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The evolving role of receptors as predictive biomarkers for 

metastatic breast cancer 

Abstract 

Introduction: In breast cancer, oestrogen receptor (ER) and human epidermal growth factor 

receptor 2 (HER2) are essential biomarkers to predict response to endocrine and anti-HER2 

therapies, respectively. In metastatic breast cancer, the use of these receptors and targeted 

therapies present additional challenges: temporal heterogeneity, together with limited 

sampling methodologies, hinders receptor status assessment and the constant evolution of 

the disease invariably leads to resistance to treatment. 

Areas covered: We summarise genomic abnormalities in ER and HER2, such as mutations, 

amplifications, translocations and alternative splicing, emerging as novel biomarkers that 

provide an insight into underlying mechanisms of resistance and hold potential predictive 

value to inform treatment selection. We also describe how liquid biopsies for sampling of 

circulating markers and ultrasensitive detection technologies have emerged which 

complement ongoing efforts for biomarker discovery and analysis.  

Expert commentary: While evidence suggests that genomic aberrations in ER and HER2 could 

contribute to meeting the pressing need for better predictive biomarkers, efforts need to be 

made to standardise assessment methods and better understand the resistance mechanisms 

these markers denote. Taking advantage of emerging technologies, research in upcoming 

years should include prospective trials incorporating these predictors into the study design to 

validate their potential clinical value. 
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1. Introduction 

Breast cancer is the most common cancer type and the leading cause of cancer-related death 

in women worldwide. In 2012, there were almost 1.7 million diagnoses and over half a million 

deaths worldwide, equivalent to more than 1 woman dying from breast cancer every 

minute[1]. A recent study has estimated that more than 330,000 new breast cancer cases and 

over 40,000 breast cancer-related deaths are expected in 2018 in the US alone[2]. 

Breast cancer is a heterogeneous disease comprising several well-characterised molecular 

subtypes. Patients vary widely in their prognosis and response to different treatments, so 

biomarkers, defined as characteristics which can be objectively measured and evaluated as 

indicators of normal biological processes, pathogenesis or responses to therapy[3], have been 

used for decades to assist in diagnosis, prognosis and treatment decision-making for breast 

cancer. Biomarkers can be classified as: prognostic, those that estimate the likelihood of an 

event, such as disease recurrence or progression; or predictive, those that identify patients 

likely to be responsive or resistant to a specific type of therapy[4]. 

Prognostic biomarkers include clinicopathological factors, such as axillary node status, 

tumour grade and size, patient ethnicity and age at diagnosis[5–7]. Other prognosticators are 

molecular biomarkers, which have been incorporated into a number of multifactor prognostic 

tests like Oncotype DX and Mammaprint [5,8,9]. These tests enable patient stratification 

according to risk and are now used in the clinic to varying extents following endorsement by 

American and European expert panels[5,10]. 

Both clinicopathological and molecular prognostic biomarkers are useful in the decision-

making process for breast cancer management. They help identify patients with worse 

prognosis or higher risk of disease recurrence who might be more likely to benefit from 

treatments such as radio or chemotherapy[5]. However, this review will focus on the 

discussion of predictive biomarkers in breast cancer.  

2. Predictive biomarkers in breast cancer: the central role of receptors 

Biomarkers with predictive value are often direct indicators of the role of a certain pathway 

or molecular mechanism in governing cancer growth or progression. Thus, these variables can 

be useful in predicting the benefit from treatments that specifically tackle the pathway or 
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mechanism in question. Such targeted therapies are normally advantageous for their efficacy 

and low toxicity in comparison to other treatment modalities such as radio- or chemotherapy.  

Predictive biomarkers can play an essential role in treatment decision-making, to move 

towards a more personalised and targeted clinical management of the disease. A recent 

meta-analysis of 570 phase II clinical trials in a diverse range of cancer types has supported 

the selection of treatment according to the molecular characteristics of each patient’s 

tumour. This study found that the use of personalised targeted therapies is an independent 

predictor of better outcomes (with higher response rates and longer progression-free and 

overall survival) and fewer toxic deaths[11].  

2.1. Hormone receptors 

Oestrogen receptor ⍺ (ER⍺ or ER) is the oldest and most important predictive biomarker in 

breast cancer. Despite the vast heterogeneity in the disease, the majority of breast tumours 

are hormone-dependent, relying on oestrogen for both carcinogenesis and tumour 

progression. Oestrogen can exerts its regulatory effect by directly binding the transcription 

factor ER⍺, causing its translocation to the nucleus, where it interacts with co-activators and 

binds specific DNA regions called oestrogen response elements (EREs) which regulate the 

transcription of oestrogen-responsive genes linked to proliferation, apoptosis, angiogenesis 

and invasion. This mechanism of action of oestrogen and ER as a transcription factor is 

referred to as nuclear-initiated steroid signalling (NISS)[12]. 

Oestrogen and ER can also modulate gene expression and promote cancer progression 

indirectly through non-genomic signalling, also referred to as membrane-initiated steroid 

signalling (MISS). Following ligand binding, the oestrogen-ER complex can interact with and 

activate other transcription factors, such as activating protein 1 (AP1), nuclear factor-κB (NF-

κB) and p53, which in turn promote the transcription of their target genes in the nucleus[13–

15]. Membrane-bound ER complexes can also trigger rapid activation of signal transduction 

pathways such as ERK/MAPK and PI3K/Akt, thus modulating protein function in the cell and 

also indirectly regulating gene expression[13–15].  

The genomic and non-genomic actions of ER have been shown to converge at certain 

regulatory sites by directly and indirectly modulating the same target genes. Ultimately, this 

dual mechanism expands and diversifies the effect of ER on gene expression. This regulatory 
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role of ER can also be enhanced by cross-talk with other oncogenic pathways, particularly 

with growth factor-dependent signalling involving EGFR and HER tyrosine kinases[14,16,17]. 

Such interactions can lead to activation of ER signalling (including ER itself, even in the 

absence of ligand), thus enhancing ER-modulated changes in gene expression and have been 

linked to the development of resistance to endocrine therapy. 

