburgh, with a median age of 20 years (min 

18, 1st quartile 19, median 20, 3rd quartile 23, max 32 years), and mostly female (60 female, 

                                                           

6 This replication Bayes factor was developed for Pearson correlations. We apply it in the present case to 

Spearman correlations, which are identical with Pearson correlations for ranked data. 

https://osf.io/ccgsz/
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21 male) and right-handed (74 right handed, 7 left-handed, by self-report). After exclusions, 

the final sample had 75 participants.7 

 

2.1. Procedure 

The procedure was the same as for the Movement task of Experiment 1, except as stated here. 

In order to try to minimise the number of participants excluded because of time-errors, any 

participant with an excess of time-errors in the baseline block was given a second attempt at 

this block. Participants were excluded for time-errors only if they produced an excess (>50) 

at two attempts of the baseline block, or an excess (>100) in the main block. In each case, the 

block was discontinued as soon as the maximum number of time-errors was exceeded. In 

practice, no participants were excluded because of time-errors. 

The main block was identical to the baseline block except that, rather than presenting 

a fixed set of dot sizes, the dot size varied from trial-to-trial. The initial radius, used on the 

first trial, was set to the median of the absolute deviation from the centre of the dot in the 

baseline block, rounded to the nearest pixel. Thereafter, each time that the participant hit a 

dot, the radius decreased by two pixels at the next trial; and each time the participant missed a 

dot, the radius increased by two pixels at the next trial. This simple adaptive rule was used to 

titrate the hit rate for each participant in the main block to around 50%. We expected high 

skill participants to be presented with generally smaller dots (a more difficult task), and low 

skill participants to be presented with generally larger dots (an easier task), and for all 

participants to have a similar level of success (~ 50%). 

As in Experiment 1, after every valid trial in the main block, the participant had to 

report whether they thought their response was a hit or a miss. Because we were interested 

specifically in online self-estimation, we did not include any prospective self-estimates before 

the main block. However, we did collect retrospective global self-estimates, as a no-cost add-

on. A first rating screen asked for an absolute estimate with the wording: “MOVEMENT 

TASK: IN THE LAST BLOCK, YOU HAD HALF A SECOND TO REACH AND HIT 

THE DOT. ON WHAT PERCENTAGE OF TRIALS DO YOU THINK YOU HIT THE 

DOT?”. A second rating screen then asked for a relative estimate: “OUT OF 100 HEALTHY 

                                                           

7One participant was excluded because performance in the main block did not fall within the required bounds, 

and five participants were excluded due to a failure to fit a significant binomial logistic regression. 
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ADULTS DOING THS TASK, HOW DO YOU THINK YOU WILL COMPARE, IF 0 IS 

WORST AND 100 IS BEST?” 

 

Data treatment and dependent variables 

The data treatment was identical to that in Experiment 1, except that the binomial logistic 

regression of online self-estimation reports included dot radius as a predictor in addition to 

response error. This was done because there was a potentially wide variation of dot sizes, and 

we wanted to account for any possible biasing influence of dot size itself (e.g. the participant 

might be more likely to report a hit simply because the target was bigger).8 SET and JND 

were calculated from the two-factor regression equation, for a dot radius of 14 pixels (the 

average dot size in Experiment 1). 

Participants were excluded at the analysis stage if the titration of performance levels 

failed, which we operationally defined as a hit rate in the main block below 45% or above 

55%. One participant was excluded on these grounds (hit rate 55.5%). We also excluded 

participants if the binomial logistic regression showed a multicollinearity problem, indicated 

by a variance inflation factor exceeding four, or if they had fewer than ten estimation 

responses available in either category (hit or miss), or if the regression did not find a 

significant effect of response error on self-estimated performance, as assessed by the Wald 

test (p > 0.05). In these cases, the psychophysical measures SET and JND could not be 

meaningfully estimated; five participants were excluded by these criteria. 

