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This study aims to evaluate the effect of the pyrolytic temperature on the biochar derived from the 

macauba endocarp for the removal of uranium (VI) from aqueous solutions. The endocarp was subjected 

to six different pyrolytic temperatures, ranging from 250 ºC to 750 ºC. The biochars obtained at each 

temperature were evaluated for their adsorption capacities (“q”). The highest adsorption capacities were 

obtained for the biochar produced at 250 ºC (BC250), followed by the one obtained at 350 ºC (BC350), 

with removal efficiencies of 86 % and 80 %, respectively. The best condition was achieved when the 

endocarp was subjected to temperatures between 300 and 350 °C, at which it was possible to obtain a 

satisfactory balance among adsorption capacity, gravimetric yield and fixed carbon content. This 

characteristic, combined with the high removal efficiency, points to an ideal working temperature of 350 

°C. Elemental analysis showed a decrease of the H/C and O/C ratios when higher pyrolytic temperatures 

were applied, indicating an inverse relationship between the carbonization and the surface polar 

functional groups, which were likely responsible for an increased adsorptive capacity in biochars 

produced at lower temperatures. Both FTIR and XPS analysis indicated that oxygen-containing groups 

such as hydroxyls and carboxylic acids were involved with the binding of uranyl ions. 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:*snguilhen@ipen.br


1. INTRODUCTION 

  

Radioactive wastes are generated in a variety of forms, states, concentrations and 

activities. The radionuclides present in radioactive waste can have a broad spectrum of 

half-lives. This is an indisputably complex problem, which often requires the 

combination of several techniques for its treatment and management [1]. 

 

Radioactive waste management is very important to safeguard human health and 

minimize the impact on the environment. Three general principles are employed in 

management of radioactive wastes before they can be harmlessly returned to the 

biosphere: concentrate-and-contain, dilute-and-disperse, delay-and-decay. Wastes can 

be concentrated and isolated, diluted to acceptable levels and discharged into the 

environment or stored until their radioactivity is allowed to naturally decrease through 

decay of the radioisotopes in them [2]. 

 

 Safety management requires a number of operations and sometimes permanent 

containment. Treatment techniques may involve simple operations such as compaction 

to reduce volume, as well as advanced and/or complementary operations such as 

filtration, precipitation or ion exchange to remove the radionuclides from solutions. 

Once the waste is changed into a form that is suitable for safe handling, transportation, 

storage and disposal, it can be immobilized in suitable containers [3]. 

 

Nowadays, liquid radioactive wastes are generated as a result of many activities, such as 

mining and processing, the nuclear fuel cycle, nuclear medicine, industry and research 

[4]. Among the radionuclides commonly present in radioactive waste, uranium (U) can 

be of great concern due to its radiotoxicity. Naturally occurring isotopes of U decay by 

emission of alpha particles, which are highly ionizing. Since alpha particles are less 

penetrating than beta particles and gamma rays, they can be readily stopped by the skin 

or a sheet of paper, therefore not posing a great threat when exposure occurs outside of 

the body. However, the greatest radiological hazard would be when U is in close 

proximity to a cell or tissue, which would be possible through ingestion or inhalation 

(internal contamination). In this case, the alpha particles would be able to irradiate the 

body internally, sometimes, for a long period of time, initiating cell and tissue damage 

that could eventually lead to cancer. Of course, the severity of this contamination is 

related to the intensity of the irradiation source, which would depend on the degree of 

enrichment, the amount incorporated, the half-life, the affected organ or tissue, etc. [5]. 

 

An additional hazard is present in aquatic environments. Water chemistry alters uranium 

toxicity by changing its chemical form and, subsequently, its bioavailability [6]. Soluble 

species of uranium are more easily dispersed into water and can rapidly spread to the 

environment. Therefore, uranium contaminated wastes cannot be released in the 

wastewater without previous treatment. 

 

New materials and processes are constantly being developed to improve 

decontamination and volume reduction in order to ensure safe storage and to decrease 

potential environmental impacts. In this regard, the use of sorbents has been growing 

over the years for they provide efficient and specific removal of contaminants from 

solutions [7]. The treatment of radioactive aqueous waste containing uranium comprises 

the reduction of volume through the separation of the radionuclide from the aqueous 

matrix, followed by its impregnation in the adsorbent. Once the activity levels in the 



aqueous waste are lowered to a safe level for liberation, the treated solution can be 

disposed of in the sewer system as industrial waste [8]. In Brazil, the regulation CNEN-

NN-8.01 (2014) establishes the allowable limits [9] and the National Nuclear Energy 

Commission (CNEN) is responsible for monitoring and management of radioactive 

waste.  