Endocrine therapy is used to treat the majority of patients with ER+ breast cancers and is 

normally the most effective therapy for these tumours[18]. The different endocrine therapy 

strategies have been well characterised and continue to be investigated[18,19] and the most 

appropriate endocrine therapy for each patient is normally selected by the multidisciplinary 

clinical team based on pre- or post-menopausal status, clinicopathological factors and other 

patient factors such as possible side effects. 

Endocrine therapy can target hormone regulation in two distinct ways. Firstly, it can be 

administered to block oestrogen synthesis. In pre-menopausal women, this can be achieved 

through surgical ovarian ablation (by oophorectomy) or chemical ovarian suppression (using 

luteinizing hormone releasing hormone agonists, such as goserilin). In post-menopausal 

women, the ovaries cease to be the main source of oestrogen production, with oestrogen 

being instead synthesised from androgens in tissues of the bone, fat and breast through the 

activity of the enzyme aromatase[20,21]. This can be blocked through the administration of 

aromatase inhibitors (AI) such as anastrazole, letrozole and exemestane. Secondly, endocrine 

therapy can directly influence the effect of oestrogen in cancer cells. ER function can be 

chemically blocked in pre- and post-menopausal women using antioestrogens, including 

selective oestrogen receptor modulators (SERMs) that act as partial oestrogen agonists, like 

tamoxifen, or selective oestrogen receptor down-regulators or degraders (SERDs) that act as 

full oestrogen antagonists, like fulvestrant.  

Resistance to endocrine therapy eventually occurs in a large proportion of patients, leading 

to recurrence or progression[19]. As agents act via different mechanisms, resistance to a 

specific drug does not necessarily result in resistance to related compounds[22]. Thus, 

different classes of endocrine treatment are often administered sequentially in order to 

address the significant hurdle of acquired resistance. 

Progesterone receptor (PR) is another nuclear hormone receptor which can be assessed 

simultaneously with ER. PR is known to regulate epithelial proliferation[23] and can alter 
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which genes are stimulated by ER binding[24,25]. Its expression is strongly dependent on the 

presence of ER, so the majority of ER-positive (ER+) cancers are also PR-positive (PR+)[26]. 

While the independent predictive value of PR has been questioned[27–32], several studies 

have reported its role as an independent prognosticator of risk of recurrence[33–38].  

The rare clinical subgroup of tumours that express ER but not PR (ER+/PR-) have been 

reported to derive less benefit from certain types of endocrine therapy, specifically SERMs, 

Response rates are about half of those in the ER+/PR+ group, in both primary and metastatic 

settings[31,39,40]. Research has suggested that PR loss results from crosstalk between ER 

and growth factor-related signalling pathways. This means that ER+/PR- cancers are 

dependent on the higher activity of different pathways than ER+/PR+ tumours, such as the 

PI3K/Akt/mTOR and EGFR signalling pathways, and would explain why modulation of ER alone 

using SERMs can be insufficient to treat ER+/PR- cancers.  

While hormone-based treatment is widely recommended for all ER+ breast cancers, it has 

been suggested that PR status should be considered for the selection of the optimal form of 

endocrine or combination therapy. The ER+/PR- group may be better tackled by complete 

blockade of ER signalling, either by AI-induced oestrogen withdrawal or SERD-induced ER 

degradation, or by the combination of a SERM with an agent targeting growth factor-related 

signalling pathways, such as EGFR or HER2 inhibitors[41,42].  

In short, the expression of hormone receptors is indicative of dependence on oestrogen for 

tumour progression and, consequently, susceptibility to treatment by targeting this hormonal 

regulation. ER and PR have been used as diagnostic and predictive markers for response to 

this type of treatment since the 1970s[43,44] and their assessment by immunohistochemistry 

(IHC) is now mandatory in all breast cancer diagnoses to assist in treatment selection[10]. A 

recent UK-based large population study reported average positivity rates for ER and PR of 

85% and 67%, respectively[45].  

2.2. Human epidermal growth factor receptor 2 

The human epidermal growth factor receptor 2 (ERBB2 or HER2) is another important 

predictive biomarker for breast cancer. This receptor, which belongs to a family of 

transmembrane receptor tyrosine kinases (RTKs), is amplified or overexpressed in 20-25% of 
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breast cancers[46,47], where it drives tumour growth by activation of the MAPK and PI3K/Akt 

signalling pathways that lead to proliferation, invasion and metastasis[48].  

HER2+ breast cancers are typically more aggressive and have worse clinical prognosis than 

other subtypes[47,49], so HER2 level has historically been used as a prognostic marker. The 

development of HER2-targeted therapy led to its gaining predictive value. HER2 

overexpression/amplification detection is now used as a biomarker and its measurement is 

mandatory for all new breast cancer diagnoses. HER2 status can be assessed at protein, RNA 

or DNA level [50–52] using numerous methodologies, with IHC or fluorescence in situ 

hybridisation (FISH) being the most commonly used. Several studies have reported some 

discordance across different sites in clinical trials in the assessment of HER2 overexpression 

using either of these methods[53–57]. This is partly due to variations in reagents, protocols, 

scoring and the semi-quantitative nature of both methods[58]. Other studies have reported 

a better degree of internal concordance (>90%) between IHC and FISH when performed 

within a single site[56,59]. Discordance between IHC and FISH assessment is most commonly 

found in cases which are borderline for HER2+ status[52]. Accordingly, guidelines recommend 

both methodologies should be used concomitantly to more accurately evaluate the HER2 

status of such cases (e.g., samples with intermediate IHC score should be further assessed 

using FISH)[58,60–62]. 