  

                                                           

8Dot size could also have been included as a predictor in Experiment 1, but we did not plan to do this, because 

pilot data had indicated that there was no advantage to doing so. The analyses reported for Experiments 1 and 2 

thus adhere to the preregistered plans, but the outcomes would not be meaningfully changed by including dot 

size as a predictor in Experiment 1, or by not including it as a predictor in Experiment 2. 
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Experiment 2: Results 

The top left panel of Figure 5 shows the successful titration to ~50% hit rate in the main 

block. The bottom two panels of Figure 5 show that, despite this levelling of performance, 

SET and JND have similar relationships to baseline performance as in Experiment 1 (cf. 

Figure 3). The correlation for SET was -.22 (vs. -.26 in Experiment 1), and the correlation for 

JND was -.38 (vs. -.37 in Experiment 1). For SET, the replication BF10 was 4.90, 

corresponding to ‘substantial’ evidence for replication, and for JND the replication BF10 was 

332.30, corresponding to ‘extreme’ evidence for replication (Jeffreys, 1939). These outcomes 

indicate that the psychophysical differences in metacognitive insight are driven by task skill, 

rather than by performance in the current instance of a task. 

However, the top right panel of Figure 5 shows that, despite the replication of these 

metacognitive differences, the DKE itself was not replicated. ‘Substantial’ evidence was 

instead found for the null hypothesis of no correlation between baseline performance and 

online estimation error (replication BF10 = 0.19). Figure 6 displays the mean estimation error 

for each tertile of baseline performance, for online estimation and also for the retrospective 

global ratings, confirming that the DKE was uniformly abolished by the levelling of main 

block performance. At face value, these data seem to undermine the idea that metacognitive 

differences could cause the DKE, because these differences are present, but the DKE is not. 

More precisely, the finding implies that the metacognitive differences are not sufficient for 

the DKE, in the absence of the usual performance differences between high and low skill 

participants. 

 

Path analysis9 

This conclusion can be further explored by a path analysis, structurally similar to that for 

Experiment 1, with three indirect paths mediating between task skill and estimation error: one 

path via main block performance; and dual metacognitive paths via SET and JND. The 

critical difference in Experiment 2 is that the strength of the links in the performance path 

have been experimentally pushed to zero, by eliminating systematic between-participant 

variance in main block performance. The path analysis is shown in Figure 7. The observed 

                                                           

9This path analysis was not part of our pre-registered plan, but was suggested by an anonymous reviewer. 
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performance path is null, as expected; but the metacognitive paths are strikingly similar to 

those for the Movement task in Experiment 1 (Figure 4a). Lax metacognitive calibration 

(high SET) tends to promote the DKE, but poor metacognitive sensitivity (high JND) 

attenuates the pattern, and the total metacognitive path is weak and not significant (-.05, p = 

.67). In the absence of performance differences, the DKE depends on metacognitive factors 

alone, and disappears (-.05, p = .65). 
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Experiment 2: Discussion 

Experiment 2 found that the metacognitive differences between high and low performers are 

related directly to task skill, independent of current level of performance, because these 

differences persisted unchanged when success in the main block was levelled (at ~50%). This 

supports the idea that metacognitive insight may depend, to some extent, on the same core 

competencies that constitute task-skill (Kruger & Dunning, 1999). A similar result was not 

found for the DKE itself, which was eliminated by the removal of performance differences in 

the main block. This supports the suggestion from Experiment 1, that a performance artefact 

is the main driver of the DKE, under typical circumstances in which high and low skill 

participants differ in level of success at a task. By contrast, metacognitive calibration and 

sensitivity had directionally opposite influences on estimation error, which largely cancelled 

out, so that metacognitive factors did not significantly mediate the DKE overall. 

 The above pattern describes the present data, but this does not mean that the dual-

burden account could never provide an appropriate explanation of the DKE. Metacognitive 

and performance differences may conspire to create the DKE, as proposed originally by 

Kruger and Dunning (1999), in some tasks or circumstances. For instance, if the link between 

task skill and metacognitive calibration were very much stronger than in our data, then a 

substantial mediational role for metacognition could be envisaged. However, the dual burden 

account is not generally necessary to explain the DKE, since performance differences alone 

are capable of inducing the effect, assuming only that metacognitive insight is imperfect. 