 

Immobilization of the adsorbent-adsorbate is required for long-term storage if its 

activity is above limits, serving as a barrier that prevents or slows the release of 

radionuclides into the environment. Cement, bitumen and polymers are usually 

employed as immobilization matrices, the selection of which depends on their chemical 

compatibility with the waste, commercial availability and costs [10, 11]. In Brazil, the 

regulation CNEN-NN-6.09 “Acceptance criteria for radioactive waste disposal” [12], 

states that the radioactive solid waste must be immobilized in a matrix, so as to reduce 

the potential migration or dispersion of radionuclides. 

 

Low-cost by-products from agricultural activities have been studied as a sustainable 

solution for wastewater treatment, as they can remove contaminants and pollutants from 

wastewater while at the same time contributing to waste reduction, recovery and reuse 

[13]. In recent years, there has been an increased interest in biochar, due to its many 

potential applications including carbon sequestration and enhancement of soil fertility 

[14], production of energy [15] and environmental remediation [16]. 

 

Biochar (BC) is a porous stable material, obtained from thermal degradation of carbon-

rich biomass under an oxygen-limited atmosphere. Biochars typically exhibit great 

potential as adsorbent materials, mostly because of their porous structure, charged 

surface and surface functional groups. Several studies have demonstrated that biochars 

can be employed as low-cost wastewater treatment because they effectively remove 

heavy metals from aqueous solutions [17,18]. 

 

Among the array of biomass thermal conversion technologies, pyrolysis is a process in 

which organic matter is heated to temperatures above 300 °C in the absence of oxygen 

[19,20] with the aim to produce liquid and solid products. During the pyrolysis process, 

the natural polymeric constituents (lignin, cellulose, hemicellulose, fats and starches) 

are thermally degraded to three different fractions: bio-oil (condensed vapors), char 

(solid fraction) and non-condensable gases [21]. In general, a higher yield of BC is 

expected from biomasses that contain more lignin and less cellulose. Also, the porosity 

of BC increases with the amount of lignin in the biomass [22, 23, 24]. 

  

Heating rate, residence time and temperature have a direct impact on the distribution 

and yield of each of these fractions [25, 26]. Of these parameters, the maximum 

temperature to which the biomass is subjected in the pyrolysis reactor, called highest 

treatment temperature (HTT) has the greatest overall influence on the biochar properties 

[27, 28, 29, 30]. Low-temperature pyrolysis generally produces high BC yields. In 

contrast, high-temperature pyrolysis leads to BCs with a high C content and large 

surface area. However, functional groups are likely to be decomposed through heat 

degradation when higher temperatures are applied [31]. Also, H/C and O/C ratios 

steadily diminish as the temperature increases, reflecting the loss of easily degradable 

compounds by dehydration and decarboxylation reactions [32]. This way, it is not easy 

to deduce which temperature will be most suitable for a biomass’ efficient conversion 

into an adsorbent material bearing the intended specificity. 



 

A large number of feedstock types have been used in the production of BC [33]. Due to 

their different composition, different biomass yields biochars with different properties 

[30]. Likewise, different pyrolytic conditions applied to the same biomass have a large 

effect on biochar’s properties, such as surface area and porosity, which are all important 

parameters affecting biochar’s sorption characteristics [34, 35, 36]. 

 

Macauba (Acrocomia aculeata) is a palm tree prevalent in the Brazilian savannah, 

known as “cerrado”. Its fruit is a renewable natural source of vegetable oil for food and 

cosmetic industries (nut oil) and for biodiesel (mesocarp or pulp oil). The dark stiff nut 

shell called endocarp, reminiscent of the nut oil extraction, comprises 25 % of the fruit 

mass, has an elevated lignin content (> 30 %), and can therefore be exploited as 

feedstock for biochar production [37]. 

  

In this study, the endocarp has been subjected to six different pyrolytic temperatures, 

aiming to evaluate the effect of the pyrolytic temperature on the biochar derived from 

the macauba endocarp for the removal of uranium (VI) from aqueous solutions. 

Proximate analysis was used for the determination of the “proximate” overall 

composition of the BCs by revealing each BC’s unique profile through the assessment 

of four parameters: moisture, volatile matter, ash content and fixed carbon. The 

relationship between fixed carbon (FC) and gravimetric yield (GY) allowed the 

selection of the pyrolytic temperature at which to achieve the most stable material 

without compromising the yield. In addition, ultimate analysis was performed to assess 

changes in the elemental composition of BCs produced at different temperatures. 