The advent of HER2-targeted therapy has vastly improved the outcome of patients with HER2-

overexpressing breast cancers[63,64]. Four different anti-HER2 agents have been approved 

for clinical use in the US and Europe: trastuzumab and pertuzumab are anti-HER2 monoclonal 

antibodies, lapatinib is a tyrosine kinase inhibitor and trastuzumab-emtansine (TDM-1) is a 

conjugate of trastuzumab with a cytotoxic agent [65,66]. Trastuzumab (trade name 

Herceptin) is the best characterised and most commonly used agent, since studies have 

shown that patients with HER2-enriched breast cancers gain benefit from co-treatment with 

trastuzumab and chemotherapy in the neoadjuvant, adjuvant and advanced 

settings[64,65,67–70]. Other trials have shown that dual therapy with trastuzumab and a 

second anti-HER2 agent can lead to superior HER2 signalling blockage and better patient 

outcome in the neoadjuvant and advanced settings[70–73]. Research continues to study 

other anti-HER2 agents such as the pan-HER inhibitor neratinib or HER2-targeted drug 

delivery and immunotherapy[74]. 
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About half of HER2-overexpressing (HER2+) breast tumours are also ER+[75–78]. Patients in 

this ER+/HER2+ subgroup derive less benefit from endocrine therapy alone than ER+/HER2- 

patients, possibly due to cross-talk between ER and HER2 signalling[76]. However, studies 

have demonstrated benefit from the combination of anti-HER2 and endocrine therapy for this 

group[75,76,78]. 

2.3. Intratumoural heterogeneity in receptor expression 

The inherent heterogeneity of cancer means that the disease can be vastly different between 

patients, but also between multiple lesions in a single patient or within the cell population of 

a single tumour[79]. The existence of such intratumoural (or spatial) heterogeneity in the 

expression of receptors with predictive value has been a source of concern, casting doubts on 

the validity of single rather than multiple biopsies, particularly for large lesions[9,80]. Needle 

biopsy has long been an essential tool in the diagnosis and management of cancer, with 

reports of its first documented use over 1,000 years ago[81] and is the current standard for 

preoperative diagnosis and sampling for histological and receptor status assessment in breast 

cancer. However, our increasing understanding of the impact of disease heterogeneity has 

raised concerns that a single needle biopsy might underestimate the molecular complexity 

and varying genomic landscape of the disease[80], as this methodology provides only a 

snapshot of a small subset of tumour cells at a given moment in time[82]. 

Recent guidelines from the European Group on Tumour Markers (EGTM) have suggested that 

negative results in the assessment of ER, PR or HER2 in primary tumours using core needle 

biopsies should be corroborated by re-assay of the corresponding surgical sample[10]. This 

recommendation is not evidence-based, but precautionary based on concern that a core 

biopsy might not be representative of the receptor status for the whole tumour.  

Nevertheless, two different recent studies have reported high accuracy of core needle 

biopsies in the assessment of the true ER and PR status when compared with the results from 

whole surgical samples[83,84]. On the other hand, these studies reported poorer specificity 

in the measurement of HER2 overexpression by core biopsy, particularly in high grade 

tumours[83,84], most likely due to the higher intratumoural heterogeneity of expression 

recognised for this receptor[85,86]. These observations suggest that corroboration of 

negative core biopsy results in surgical specimens might be justified for HER2 assessment, as 

the ASCO guidelines also suggest[62], but not necessary for ER evaluation. 
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Also in relation to receptor status heterogeneity, recent UK guidelines have recommended 

individual assessment of HER2 in all co-existing bilateral, distinct ipsilateral or widely 

separated primary cancers[60]. Reviewers have suggested that this guideline should be 

followed for the multi-location testing of all tissue-based biomarkers in synchronous primary 

cancers[9].  

3. Challenges in the management of metastatic breast cancer 

While outcomes for patients with primary breast cancer have improved significantly in the 

last few decades, metastatic breast cancer (MBC) is still a common occurrence. In fact, the 

incidence of cancers that are metastatic at first presentation has remained stable since the 

1970s[87]. The frequent development of acquired resistance to treatments, including in 

patients with ER+ cancers receiving endocrine therapy[19,88] and those with HER2+ cancers 

who are treated with anti-HER2 therapy[89,90], often leads to recurrence as either local or 

advanced disease[19,90]. Additionally, more aggressive breast cancer subtypes (which are 

typically ER- and HER2- and thus inherently not susceptible to targeted therapies), along with 

the well-established challenge of intratumoural heterogeneity, also contribute to the 

incidence of metastases. 

Despite the advances in prevention, diagnosis and treatment, the clinical management of 

MBC still presents many challenges and prognosis continues to be poor: MBC is the most 

frequent cause of cancer death for women worldwide[91,92], with current median survival 

time of only 18-24 months[93]. This is partly due to the fact that resistance to therapy occurs 

invariably in MBC, rendering it virtually incurable[94,95]. Current efforts are centred in 

improving survival and quality of life[96].  

The next sections will summarise the role that receptors and targeted therapy continue to 

play in the management of breast cancer in the metastatic setting, as well as considerations 

and the main challenges faced for their application in advanced disease.  

3.1. Biological challenges: temporal heterogeneity and resistance to treatment in 

MBC 

The well-established receptors ER, PR and HER2 are currently the only universally used 

predictive biomarkers for MBC[91], as they are essential in the treatment decision-making 

process in all clinical settings (neoadjuvant, adjuvant and advanced or metastatic). Clinical 



 9 

trials have shown that the genetic landscape of metastatic breast lesions can determine their 

susceptibility to different therapeutic agents and treatment selection based on molecular 

markers or abnormalities can lead to improved outcome[97,98].  

Despite the almost inevitable development of resistance to treatment, targeted therapy is 

also a useful tool in the management of advanced disease. For instance, endocrine therapy 

has been shown to be at least as effective as chemotherapy[37,99] in ER+ MBC. Evidence 

suggests that treatment with endocrine therapy in the adjuvant setting does not significantly 

influence the rate of response of subsequent recurrent cancers[100]. Endocrine therapy is 

now the recommended first option for treatment of ER+ MBC, except in cases with visceral 

involvement, which warrant the administration of chemotherapy instead[94,101,102]. 

Patients with HER2+ MBC can also benefit from targeted treatment, with median survival 

having more than doubled since the advent of anti-HER2 therapy[74]. The current treatment 

consensus includes the use of multiple lines of HER2-targeted therapy beyond progression, 

often using dual blockade with trastuzumab and pertuzumab combined with chemotherapy 

as first line therapy, followed by treatment with different anti-HER2 agents. Patients have 

also been shown to derive benefit from combination of anti-HER2 drugs with endocrine 

therapy in ER+/HER2+ MBC cases[75,76,78]. Research continues to assess the potential of 

treatment strategies that combine anti-HER therapies with agents targeting other pathways 

and signalling components in the HER network, such as CDK4/6, PI3K and mTOR inhibitors 

[74,75,103–105]. 