 The key interactions can be captured by a simple graphical model, which shows how 

estimation errors would vary across two levels of metacognitive skill, and three levels of task 

performance, given a Gaussian distribution of response errors (Figure 8a).10 The headline 

outcome in each panel is the overall estimation error (EE). The dual-burden account assumes 

that performance and metacognition are tightly yoked, so that the DKE is specific to the 

contrast between a low performer with poor metacognition (bottom right panel, EE = 37), and 

a high performer with good metacognition (top-left panel, EE = 4). But, in fact, just as great a 

contrast would emerge between a low performer with poor metacognition (bottom right 

panel, EE = 37), and a high performer with equally poor metacognition (top right panel, EE = 

                                                           

10This illustration is a sub-set of the possible combinations of performance level, metacognitive sensitivity and 

metacognition calibration. A wider range of possibilities, more fully mapping the complex interactions between 

these factors, is provided in Supplemental materials S3. 
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4). Figure 8b further shows that a similar pattern can arise from performance differences 

alone, when participants have no metacognitive insight at all: compare the low performer 

with no metacognition (bottom panel, EE = 47) and the high performer with no 

metacognition (top panel, EE = -4). This last contrast is essentially Burson and colleagues' 

(2006) noise plus bias model, applied to absolute self-estimation. It is included to make the 

wider point that the DKE pattern alone does not imply metacognitive insight for anyone, let 

alone systematic metacognitive differences between skilled and unskilled participants. 

 Metacognitive differences may exist between high and low performers, as observed in 

Experiments 1 and 2, but such differences do not necessarily drive the DKE. Conversely, the 

DKE pattern does not imply underlying metacognitive differences, since the same superficial 

relationship between task skill and estimation errors can be driven by a performance artefact, 

provided only that participants have imperfect insight into their performance. In general, the 

metacognitive differences that are widely held to underpin the DKE are not established by the 

DKE itself, but must be demonstrated independently for any given task. 
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General discussion 

Since the seminal paper establishing the DKE, there has been debate over whether the effect 

derives from metacognitive differences between skilled and unskilled people (Kruger & 

Dunning, 1999), from general biases of self-estimation (Burson et al., 2006; Krueger & 

Mueller, 2002), or from statistical artefacts (Feld et al., 2017; Krajč & Ortmann, 2008; 

Krueger & Mueller, 2002). Despite vigorous defences of the metacognitive account 

(Dunning, 2011; Ehrlinger et al., 2008; Kruger & Dunning, 2002; Schlösser, Dunning, 

Johnson, & Kruger, 2013), and its enthusiastic dissemination through the wider culture, 

unambiguous evidence has not been provided, and the debate has persisted. The present paper 

offers a resolution between competing accounts, showing that each of these factors can 

contribute to shaping the typical DKE. Our studies employ novel tasks, and online self-

estimation. In drawing our main conclusions, we assume generalisation from these methods 

to other tasks; and we consider the likely limits of this assumption. 

In both Movement and Memory tasks, poor performers did indeed show worse 

insight, having lower sensitivity to variations in their performance, and more lax standards 

for success, being willing to claim a hit even when the spatial error was large. This pattern 

was found in some, though not all, poor performers, whilst high performers showed good 

metacognitive abilities, being more sensitive, and having stricter standards, better calibrated 

to the objective criterion. These metacognitive differences correspond well with Kruger and 

Dunning's (1999) original concept of a metacognitive deficit amongst the unskilled. 

However, the effect size that these differences could account for was vanishingly small by 

comparison with the DKE as widely depicted (e.g. by the famous Figure 1 of Kruger & 

Dunning, 1999). This is because several other biases strongly influence and inflate the effect. 