However, these parameters, alone, do not suffice in defining which pyrolytic 

temperature is the most suitable to obtain a BC with the highest adsorption capacity for 

the removal of uranium from aqueous solutions. Therefore, the effect of the pyrolytic 

highest treatment temperature (HTT) on the BCs produced at each different temperature 

was evaluated by adsorption experiments, through which it was possible to obtain the 

adsorption capacities of the biochars produced at different HTTs. Fourier-transform 

infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) techniques 

were used for surface characterization, which helped identify the functional groups 

involved in the adsorption process. 

 

The removal of uranium using macauba biochar has not been reported in previous 

studies. This study does not only present the potential of macauba biochar for removing 

uranium from aqueous solutions, but also highlights the importance of a careful 

selection of the pyrolytic temperature in order to maximize the adsorbent’s removal 

capacity for uranium and its yield, thus providing a sustainable strategy for the 

management of both the agro-industry residues and the aqueous wastes containing 

uranium. 

 

 

 

2. EXPERIMENTAL 

 

2.1 Materials 

 



Acrotech (Viçosa, MG, Brazil) supplied the endocarp from the macauba coconut. The 

processing involved a depulping step followed by shelling of the chestnut with a jaw 

crusher, allowing the separation of the endocarp. 

 

A standard solution of 1000 mg L-1 of uranium was prepared by dissolution of a U3O8 

certified reference material (CRM 129-A, natural 238U) supplied by New Brunswick 

Laboratory (New Brunswick, NJ, USA). Diluted uranium solutions used for calibration 

and adsorption experiments were prepared with ultrapure water (18.2 MΩ cm 

resistivity) and Merck’s analytical grade nitric acid, HNO3 65 % (Darmstadt, HE, 

Germany).  

 

All the experiments were conducted with the natural isotope (238U). Considering the 

number of experiments performed in adsorption studies, limiting the exposure to the 

radiation is advisable, as well as minimizing the generation of secondary radioactive 

waste. Moreover, since isotopes have identical chemical properties, it was possible to 

simulate the radioactive isotope behavior throughout the entire process using the 

uranium’s natural isotope solution. 

2.2 Sample preparation 

 

After sampling for the separation of dirt and unbroken coconuts, the endocarp was 

ground in a cutting mill passing over a 3/8 Mesh screen for a preliminary 

homogenization and subsequently oven-dried at 100 ºC for 3 hours. 

2.3 Biochar production 

 

Pyrolysis of the endocarp was carried out using a Thermo Fisher (Asheville, NC, USA), 

Lindberg Blue M, horizontal tubular steel reactor heated by an electric furnace under 

inert argon atmosphere. The temperatures used were in the range between 250 ºC to 

750 ºC. The carbonized samples were denominated as “BCT”, in which “T” 

corresponds to the pyrolytic highest treatment temperature, HTT; for instance: “BC450” 

refers the biochar obtained at 450 ºC.  

 

The dried endocarp was subjected to six different HTTs (250 ºC, 350 ºC, 450 ºC, 

550 ºC, 650 ºC and 750 ºC) and a heating rate of 5 ºC min-1 was employed. For each 

HTT, approximately 30 g of dry endocarp was pyrolysed in argon (Ar) atmosphere (gas 

flow of 40 mL min-1). The holding time of samples at each HTT was 60 min, followed 

by natural cooling in the furnace, continuously purged with Ar. 

 

After cooling down to approx. 90 °C, the alumina crucible containing the biochar was 

removed from the furnace and allowed to cool at room temperature in a desiccator. 

Finally, the biochar was ground in a cutting mill passing over a 120 Mesh screen and 

stored in polypropylene flasks from SCP Science (Baie-D’Urfé, QC, Canada). 

 

2.4 Proximate Analysis 

 

Proximate analysis was conducted using the standard method ASTM D3172-13 [38]. 

The gravimetric yield (GY, d.b.) of each recovered biochar was calculated according to 

Eq. (1). 

 



 GY(%) = 100 x (M1/M0) (1) 

                                   

where M0 is the mass of the oven-dried endocarp, as described in section 2.2, and M1 is 

the mass of the biochar after each pyrolysis process. 

 

For moisture content determination (MC, a.r.), about 2 g of each biochar was weighed 

in a porcelain crucible and oven-dried at 105ºC for 2 h. After cooling at room 

temperature in a desiccator, the sample was weighted again. The percentage weight loss 

or MC(%) was calculated as follows: 

 

MC(%) = 100 x [(M1 – M2)/M1] (2) 

 

where M2 is the mass of the oven-dried biochar. 

 

Volatile matter content (VM, d.b.) was determined subjecting the biochar obtained in 

the moisture test to a temperature of 950 °C for 11 minutes. VM is calculated according 

to Eq. (3). 

 

 VM(%) = 100 x [(M2 – M3)/M2] (3) 

 

where M3 is the mass of the biochar after devolatilization at 950 °C. 