Currently, many treatment recommendations for the management of MBC are still often 

based on the histological and molecular characteristics of the primary tumour[92]. This 

represents a significant hurdle for treatment optimisation, since studies have shown that 

cancer evolution leads to vast variation in the genetic landscape between primary and 

metastatic lesions[106–108].  

In addition to the inherent intratumoural heterogeneity in primary breast cancers, tumour 

cells can accumulate driver mutations that are either present at diagnosis or emerge during 

treatment of the primary cancer[109–111]. A recent meta-analysis of 560 breast cancers has 

recently provided an insightful overview of this process, showing how somatic mutations 

contribute to the genetic evolution of breast cancer and the progression towards metastatic 

disease[112]. As part of the invasion-metastasis cascade, selected subclones can then 
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disseminate to distant sites and lead to the development of secondary lesions, which can be 

molecularly distinct from the originating primary breast cancers. This phenomenon is referred 

to as temporal heterogeneity[92,109]. 

Temporal heterogeneity can include changes in the hormone receptor status and sensitivity 

to different treatments in metastatic lesions compared to primary tumours, partly due to 

evolution through exposure to standard treatments. This leads to metastases that are more 

aggressive and resilient than primary cancers. As the disease continues to evolve and tumour 

clones with different sets of aberrations often co-exist within a single lesion, in metastatic 

cancer resistance to treatment occurs invariably and repeatedly under exposure to different 

agents[79]. This complex tumour evolution and clonal selection and expansion contribute to 

the poorer patient outcomes in advanced disease, particularly if primary tumour 

characteristics only are considered for treatment selection. 

The well-established occurrence of temporal heterogeneity[113,114] suggests that receptor 

expression status ought to be re-assessed prior to treatment selection in the metastatic 

setting[79]. A recent meta-analysis of 33 studies has reported rates of discordance between 

primary and metastatic sites of 20% for ER, 33% for PR and 8% for HER2. For ER, 24% of 

tumours converted from ER+ to ER-, while 14% gained ER positivity[114].  

Accordingly, guidelines from both European and American expert panels recommend that 

receptor status should be retested for both primary and distant lesions upon diagnosis of any 

de novo metastatic disease[10,115]. Realistically, this is dependent on the feasibility of tissue 

sampling, since biopsy of the metastasis may not be possible due to its location and the risk 

to the patient[9] (see following section).  

Interestingly, guidelines differ in the recommendations for cases in which primary and 

metastatic lesions present discordant receptor status. The American Society of Clinical 

Oncology (ASCO) recommends following the receptor status of the metastatic lesion for 

treatment selection if supported by the clinical scenario and patient’s goals[115], while both 

the National Comprehensive Cancer Network (NCCN) and the European School of Oncology 

and European Society of Molecular Oncology (ESO-ESMO) consensus recommend that 

endocrine or anti-HER2 therapy should be administered if the receptor status of any of the 

biopsies (primary or metastatic) supports it[10,96]. 
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3.2. Technical challenges: limitations of current assessment methodologies in 

MBC 

The clinical management of advanced breast cancer is also hindered by practical limitations 

in the sampling and diagnosis of metastatic lesions. As previously discussed, needle biopsy is 

the current standard for tissue sampling and receptor assessment in new breast cancer 

lesions (see section 2.3.). Although a quick and relatively simple procedure, needle biopsies 

present other limitations and risks particularly relevant to the advanced setting.  

While primary breast cancers are normally easily accessible for core needle biopsy, the 

location of metastatic lesions may render tissue sampling by this method unfeasible. Together 

with the fact that core needle biopsy can cause discomfort to the patient, this limits the 

practicality of repeated biopsies, which would allow for the monitoring of disease evolution 

in MBC.  

It has been suggested that needle biopsy might not be advisable for some patients receiving 

antiangiogenic treatment, which alters blood vessel growth and healing and thus leads to 

increased risk of bleeding[116], although there would obviously also be contraindications 

associated with surgical biopsy for these and other patients. Additionally, the procedure itself 

could increase the risk of cancer spreading due to seeding of malignant cells along the needle 

track[117]. A systematic review of 15 breast cancer studies using core needle biopsy reported 

needle track seeding of cancer cells in 22% of cases[118,119], although it ultimately 

concluded that tumour seeding from needle is very unlikely and it remains unclear whether 

this phenomenon would actually lead to the development of metastases.  

Research has also looked at the possible effect of sampling method on the tissue collected 

itself, which can be relevant for its subsequent analysis. A recent publication showed that, 

although tissue sampling did not lead to significant immune or wound responses, biopsy could 

induce significant changes in the transcriptomic profile of a sample in the form a hypoxia-like 

response[120]. This effect was greater following surgical excision rather than needle biopsy, 

as it derives from the technical issue of warm ischemia during the surgical extirpation and 

subsequent handling of the tissue prior to its processing and storage. While the changes 

induced by this surgical stress are most likely small compared to those due to response to 

treatment and disease heterogeneity and evolution, the potential confounding effect that 

biopsy method may introduce for subsequent sample analysis should be considered. 
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Finally, sampled breast tissue needs to undergo processing prior to histological and receptor 

status assessment. Fixation in formalin has been used for decades as a simple and inexpensive 

way of preserving tissue. Although this processing could delay sample assessment, this is 

likely negligible in the larger timescale of the treatment schedule. Possibly more importantly, 

fixation can affect the molecular integrity of DNA and mRNA and create artefacts, limiting the 

use of nucleic acids as tissue biomarkers[121,122]. 

4. Alterations in receptors as novel biomarkers to improve management of MBC 

As previously discussed, the unavoidable development of resistance to treatment is a 

hallmark of and the ultimate hurdle in the clinical management of MBC (see section 3). 