The DKE is inflated if the measure of performance is drawn from the same trials as 

used in the calculation of estimation error. In Experiment 1, the correlations between 

performance and estimation error were smaller in magnitude by around ~ .3 for the 

Movement task and ~ .2 for the Memory task, when using a measure of performance from 

separate (baseline) trials (see Figure 2). Most of this discrepancy is almost certainly due to 

regression to the mean (Ackerman et al., 2002; Burson et al., 2006; Feld et al., 2017; Krueger 

& Mueller, 2002; Nuhfer et al., 2016, 2017). The DKE is also stronger for relative than for 

absolute self-estimates, probably due to regressive effects associated with the added 

uncertainty about how other people perform (Moore & Healy, 2008). The combined effect of 
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these two methodological factors can be dramatic. In the Movement task of Experiment 1, the 

DKE was represented by a correlation of -.92 when relative estimates and main block 

performance were considered, yet receded to non-significant levels (as weak as -.07) for 

absolute estimates and baseline performance. 

Our main operational measure of the DKE in these studies was the correlation 

between task-skill (baseline performance) and online estimation error. However, a path 

analysis showed that this correlation was principally mediated by performance differences 

between high and low skill participants, rather than by differences in metacognitive insight. 

Low performers may overestimate more, just because they have more failures about which to 

be mistaken. This performance artefact is importantly distinct from the well-mapped 

influence of regression to the mean. The performance artefact is one part of the original dual-

burden account of the DKE, but there has nonetheless been remarkably little discussion of the 

causal role of performance per se, as opposed to metacognitive factors. This may be because 

the dual-burden account assumes that performance and metacognitive factors are necessarily 

yoked; but the present study has shown that these influences are separable, both in principle 

and in practice. In Experiment 2, when we levelled the performance across participants, the 

metacognitive differences between more and less skilled people persisted, but the DKE itself 

was abolished. Thus, although the metacognitive differences are real, at least for our tasks, 

they are not sufficient for the DKE. 

Moreover, considering that several other biases can induce the DKE, we must 

conclude that neither metacognitive differences, nor even the full dual-burden, are necessary 

for the effect. Estimation error depends in complex ways upon the particular mix of 

metacognitive sensitivity and calibration, and the distribution of response errors, and it is 

certainly not a direct read-out of metacognitive skill. If this is true for our Movement and 

Memory tasks, then it may be even more so for higher intellectual and social tasks, where the 

task itself may be more complex, the size of the response error more ambiguous, the 

objective criterion for success more opaque, and the feedback more cryptic. Furthermore, if 

making global self-estimates, rather than trial-by-trial judgements, uncertainty can only 

increase, especially if required to rank oneself relative to unknown others. We would suggest 

that metacognitive insight is highly unlikely to be a more direct determinant of estimation 

error in such complex scenarios. Of course, the role of metacognition in the DKE for any 

specific task or domain is an empirical question, and an important step will be to apply our 

analytical approach to the higher-level intellectual skills more typical of the DKE literature. 
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But if the broader scientific aim is to study metacognition, then researchers should strive to 

use measures that are free from the many confounds that estimation errors entail. Our adapted 

psychophysical approach is one possibility, appropriate given the distribution of response 

errors in our tasks. A range of more evolved alternative methods also exist, which can be 

applied where suitable tasks can be devised (Fleming & Lau, 2014). 

None of our findings cast doubt on the DKE as an empirical phenomenon. On the 

contrary, our data extend the classic pattern to novel domains. It is widely true that poor 

performers overestimate themselves more than high performers, and our data confirm that 

poor performers may indeed have less metacognitive insight than high performers. But it 

would be a gross misrepresentation to say that poor insight is the reason for overestimation 

amongst the unskilled. At least as much explanatory work is done by performance artefacts, 

and the pattern can be induced (and greatly inflated) by a host of other factors and biases, 

some psychologically interesting, and some ‘merely’ statistical. Shakespeare’s poetic 

depictions of the fool and the wise man are thus as apt as ever. By contrast, the modern meme 

that stupid people are too stupid to know they are stupid is a dramatic oversimplification, 

propounded (perhaps) by those who know sufficiently little of the evidence. 
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Context 