 

Ash content (AC, d.b.) was determined using the biochar previously calcined for the 

volatile matter content test, for which, approximately 1 g of the calcination residue was 

subjected to combustion in an uncovered crucible at 750 °C for a minimum of 2 h. The 

resulting mass was weighted after the material was allowed to cool at room temperature 

in a desiccator and the ash content was calculated according to Eq. (4). 

 

 AC(%) = 100 x (M4/M2) (4) 

      

where M4 is the residual ash mass. 

 

The fixed carbon content (FC, d.b.) was determined according to the following 

equation: 

 

 FC(%) = 100 – [VM(%) + AC(%)] (5) 

 

Finally, the gravimetric yield factor (GYF) is defined as the product of fixed carbon 

content and the gravimetric yield and was calculated as it follows: 

 

GYF(%) = GY(%) x FC(%) (6) 

 

2.5 Ultimate analysis 

 

Ultimate analysis (C, H, O, N, S) was performed using two elemental LECO analyzers, 

TCHEN600 and CS-400 (Saint Joseph, MI, USA), the first for H, O and N detection 

and the second for C and S detection. 

 

2.6 Adsorption experiments 



 

Equilibrium adsorption experiments were conducted using batch technique and the 

experiments were performed in a rotary shaker using 100 mL glass beakers, 120 rpm 

stirring rate at room temperature (25 °C) during 24 hours. The adsorbent was separated 

by filtration using a 0.45 micron Teflon membrane SCP Science filter (Baie-D’Urfé, 

QC, Canada). 

 

The U(VI) concentration in the remaining filtrate solution was subjected to 

quantification by inductively coupled plasma optical emission spectrometry using a 

Spectro ARCOS ICP OES (Kleve, NRW, Germany). 

 

The adsorption capacity, qt (mg g-1), of the adsorbent was calculated using the Eq. (8): 

 

qt = [(C0 – Ct) x V]/M (8) 

 

where qt is the adsorbed amount of adsorbate per gram of adsorbent at any time t, C0 

and Ct the concentrations of the adsorbate in the initial solution and at any time t, 

respectively (mg L-1); V the volume of the adsorbate solution added (L) and M the 

amount of the adsorbent used (g). 

 

The extraction efficiency, R (%), was determined through the following equation: 

 

R(%) = 100 x [(C0 – Ct)/C0] (9) 

 

where R is the efficiency of extraction or retention percentage, C0 (mg L-1) is the initial 

concentration of each adsorbate and Ct (mg L-1) represents the concentration of the 

adsorbate at time t. 

 

2.7 Surface characterization 

 

Surface analysis was carried out using a PerkinElmer Spectrum One FTIR 

spectrophotometer (Waltham, MA, USA) and a Thermo K-Alpha X-ray photoelectron 

spectrometer (Asheville, NC, USA). 

 

 

 

3. RESULTS AND DISCUSSION  

 

3.1 Proximate analysis 

 

The results of the proximate analysis of the biochars obtained in different HTTs are 

shown in Table 1. 

 

Table 1: Proximate analysis of the macauba biochars 

 

Parameter GY(%) MC(%) VM(%) AC(%) FC(%) 

BC250 75.21 2.20 67.84 2.31 29.85 

BC350 46.09 1.57 36.70 3.08 60.22 

BC450 38.88 1.46 28.81 2.40 68.78 

BC550 35.57 1.31 20.23 2.42 77.35 



BC650 34.10 1.22 16.78 3.21 80.01 

BC750 33.44 1.01 14.01 3.87 82.13 
*GY = gravimetric yield; MC = moisture content; VM = volatile matter ; AC = ash content; FC = fixed carbon 

 

As the pyrolysis temperature was increased, the gravimetric yield decreased with 

progressing thermal decomposition of the constituents of the endocarp. At the same 

time, fixed carbon content increased with increasing HTT, while volatile matter content 

decreased. 

 

Ash content is a measure of the total amount of minerals remaining after the water and 

the organic matter have been removed by heating. As noted in Table 1, the AC of the 

resulting biochars increased with increasing temperatures. The increase in AC is the 

result of the progressive concentration of minerals and destructive volatilization of the 

lingo-cellulosic structure as temperature increased [39, 40]. Comparable findings in the 

literature describe an exponential increase of AC with the pyrolytic temperature [41-45]. 

The variation in the results can be ascribed to sample inhomogeneity. 