Accordingly, extensive research has gone into studying the different mechanisms of 

resistance to both endocrine[123–125] and anti-HER2 therapies[90,126,127], leading to an 

increasing understanding of how alterations in the proteins targeted by treatment, their co-

activators or related signalling pathways contribute to the development of the resistant 

phenotype. These studies may help identify novel treatment targets and inform new 

combinatorial therapeutic strategies. Importantly, markers for these underlying mechanisms 

can be identified and validated as candidates to better predict the development of resistance 

and aid in the selection of the best possible treatment for MBC.  

While numerous prognostic and predictive biomarkers have been studied, here we will focus 

on genomic alterations identified in the established receptors which may hold additional 

predictive value beyond the well-known, traditional roles of wild-type ER expression and 

HER2 overexpression. Genomic alterations in PR are less relevant given that the predictive 

value of wild-type PR expression is not as well established, PR mutations and polymorphisms 

are infrequent and there is a lack of evidence of their significance in breast cancer[128]. It has 

been suggested that changes in PR expression might be a consequence of genetic alterations 

in ER, the expression of which PR is well known to depend on[128]. 

4.1. Genetic and genomic alterations in ER as emerging biomarkers 

In addition to the central role of the expression of wild-type (WT) ER as a predictor for the 

benefit from endocrine therapy, numerous genomic aberrations in ER have been described in 

relation to differential response to treatment and possible mechanisms for the development 

of resistance. This grants these altered forms of ER potential value as prognostic or predictive 
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biomarkers in their own right. This section will summarise the accumulated evidence on ESR1 

point mutations, amplifications, alternative splicing and translocations, their clinical impact 

and potential role in improving the management of ER+ MBC. 

4.1.1. ESR1 mutations 

The ER genomic alterations best characterised to date are single nucleotide mutations in the 

ESR1 gene. These alterations were first identified in cell line models[129] and clinical 

metastatic samples[130] in the 1990s. In recent years, the advancement of sequencing 

techniques has enabled further study into mutant receptors, with accumulating evidence on 

their frequency and role in the development of acquired resistance to endocrine 

therapy[131–137].  

Numerous missense, gain-of-function mutations that lead to constitutive activation of ER 

have been described in the ligand-binding domain (LBD) of the receptor, such as E380Q, 

Y537C/N/S and D538G (see Figure 1 for diagram). These LBD-ER mutants are stabilised in the 

agonistic conformation, enabling hormone-independent induction of transcription and 

proliferation. Studies have shown that these alterations lead to resistance to AIs, whose effect 

is based in the deprivation of oestrogen, as well as reduced sensitivity to SERMs and 

SERDs[131–134,138].  

These mutations are absent or extremely rare in primary or treatment-naïve ER+ breast 

cancers and in ER- breast cancers[131–133,139–141], but can be found in about 10-50% 

(depending on the specific mutation) of metastatic ER+ patients who have been previously 

treated with certain types of endocrine therapy. Numerous studies have reported not only 

on the presence but also the increase in the relative frequency of these alterations in 

advanced disease[132,141,142]. For instance, a recent study screening breast cancer patients 

for LBD-ER mutations found mutant allele frequencies (i.e., the proportion of copies of ER 

that are aberrant) were very low (0.07-0.2%) in primary lesions but much higher in 

subsequent metastases (1.4% for bone and 34.3-44.9% in brain metastases)[142]. 

These findings support the hypothesis that very rare pre-existent mutant clones may expand 

under the selective pressure of treatment for which the aberrant ER variant confers an 

advantage[140,143]. This notion is also supported by the correlation between mutation 

frequency and the number of endocrine treatments received[131]. Mutations rarely arise in 
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patients treated only with the SERM tamoxifen[131,143,144], but appear to be selected by 

treatment with AIs[131–137]. Interestingly, a recent study has shown that frequency of LBD-

ER mutations is much greater among patients who received AIs in the metastatic rather than 

only the adjuvant setting[144].  

The exact clinical implications of ESR1 mutations have been the focus of numerous recent 

studies. The frequency of LBD-ER mutations has been shown to be directly correlated with 

tumour progression in different patient cohorts[131]. Several studies have reported that the 

presence of ESR1 mutations in metastatic disease is a prognosticator for poor prognosis and 

shorter progression-free survival (PFS) under subsequent AI treatment[138,144–146].  

While the predictive value of ESR1 mutations still requires further study, several studies have 

shown mutant status is linked to differential response to combination treatments[143]. 

Results from the SoFEA trial reported that patients with LBD-ER mutants, but not WT ER, 

benefit from fulvestrant-containing treatment compared to treatment with the AI 

exemestane alone[143]. Despite reduced sensitivity to SERMs or SERDs, studies have 

suggested that high-dose tamoxifen or fulvestrant may effectively inhibit tumour progression 

in cancers expressing these mutant receptors[131,132,134–136,147]. 

Importantly, different mutations in LBD, even in adjacent residues, can lead to different 

degrees of resistance[133]. For instance, Y537S mutants exhibited significantly greater 

resistance to ER antagonists than that observed in other mutants: Y537S required a 70-fold 

higher dose of fulvestrant (relative to WT ER), compared to other mutants which only 

required a 2-fold increase[133]. Y537S mutants were also less effectively inhibited by 

fulvestrant than by the novel SERD AZD9496, whereas WT ER and other mutants exhibited 

similar response to both SERDs[133]. Other interesting results from the BOLERO-2 trial 

showed that, while both Y537S and D538G mutations were associated with worse prognosis 

in MBC, only patients with the latter type of mutation derived benefit from the addition of 

everolimus, an inhibitor for the mammalian target of rapamycin (mTOR), to exemestane[145]. 