Our interest in the Dunning-Kruger effect (DKE) stems from our work on anosognosia for 

hemiplegia following brain damage. This is a condition in which patients with a weak or 

paralysed limb seem to be unaware of their disability. When asked to move a paralysed arm, 

a patient with anosognosia may report that they have done so, despite the fact that they 

manifestly have not. The DKE has been proposed as “a psychological analogue to 

anosognosia”, arising in healthy people who are unskilled in a specific domain (Kruger & 

Dunning, 2002, p. 1130). We conceived our tasks originally to study self-estimation in 

clinical populations, but we began by collecting control data, in groups of healthy young and 

older adults. We quickly became interested in the patterns emerging, and saw the potential 

value of our methods for testing the role of metacognition in the DKE. These unpublished 

studies provided rich pilot data for the present experiments, allowing us to optimise our tasks, 

and to preregister our design, with well-informed power analyses and clear predictions. 
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Figure 1. Examples of the analysis of metacognitive insight for the Movement task, for one 

participant with good metacognitive insight (a), and one with poor insight (b). In each panel, 

the histogram shows response frequency by size of response error, across 200 pointing 

movements, with negative errors inside the dot boundary and positive errors beyond the dot 

boundary. The vertical dotted line indicates the objective threshold for a hit, which includes 

any responses within a six pixel penumbra around the dot. The histogram is shaded by the 

frequency with which the participant reported a hit (light grey) or a miss (dark grey). The black 

curve is the logistic function relating the probability (p) of reporting a hit to the size of the 

response error, with the best-fitting equation shown at the top of the panel. Metacognitive 

calibration is measured by the subjective error threshold (SET), at which the participant is 

equally likely to report a hit or a miss, given by the x intercept for p = .50. Metacognitive 

sensitivity is measured by the just noticeable difference (JND), given by (half of) the difference 

in response error between p = .25 and p = .75.  
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Figure 2. Experiment 1. Relation between performance and estimation error for (a) the 

movement task (n = 80) and (b) the memory task (n = 62). Performance is defined by hit rate 

in the main block (upper row) or the baseline block (lower row). Estimation error is derived 

from online self-estimation, prospective or retrospective absolute estimates, or a retrospective 

relative (percentile) estimate. The means are split by performance tertile (where 1 is lower and 

3 is upper). Black squares show means (+/- between-subject 95% CIs) across all targets. Small 

and large grey circles show means (+/- 95% within-subject CIs) for small and large targets 

respectively. Spearman’s rho is reported for each plot, indexing the strength of relation between 

actual performance and estimation error across all participants. 
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Figure 3. Experiment 1. Relation of baseline block performance (% hit rate) to online self-

estimation measures for the main block, for the movement task (n = 80) and memory task (n = 

62), with Spearman’s ρ for each plot. Participants in the middle tertile of performance are 

plotted as unfilled dots to visually separate performance tertiles. One outlying participant is 

omitted from the SET and JND plots for the memory task to avoid compression of the y-axis; 

this bottom-tertile participant had extremely high values for SET (207) and JND (156).  
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Figure 4. Path analysis for Experiment 1 (a) Movement task and (b) Memory task. The DKE 

is represented by the relationship between task skill (SKILL = hit rate in baseline block) and 

online estimation error (EE in main block). The variables hypothesised to mediate the DKE 

are metacognitive calibration (SET), metacognitive sensitivity (JND) and task performance 

(PERFORM = hit rate in main block). The standardised path strength (correlation coefficient) 

is shown on the diagram for each link. The estimated strength of each path (given by the 

product of its two links) is tabulated, with 95% confidence intervals and associated p value. 