 

A significant increase in fixed carbon was observed between 250 and 350 ºC, mainly 

due to the loss of the volatile matter. This way, O and H were initially lost in the form 

of water and, further in the form of light hydrocarbons, carbon monoxide and carbon 

dioxide, as shown in Table 2. As a result, carbon gets concentrated in the material as the 

HTT rises. Fixed carbon content tended to stabilize at higher temperatures (higher than 

550 °C). As shown in Table 1, there was little variation in the fixed carbon content 

among 550, 650 and 750 °C. 

 

The gravimetric yield factor (GYF) was required to identify the temperature at which to 

obtain a biochar with the maximum fixed carbon content and gravimetric yield [46]. 

The GYF as a function of the pyrolytic temperature is shown in Figure 1.  

 
Figure 1: Gravimetric yield factor (GYF) as a function of the pyrolytic temperature. 



 

The GYF obtained for BC350 was 0.28 %, whereas the one for BC250 was 0.22 %. For 

temperatures higher than 350 °C, the factor levelled off around 0.27 % and remained 

nearly constant, with no significant variability (± 0.002 % fluctuation), indicating that 

any possible gravimetric gain wouldn’t justify the time and energy requirements of 

working at higher temperatures. Based on this measure, the production of biochar at 

temperatures higher than 350 °C would be unnecessary. Similar stabilization trend in 

yield of fixed carbon at temperatures above 350 °C has been shown for other types of 

biomass as well [47] and is therefore not specific to macauba endocarp. 

 

Notably, pyrolytic temperature is a defining parameter on the biochar’s properties, such 

as the availability of surface functional groups and porosity [30]. Therefore, GYF alone 

cannot be used to designate the temperature at which to produce a good adsorbent [48-

53]. Adsorption experiments are necessary to evaluate the temperature to which the 

macauba endocarp should be subjected in order to produce a biochar with the highest 

adsorption capacity for U(VI). 

 

3.2 Elemental analysis 

 

The results of the elemental analysis of the macauba endocarp and the biochars obtained 

at different temperatures are shown in Table 2. 

 

Table 2: Elemental analysis of the macauba endocarp and the biochar according to the 

pyrolytic temperatures. 

 

Parameter C(%) H(%) O(%) N(%) S(%) H/C O/C (O + N)/C 

Endocarp 50.6 6.37 47.4 1.02 0.32 0.130 0.940 0.960 

BC250 52.4 2.85 44.6 0.75 0.26 0.054 0.851 0.865 

BC350 57.5 2.18 28.1 0.59 0.25 0.038 0.489 0.499 

BC450 62.4 2.14 23.2 0.57 0.24 0.034 0.372 0.381 

BC550 69.5 2.13 22.4 0.53 0.24 0.031 0.322 0.330 

BC650 70.8 1.69 17.8 0.51 0.23 0.024 0.251 0.259 

BC750 75.1 1.56 16.5 0.41 0.23 0.021 0.220 0.225 
*C = carbon ; H = hydrogen; O = oxygen; N = nitrogen; S = sulfur; H/C = hydrogen:carbon ratio; O/C = oxygen:carbon ratio; (O + 

N)/C = oxygen and nitrogen:carbon ratio. 

 

These results are in accordance with other studies, which demonstrated that the carbon 

content increases with the increase of the pyrolytic temperature [54-58], while the 

nitrogen content is only minimally affected by the pyrolytic temperature [59, 60] and 

depends mainly on biomass feedstock. 

 

It can be seen in Table 2 that the carbon content increased with the pyrolytic 

temperature, whereas the decrease of the oxygen and hydrogen contents resulted in the 

decrease of the H/C, O/C and (O + N)/C molar fractions. 



Figure 2: Van Krevelen graph for the elemental fractions of the biochar obtained from 

the macauba endocarp at different pyrolytic temperatures. 

 

Fraction H/C is typically used to describe the degree of carbonization, since H is mainly 

associated with the organic matter of the biomass. Carbon content is commonly used to 

qualify chars that are going to be used as fuel sources, but may also be responsible for 

the adsorption properties of chars. The extent of charring is also related to the 

progression of deoxygenation, which can be described by the O/C fraction. The O/C 

ratios assigned to materials shows a systematic increase from 0 for graphite to >0.6 for 

materials not considered to be black C [61]. 

 

Adsorbent materials benefit from higher O and H containing groups, which provide 

binding sites to target substances. The hydrophilicity of the biochar’s surface can be 

inferred from the O/C molar fraction, because O content is indicative of the presence of 

polar groups [62, 63]. Thus, a decrease in the O/C fraction indicates that the surface of 

the biochar is more aromatic and less hydrophilic. This is due to the greater extent of 

carbonization and the loss of polar functional groups at elevated temperatures [64-66], 

as shown at the Van Krevelen graph in Figure 2. The decrease in the (O + N)/C fraction 

also reflects the decrease of polar groups as the pyrolytic temperature is increased [57, 

67]. 