Research of ESR1 mutations has led to the proposal of potential treatment strategies that 

tackle resistance to endocrine therapy due to constitutive ER activation, which could be of 

use to target aberrant ER variants derived from point somatic mutations or other 

abnormalities. Firstly, evidence to date has suggested that new agents with greater potency 

could be promising therapeutic alternatives, so current efforts are focused in the 
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development and assessment of novel anti-oestrogens. The third-generation SERM with SERD 

activity bazedoxifene has been shown to inhibit Y537S mutant-driven tumour growth and also 

exhibits greater potency than tamoxifen against other mutants[138,148–150]. Two novel 

orally bioavailable SERDs, elacestrant (RAD1901) and bilanestrant (GDC-0810 or ARN-810), 

have exhibited promising preclinical growth-inhibiting effects in ER-mutant tumours[151–

154]. Both these agents and GDC-0927 (SRN-927), a third new SERD with improved potency, 

will be assessed in currently ongoing phase I clinical trials that will include screening for ESR1 

mutant status[155–157]. A second treatment strategy consists of inhibiting ER co-activator 

proteins. For instance, the inhibitors bufalin or verrucarin are being studied for their activity 

blocking the recruitment of the steroid receptor co-activator 3 (SRC-3)[158,159]. Thirdly, 

another approach is inhibiting the effect of constitutive ER activation downstream. For 

example, cyclin D1 regulates the cell cycle in complex with cyclin-dependent kinases 4 and 6 

(CDK4/6) and, as a well-known ER transcriptional target, its expression is strongly correlated 

with that of the receptor[160]. Studies have reported the efficacy of CDK4/6 inhibitors 

palbociclib in combination with SERMs tamoxifen and bazedoxifene[148,161]. Importantly, it 

has been shown that LBD-ER mutants do not exhibit reduced sensitivity to CDK4/6 inhibitors. 

Trials to assess the effect of palbociclib in combination with endocrine therapy (PALOMA 

trials) showed that mutant-carrying patients benefited from the addition of the CDK4/6 

inhibitor to the AI letrozole[143,162] or the SERD fulvestrant[143,163]. 

4.1.2. ESR1 amplification 

Gene amplification, by which the copy number of a chromosomal region is multiplied, leads 

to overexpression of the affected genes and is a prevalent mechanism for acquired resistance 

to treatment in cancer[164]. Amplification of the gene ESR1 was first described as a possible 

mechanism for increased expression of ER in 1990[165]. Given the importance of ER in breast 

cancer, this initiated considerable research and discussion of the clinical implications of this 

finding. ESR1 amplification has since been an object of debate due to the conflicting evidence 

reported by different researchers[166,167]. 

In 2007, Holst et al reported that ESR1 amplification was a frequent event in breast cancer: 

using FISH, they detected amplification in about 21% of a large cohort of more than 2000 

breast cancer patients, and reported this was significantly associated with ER 

overexpression[168]. Amplification was found in benign and precancerous breast lesions, 
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suggesting this could be a very early genetic alteration. Importantly, Holst also reported that 

women presenting this alteration benefit from significantly longer survival under treatment 

with tamoxifen, suggesting the potential role of amplification as a predictor for better 

response to endocrine therapy[168].  

However, other studies swiftly reported conflicting results: 5 different studies reported 

varying, but consistently much lower prevalence or complete absence of ESR1 

amplification[166,169–173]. These authors also criticised the methodology and analysis of 

the earlier work and, importantly, reported significant discrepancies between quantification 

by FISH and alternative biochemical methods[169,170]. 

Other studies added to the controversy by supporting results from the original study, 

reporting similar ESR1 amplification rates as measured by FISH (21-23%) and supporting the 

association of amplification with higher ER expression levels[174,175]. The study by Tomita 

et al showed amplification was associated with longer survival[174], while Tsiambas et al 

reported that this was only true for a subset of the cases with amplified ESR1[175]. The former 

study also found that it was negatively correlated with factors associated with poor prognosis, 

such as tumour size and lymph node involvement[174]. 

In contrast, a Dutch study reported that true amplification was rare (2%), further supported 

the issue of methodological discrepancies (with only 60% concordance between techniques) 

and, importantly, showed that amplification was correlated with high grade and 

proliferation[176]. However, a subsequent molecular profiling study by the same group 

reported significantly higher ESR1 amplification rates (16%)[177,178]. 

In short, evidence has accumulated on both sides of the debate, with contradictory findings 

in terms of both the frequency and prognostic or predictive value of ESR1 

amplification[167,179–181].  

Finally, a study by Ooi et al showed that some FISH signals may actually correspond to 

hybridisation to ESR1 mRNA from highly transcribed chromatin areas[182], an issue that had 

been previously suggested as a plausible source of artefacts[166,183]. This study reported 

relatively infrequent (6%) low level amplification[182] and has been considered as an 

explanation for the wide discrepancies between studies and methodologies[181].  
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One obvious conclusion of these studies has been the considerable technical challenges for 

the assessment of ESR1 amplification[169,170,183], particularly by FISH, in which artefacts 

are common and slight differences in scoring thresholds can lead to significantly different 

conclusions[180,181,183]. Ooi’s findings provided an answer to the decade-long debate on 

incidence and an important lesson on the need for standardisation and robust validation of 

methodologies for translational cancer applications[181]. 

Whether increases in ER expression could be an early alteration in cancer or how this might 

be indicative of dependence on the receptor for tumour progression in ER+ cancer still 

remains unclear[184–186]. It has been suggested that amplification could be linked to better 

or worse response to treatment and prognosis depending on the underlying mechanism 

leading to the chromosomal aberration in the first place[167]. However, the only current 

point of consensus seems to be that further studies with appropriate, robust methodology 

are needed before we can determine the actual clinical relevance of ESR1 amplification and 

its potential prognostic or predictive value[140,180,181,184,187]. 

4.1.3. ESR1 alternative splicing 

Since the 1990s, numerous studies have described multiple ESR1 splice variants[188,189], 

which are expressed heterogeneously and often in co-expression in both normal and 

cancerous breast tissue[189,190]. These variants are truncated versions of the normal 

transcript that arise through different exon deletions, with the resulting frame-shift 

alterations, from the full-length WT ER[191].  

As a result of these deletions, splice variants have been shown to exhibit differential 

transcriptional activity: some variants are constitutively activated, some compete with and 

inhibit the effect of WT ER, and others are altogether inactive due to lacking both ligand and 

DNA-binding domains[188,191–195]. The best characterised variant, labelled ∆E5, presents a 

deletion of exon 5 of ESR1 that affects the LBD [192,194]. This results in constitutive, 

hormone-independent activation and has been linked to the development of resistance to 

endocrine treatment and tumour progression[194–198]. 