The summed path strengths for SET and JND give an estimate of the total mediational effect 

of Metacognition. The summed path strengths for Metacognition and Performance give the 

total DKE. Also included in the model, but omitted from the figure, are the correlations 

between SET, JND, and PERFORM, to ensure that the null hypothesis of a well-fitting model 

is not rejected (Movement task χ2 = 1.08, df = 1, p = .30; Memory task χ2 = 2.01, df = 1, p = 

.16). 
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Figure 5. Experiment 2 (n=75). Relation of baseline block performance to (levelled) main 

block performance, and three online self-estimation measures, with Spearman’s ρ for each 

plot. Participants in the middle tertile of task skill are plotted as unfilled dots to visually 

separate performance tertiles. The top left plot confirms that the titration of task performance 

was effective, levelling performance to 50% across the spectrum of task skill. Unlike in 

Experiment 1, there is no significant relationship between baseline performance and online 

estimation error, but negative relationships with both SET and JND are replicated. 
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Figure 6. Experiment 2 (n = 75). Relation between baseline performance and estimation 

error. Estimation error is derived from online self-estimation, a retrospective absolute 

estimate, or a retrospective relative (percentile) estimate. The means are split by baseline 

performance tertile (where 1 is lower and 3 is upper). Error bars show between-subject 95% 

CIs. Spearman’s rho is reported for each plot, indexing the strength of relation between 

baseline performance and estimation error across all participants. The expected DKE pattern, 

of a negative relationship between baseline performance and estimation error, is absent, due 

to performance (hit rate) having been levelled in the main block. Note that the relative 

estimation errors are somewhat meaningless in this context. They are calculated from the 

subtraction of actual percentile from estimated percentile but, due to the levelling of 

performance, the actual percentiles are determined by tiny differences within a compressed 

range (45-55% hit rate). 
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Figure 7. Path analysis for Experiment 2, similar to that for Experiment 1 (Figure 4). The 

DKE is represented by the relationship between task skill (SKILL = hit rate in baseline block) 

and online estimation error (EE in main block). The variables hypothesised to mediate the 

DKE are metacognitive calibration (SET), metacognitive sensitivity (JND) and task 

performance (PERFORM = hit rate in main block). The standardised path strength 

(correlation coefficient) is shown on the diagram for each link. The estimated strength of 

each path (given by the product of its two links) is tabulated, with 95% confidence intervals 

and associated p value. The summed path strengths for SET and JND give an estimate of the 

total mediational effect of Metacognition. The summed path strengths for Metacognition and 

Performance give the total DKE. Note that the links in the performance path have been 

experimentally pushed to zero by our performance levelling technique, so the DKE is wholly 

mediated by Metacognition, and is effectively absent. Also included in the model, but omitted 

from the figure, are the correlations between SET, JND, and PERFORM, to ensure that the 

null hypothesis of a well-fitting model is not rejected (χ2 = 0.02, df = 1, p = .89). 
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Figure 8. (a) Illustration of the combined effects of metacognitive insight and performance 

level (i.e. success rate) on total estimation error. Each plot shows a normal distribution of 

errors, shaded according to the proportion of hit reports (light grey) and miss reports (dark 

grey) at each level of error, tracked by a psychophysical function (curved black line). Good 

metacognition has a steep function, centred relatively close to the objective threshold for 

success (vertical black line). Poor metacognition has a shallower function, centred further 

rightward. Underestimation occurs when a miss is reported for an objective hit, so the total 

underestimation (U) is given by the dark grey area to the left of the vertical black line. 

Overestimation occurs when a hit is reported for an objective miss, so the total 

overestimation (O) is given by the light grey area to the right of the vertical black line. 

Estimation error (EE) is given by the difference (O-U), with all values expressed as a 

percentage (to the nearest percent) of total responses. EE varies with metacognitive insight, 

but it also varies with level of performance on the current instance of the task. These 

influences interact. (b) Participants are here modelled to have no metacognitive insight at all, 

but to show an (optimistic) response bias, reporting hits on a majority of trials regardless of 

response error. This can also produce the pattern of gross overestimation amongst low 

performers, and more accurate estimation amongst high performers. 