 
Figure 3: H/C ratio versus fixed carbon (FC) content. 

 

The correlation between H/C ratio and fixed carbon content (Figure 3) indicated that 

fixed carbon has a very low H content and also that volatile matter released during 

pyrolysis consisted of compounds with higher H/C ratios than the remaining biochar. 

Hence, the devolatilization removed most of the H from the biomass as the pyrolysis 

conversion reaction took place. 

 

3.3 Adsorption on different BCs 

 

The adsorption capacity of the BCs obtained in different pyrolytic temperatures were 

evaluated for a 5 mg L-1 U(VI) solution adjusted to pH 3, using an adsorbent dose of 10 

g L-1. These adsorption parameters have been previously established through 

experimentation and optimized for maximum uranium removal [68]. The results for 

each obtained BC are shown in Table 3. 

 

Table 3: The influence of pyrolytic temperature on the removal of U ions. 

 

BC qt (mg g-1) R (%) 

250 417 85.9 

350 408 80.1 

450 372 75.8 

550 88 17.7 

650 56 10.9 

750 52 10.4 

 

The relationship between the pyrolytic temperature at which each BC was obtained with 

the adsorption capacity is illustrated in Figure 4. Removal above 75 % was achieved for 



temperatures under 450ºC, and the highest adsorption capacity was achieved at 250 ºC. 

A drastic decrease of the adsorption capacity was observed when the endocarp was 

subjected to temperatures higher than 450 ºC, suggesting that the presence of 

oxygenated functional groups is crucial to the adsorption of uranyl ions onto the 

biochar’s surface. 

 
Figure 4: Effect of the pyrolytic temperature on the adsorption of U(VI) onto BCs 

produced at different temperatures; pH = 3; adsorbent dose = 10 g L-1; initial 

concentration = 5 mg L-1; contact time = 24 h; temperature = 25 ± 2 °C. 

 

According to Figure 4, BC250 should be preferably selected over BC350 for treatment 

of uranium from aqueous solutions, because of its high adsorption capacity. However, 

the gain in adsorption doesn’t justify the loss in fixed carbon content (only 6 % points 

more removal efficiency at the expense of 33.47 % points of fixed carbon content). 

Also, as shown by the proximate analysis, at 350 °C, it was possible to achieve a BC 

with a higher fixed carbon content without severely compromising the gravimetric 

yield. Fixed carbon content is a good measure of stability [46], a desired quality for a 

material that will be used as substrate for radioactive uranium and, therefore, will 

require long-term storage. Although it is possible to obtain even higher fixed carbon 

contents by increasing the pyrolytic temperature, this quality is secondary compared to 

the adsorption capacity required for a more efficient removal and, consequently, a more 

effective treatment of the targeted solution. Therefore, a compromise between efficiency 

and stability should be met. 

 

Also, according to CNEN’s regulation CNEN-NN-8.01 [9], if either BC250 or BC350 

should be selected to treat uranium-containing aqueous wastes with an initial 

concentration of 5 mg L-1, none of the BCs would meet the allowable limits for 

discharge. When BC250 was used as adsorbent, the remaining U concentration was of 

approx. 0.705 mg L-1 (705 ppb). For BC350, the remaining U concentration was of 

approx. 0.995 mg L-1 (995 ppb). CNEN’s allowable limits depend on the isotopic 



mixture and can be a minimum of 0.070 mg L-1 (70 ppb) for 100 % U-235 and a 

maximum of 0.450 mg L-1 (450 ppb) for natural uranium (approx. 100% U-238). Brazil 

is strongly committed to the Treaty on the Non-Proliferation of Nuclear Weapons 

(1970), being only allowed to use uranium enriched to less than 20 % U-235 (low-

enriched uranium or LEU). For approx. 20 % U-235, which would be the maximum 

allowable enrichment degree, the allowable limits according to CNEN’s regulation 

would be of 0.217 mg L-1 (217 ppb), approx. 3.2 times less the concentration achieved 

when BC250 was used and 4.5 times less the concentration achieved when BC350 was 

used. 

 

Although neither BC250 nor BC350 would meet the required limits for a safe release of 

the treated water, they considerably decrease the concentration of uranium in the 

solution, and could have a practical application in a multi-stage separation, in which any 

remaining U would be removed in a polishing stage using another sorbent. Due to the 

fact that the most effective biochar for U removal was produced from a low-value 

residue and at mild processing conditions (low pyrolysis temperature), such material 

would be cheap, while offering good adsorption capacity, leaving only small amounts of 

U to be removed in the next stage of separation process by other, potentially more 

expensive materials. Therefore, such approach would offer considerable economic and 

environmental benefits. 