However, the prevalence and role of these abnormal ER isoforms in the development of 

acquired resistance has not been well characterised in metastatic disease. A recent study by 

Beije et al[141] analysing circulating tumour cells in liquid biopsies from patients with MBC to 
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screen for a range of ESR1 variants only detected the ∆E5 isoform. Results reported 

expression of this variant was higher in cancer patients than in healthy blood donors, but 

showed no differences between a baseline cohort and another one comprising patients 

progressing on palliative endocrine therapy[141]. Consequently, this work did not show a 

significant association of ∆E5 ER with differential response to treatment or progression in 

patients with MBC. However, given the previous evidence in preclinical and primary breast 

cancer studies, the potential role of ESR1 splice variants as prognostic or predictive 

biomarkers merits further investigation. This might be aided by the emergence of better 

sampling and diagnosis tools (see section 5). 

4.1.4. ESR1 translocations 

Genomic rearrangements are gross alterations in the chromosomes or large chromosomal 

regions in the form of deletions, duplications, insertions, inversions or translocations. This 

phenomena can lead to dysregulation of transcription or the generation of fusion gene 

products[199]. Such alterations have long been shown to take place in the development and 

advancement of many diseases, including breast cancers[200], where the rearrangements 

involving the BRCA gene family have been well characterised[201].  

Recent years have seen the discovery of several in-frame fusion genes involving ESR1. 

Genomic characterisation of xenografts derived from a patient with endocrine-resistant MBC 

described a translocation leading to the fusion of the first 6 exons of ESR1 with the YAP1 (Yes-

associated protein 1) gene, whose WT product is involved in the regulation of organ size and 

tumorigenesis[134]. The resulting ESR1-YAP1 product has been shown to modulate growth 

and transcription of classic oestradiol-regulated genes in a hormone-independent manner. 

Indeed, the aberrant receptor lacks an LBD, which represents a very plausible mechanism for 

the development of acquired resistance to SERMs and SERDs. 

A study by Veeraraghavan et al in 2014[202] reported a genomic rearrangement involving 

ESR1 and its adjacent gene CCDC170 (Coiled-Coil Domain-Containing Protein 170), which has 

been shown to be co-expressed with ER but whose function remains unknown[203]. This gain-

of-function aberration involves an ESR1-CCDC170 gene fusion that leads to overexpression of 

a truncated CCDC170, which in turn has been shown to induce growth factor signalling, 

motility, tumourigenicity and resistance to endocrine therapy through the GRB2-associated 

binding protein 1 (GAB1) signalling pathway. This is consistent with the fact that, with a 
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prevalence of 4% of cases in the study cohort, this fusion product was found to be significantly 

enriched in the ER+ luminal B subtype, characterised by a typically more aggressive and 

treatment-resistant phenotype[202]. This suggests the potential prognostic value of the 

aberrant CCDC170 form. 

Following the discovery of the ESR1-YAP1 and ESR1-CCDC170 fusion gene products, further 

study is now needed to better characterise how they exert their activities. This could help 

assess these aberrant proteins or related pathways as both markers to determine the 

mechanism enabling resistance and potential therapeutic targets to tackle these.  

4.2. Somatic mutations in HER2 as biomarkers 

Despite the improvement in prognosis of patients with HER2+ breast cancer since the 

introduction of anti-HER2 therapy (see sections 2.2. and 3.1), challenges remain in the 

management of these tumours, particularly in the advanced setting where overall response 

rates are often relatively limited and the high rates of de novo and acquired resistance 

frequently lead to tumour progression. While researchers continue to investigate alternative 

anti-HER2 and combination therapies for first and second line treatment[74,76,104,204], 

there is also a need to identify additional predictors to help improve treatment 

selection[205]. Most of the research to date has described alterations in associated pathways 

and downstream effectors of HER2[206]. For instance, PIK3CA (phosphatidylinositide 3-

kinase) mutations that lead to resistance through constitutive activation of the PI3K signalling 

pathway targeted by anti-HER2 therapies have been described[207–209], although they have 

not yet been shown to have predictive value to help guide treatment selection[210,211]. 

More importantly for the focus of this review, research has also identified genomic alterations 

in HER2 itself. Among the mechanisms leading to acquired resistance to anti-HER2 therapies 

are obstacles preventing binding of different drugs to HER2[212–215]. Trastuzumab 

resistance can arise from overexpression of glycoproteins such as mucin that mask the 

receptor from binding, but also from genetic alterations that lead to the loss of the targeted 

epitope. Research has described how mutations in the extracellular domain, alternative RNA 

processing or alternative translation-initiation sites lead to the expression of a truncated form 

of the receptor named p95HER2[216], which has been shown to correlate with outcome in 

patients treated with trastuzumab and thus holds prognostic and predictive value[217,218]. 

Additionally, several mutations affecting the RTK domain have been identified that are linked 
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to resistance to tyrosine kinase inhibitors such as lapatinib, used as anti-HER2 therapy in 

combination with other agents[213].  

In summary, preclinical and translational studies have described genetic aberrations in HER2+ 

MBC that lead to the loss or alteration of the epitopes or domains targeted by different anti-

HER2 treatments. While further work is needed to validate these findings, evidence to date 

suggests specific mutations could act as predictive markers, helping identify patients unlikely 

to respond to these therapies who may instead derive greater benefit from alternative 

treatment strategies. 

Interestingly, somatic mutations in HER2 could be useful as biomarkers in cancers that would 

normally be considered HER2 negative (HER2-). Meta-analysis of 8 sequencing studies 

identified that 1.6% of newly-diagnosed breast cancers may harbour HER2 somatic 

mutations[219]. Importantly, most of these patients did not exhibit HER2 amplification or 

overexpression. These activating mutations lead to an overactive form of HER2 and represent 

an alternative mechanism by which signalling through this receptor leads to disease 

progression in patients that would normally be considered HER2-.  

Studies have shown that tumours carrying these activating HER2 mutations respond to 

treatment with the irreversible pan-HER kinase inhibitor neratinib[219,220]. Preliminary 

results from the ongoing SUMMIT trial, exploring the efficacy of neratinib in patients carrying 

activating HER2 and HER3 mutations, have been encouraging[221,222], while other work 

continues to investigate how specific mutations may impact responsiveness to this and other 

inhibitors[223].  