 

3.4 Surface characterization 
 

3.4.1 FTIR analysis 

 

The superposition of the FT-IR spectra for the BCs obtained for each pyrolytic 

temperature tested is presented in Figure 5. The results showed that the pyrolytic 

temperature had a considerable influence upon the surface functional groups of the 

macauba biochar. 

 

Lignocellulosic materials are polymers rich in hydroxide groups. After pyrolysis, the 

peak at 3400 cm-1, which can be assigned to –OH stretching, got significantly lower as 

the temperature increased and even disappeared at higher temperatures (> 550°). 

Aliphatic stretches C−H were observed at 2940 cm-1, showing that the cellulose was not 

entirely carbonized at lower temperatures (< 350 °C), but got fully degraded as the 

temperature rose.  The stretching band at 1270 cm-1, corresponding to the aromatic –CO 

and the phenolic –OH, also decreased with temperature due to the increase of the 

pyrolysis reaction of the different constituents of the macauba endocarp [69]. 

 



 
 

Figure 5: Superposition of FT-IR/UATR spectra of the macauba biochars produced at 

different pyrolytic temperatures: 250 °C (A), 350 °C (B), 450 °C (C), 550 °C (D), 

650 °C (E), 750 °C (F). 

 

A broad unsymmetrical peak with a maximum at 1744 cm-1 could be attributed to C=O 

stretching. This peak comprises a variety of C=O containing functional groups, 

including ketones, carboxylic acids esters, lactones and anhydrides. The band at 1605 

cm-1 could be assigned to C=C bond stretching derived from aromatic rings in the 

lignin, as well as newly aromatized and carbonized material from carbohydrate ring 

dehydration and cyclisation during pyrolysis [70]. Both these bands, at 1744 and 1605 

cm-1, have initially increased and further decreased with the increase of the temperature, 

in agreement with the literature [71]. 

 

Peaks expected from single bond stretching and other deformation bands in the region 

1500 to 650 cm-1 were also observed. Since these were numerous and overlapped, it was 

difficult to assign each of them in the spectrum. 

 

These spectra are in agreement with the changes in the elemental composition and with 

the process of decomposition of crude biomass, indicating that the increase of the 

pyrolytic temperature causes the decrease of the acidity and the polarity in the surface of 

the produced biochar, at the same time that it increases the aromaticity of it [54, 59, 71]. 

 

These findings corroborate the fact that the surface functional groups play an important 

role in the U(VI) adsorption. The adsorption of U(VI) was notably higher on BCs 

produced at lower temperatures, indicating a dependency on the polar organic sites in 

the adsorbent. In this case, chemisorption is the main adsorption mechanism, since 

UO2
2+ can make bonds with carboxyl, carbonyl and hydroxyl groups. 



 

The overlap of the infrared transmission spectra using diffuse reflectance (DRIFT) 

mode of the BC350 alone (A) and the BC350 loaded with U (B) is presented in Figure 

6. The differences in stretching can be attributed to changes in the vibrational modes 

resulting from the association with the uranyl ion after the adsorption. These differences 

are very subtle due to the low uranium concentration employed in the tests. 

 

 
 

Figure 6: Comparison of the FTIR/DRIFT spectra of the BC350 (A) and BC350 after 

the U(VI) adsorption (B). 

 

After adsorption of U(VI), the peaks at 3400, 1608, 1442 and 841 cm -1 were displaced 

to 3478, 1627, 1456 and 861 cm -1 respectively. This shift to lower energy, called 

“redshift”, occurs because the uranium “weighs” at the vibration of the chemical group, 

being shifted to a lower energy. The peak at 2938 cm -1 is decreased and the peak at 

1237 cm -1 is practically absent after adsorption of U(VI). 

 

These results indicate that the groups O–H (3600-3200 cm -1, corresponding to the 

alcohol O–H stretch and 3400-2500 cm -1, corresponding to the carboxylic acid O–H 

stretch), C═C (1680-1600 cm -1, corresponding to C═C of alkenes and 1600-1400 cm -1, 

corresponding to C═C of aromatic structures) and C–O (1320-1210 cm -1, 

corresponding to acyl groups in carboxylic acids and 1260-1000 cm -1, corresponding to 

the alcoxy groups in alcohols) can bind to the uranyl cations (UO2
2+).  

 

In fact, the O atom (1s22s22px
22py

12pz
1) on hydroxyl groups adopts a sp3 type of 

hybridization to form four sp3 orbitals, which can promote bonds with H atoms. In 

addition, the two remaining sp3 orbitals can be occupied by two solitary pairs of 



electrons for the O atom. These solitary pairs of electrons can bind with the positively 

charged uranyl ions, thereby promoting the occurrence of the chemisorption [72]. 

 

3.4.2 XPS analysis 

 

X-ray photoelectron spectroscopy (XPS) was employed to provide the elemental 

composition and a first insight into the bonding environment of the U adsorbed onto the 

BC350’s surface. As seen in Figure 7, the BC350 spectrum consisted of peaks 

corresponding to the atoms of carbon (C 1s), oxygen (O 1s) and nitrogen (N 1s). A new 

peak emerged in the XPS spectrum of the BC350 loaded with U (BC350 +U) next to the 

peak K 2s in 377.63 eV. 

 
 

Figure 7: XPS spectra of BC350 before and after adsorption of U (VI). 

 

In order to better resolve the peaks for each of the atoms present, the spectra in Figure 7 

were deconvoluted and analyzed using the XPSPEAK 41 Gaussian Adjustment 

Software. Deconvolution of the C 1s spectrum before and after the adsorption of U(VI) 

can be visualized in Figures 8 and 9, respectively. 



 
 

Figure 8: Deconvolution of the XPS C1s peak before adsorption of U (VI) onto BC350. 

 

Three peaks were observed in the XPS C 1s spectrum of BC350 (Figure 8), including 

C–C (284.8 eV), C–O (286.5 eV) and C=O (288.4 eV). An interpretation of the most 

usual peaks in the XPS C 1s spectrum is presented in Table 4. 

 

Table 4: Allocation of peaks in the XPS spectrum of C 1s. 

 

Binding energy (eV) Assignment 

285.0 Aromatic and aliphatic structures. Binding of C atoms with H 

and C atoms 

286.0 Simple C-O bond (alcohol, ether, carboxylic acid) 

287.5 C═O double bond (carbonyl) 

289.0 O-C=O (carboxylic acid, ester) 

290.5 Carbonate, CO2 

291.5 Plasmon 

 

The XPS spectrum in Figure 9 shows the deconvolution of the C1s peak of the BC350 

after the U (VI) adsorption. Two peaks remain, with binding energies at 284.6 eV and 

287.5 eV, attributed to the C–C bonds of aromatic and aliphatic chains and C=O bonds 

of carbonyl groups, respectively. The peak at 286.5 eV, related to the C–O bond of 

hydroxyl and carboxylic acid groups disappeared after adsorption of U by BC350, 

corroborating the FTIR results. 

 



 
Figure 9: Deconvolution of the XPS C1s peak after adsorption of U (VI) onto BC350. 

 

The peak of U4f, originally present in the spectrum of BC350 after the U (VI) 

adsorption, could be converted into two intense peaks between 375 and 410 eV, one 

with a binding energy centered between 381-382 eV and the other located between 391-

392 eV (Figure 10). 

 

 
 

Figure 10: Deconvolution of the peak U4f after adsorption of U (VI) onto BC350. 

 

According to the NIST database [73], the peaks at 381.3 and 391.5 eV can be attributed 

to the U “f” orbitals 4f7/2 and U 4f5/2  of uranyl nitrate, UO2(NO3)2 [74-76]. 



 

XPS analysis was able to detect the U after adsorption, thereby, confirming that the U 

was actually adsorbed onto the BC350. In addition, XPS analysis reaffirmed the results 

obtained by FTIR, showing that chemisorption has been in fact enabled by oxygenated 

groups (hydroxyl and carboxylic acid groups) of the BC350’s functionalized surface. 

 

 

 

4. CONCLUSION  

 

The results of this study indicate that macauba biochar’s properties and stability are 

greatly influenced by the pyrolytic temperature. Biochar yield and volatile matter 

decreased with the increase of the pyrolytic temperature, whereas the fixed carbon 

content increased with increasing temperatures. The gravimetric yield factor provided 

the best compromise between fixed carbon content and gravimetric yield, which was 

achieved for the biochar obtained at 350 °C. As pyrolysis progressed, hydrogen, 

oxygen, nitrogen and sulfur were preferentially released in form of volatiles and gases. 

FTIR analysis evidenced that the biochars obtained at lower temperatures present more 

polar organic sites, promoting the adsorption of U (VI) by chemisorption. XPS analysis 

indicated that hydroxyl and carboxylic acid groups were involved in binding the uranyl 

ions onto the biochar’s surface. A removal efficiency of 80 % was achieved for the 

biochar produced at 350 °C, demonstrating its potential as value-added material for U 

(VI) removal from aqueous solutions in multi-stage systems. Future studies should be 

directed towards a better understanding of the characteristics of the macauba biochar 

that influence the U (VI) removal from aqueous solutions. Also, macauba biochar may 

be tested for the treatment of other radioactive contaminants. 
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