In short, HER2 genetic alterations could also be useful markers in HER2- cancers. Screening 

for these activating HER2 mutations could help identify a subpopulation of MBC patients who 

are likely to benefit from anti-HER2 therapy despite presenting no overexpression of the 

receptor. Under current standard practices, these patients would miss out on treatment likely 

to improve their outcomes. Ongoing studies will need to validate the predictive value of these 

mutations and assess the feasibility of their potential clinical application. 

5. The need for new methodologies for better biomarker assessment in MBC 

There is a need for better sampling and measurement methods before promising novel 

biomarkers can be considered for regular implementation in the clinic[224] (see section 3.2.). 
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These technologies are needed, firstly, to help identify and validate novel circulating 

biomarkers and, secondly, to establish standardised protocols that enable a more accurate, 

sensitive, quick and ideally frequent screening for predictors in often inaccessible and 

continuously evolving metastatic lesions. As the better characterised receptor genomic 

alterations to date (see section 4.1.1.), ESR1 mutations represent a good example of how both 

better biopsies and analysis methods have aided and will continue to drive research on this 

kind of novel predictive factors. The following paragraphs will summarise the impact and 

evolving role of these technologies. 

5.1.1.1. Liquid biopsies for better sampling 

The term “liquid biopsy” refers to the use of blood samples to study existing tumours[225–

227]. Blood often contains cell-free DNA (cfDNA), circulating tumour DNA (ctDNA), circulating 

tumour cells (CTCs), exosomes and tumour-educated platelets (TEPs), the analysis of which 

can provide an insight into cancers.  

While needle biopsy continues to be routinely used in the clinic, the use of liquid biopsies 

(LBs) to sample and analyse cancer tissues has proven instrumental to the discovery and study 

of emerging biomarkers. LBs can enable better biomarker assessment and monitoring of 

genomic changes in tumours. This holds particular potential in the metastatic setting, where 

early detection of emerging resistance mechanisms could help guide treatment correction 

and thus improve patient outcomes[139].  

LBs have the advantage of circumventing many of technical limitations of traditional biopsies 

(see section 3.2.): they are minimally invasive, enable repeated sampling for constant 

monitoring of tumour evolution and provide an insight into cancers that would normally be 

inaccessible for needle biopsy[225]. Additionally, LBs might also allow for the detection of 

circulating biomarkers which would be absent or harder to accurately detect in fixed tumour 

tissue, such as mutant DNA or transcripts[228].  

In recent years, the use of LBs has become more prevalent in cancer studies. While CTCs have 

the potential to provide an insight into multiple molecular dimensions (DNA, RNA and 

protein), several authors have remarked on the technical complexity of their 

analysis[141,229]. For instance, CTC analysis can be complicated by issues such as the 

presence of leukocytes in the blood: despite the use of procedures for CTC enrichment, 
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patient blood can still contain contaminating blood cells, which interfere with the gene 

expression profiling of CTCs and significantly reduce the sensitivity for detection of 

biomarkers such as ESR1 mutations found only in these cancerous cells[141,230].  

Instead, much of the research to date using LBs in breast cancer has focused on the analysis 

of ctDNA, which is any tumour-related circulating free DNA that is released into the blood by 

cancer cells undergoing necrosis[227,231–233], and is often more easily detectable. Indeed, 

a recent study has shown that sensitivity for detection of ESR1 mutations is greater in ctDNA 

than in CTCs[141] and, in line with this, analysis of ctDNA from LBs has been a key tool in most 

of the studies looking at ESR1 mutations to date[141,143–145,233–237]. The availability of a 

method for repeated, non-invasive sampling is of particular relevance to these markers, since 

mutation status would ideally be determined at diagnosis, after each recurrence or 

progression and possibly at regular intervals even without clinical signs of disease 

advancement[139].  

Some evidence to date has shown good concordance in the assessment of mutational status 

(i.e., positive or negative for the presence of mutants) between traditional tissue biopsies and 

LBs. For instance, studies looking at detection of PI3KCA and ESR1 mutations found 95% and 

97% concordance, respectively, in mutational status as assessed by allele-specific PCR in 

tumour DNA from tissue biopsies or ctDNA analysis[144,238]. However, a different study 

found that in some cases mutations can be detected in cfDNA from LBs that were not found 

in analysis of tissue from metastatic biopsies[142]. This study also reported discrepancies in 

the quantification of the frequency (rather than positive or negative status) of LBD-ER 

mutations in both sample types, with differences of several fold changes between the mutant 

allele frequencies in those cases in which mutations were detected in both paired metastatic 

biopsies and cfDNA[142].  

These results evidence that, despite the promising results to date from the implementation 

of LBs, further work is still needed before we can bring their potential technical advantages 

to the clinic. Research will need to better determine how accurately LBs can quantify 

biomarkers and, by extension, monitor disease evolution in MBC. For instance, the concept 

of “mutational status” relies on the definition of thresholds that define how frequent an 

alteration (such as a specific LBD-ER mutation) must be to be classified as positive. Although 

detection technologies already allow for ultrasensitive measurements (see next section), 
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there is a current lack of consensus in the definition of cut-offs for mutation 

positivity[132,141,142,239,240] and studies are needed to establish rigorous and 

standardised thresholds. Larger studies with paired blood and metastatic tumour biopsy 

samples are also required to investigate the correlation in biomarker levels between both 

sample types and ensure that detection in LBs does not misrepresent the actual frequency of 

genetic alterations in the metastases. Work to assess the potential discrepancies and 

influencing factors will likely require multicentre research efforts, given the difficulty of 

obtaining a large cohort of metastatic breast biopsies with paired LBs. 

5.1.1.2. Improved detection technologies 

As previously mentioned, the revolution in sequencing technologies in the last decade was 

instrumental in recent advances in the research of mutant ER variants in particular. In the 

past, adequate mutation detection has faced the challenge of achieving high enough 

sensitivity[140,241]. Even if a considerable proportion of metastatic cancers eventually carry 

an ESR1 mutation, the aberrant ESR1 copy might be present in a very small fraction of the 

tumour cell population in primary cancers or at the early stages of clonal evolution, where 

mutants would ideally be detected for optimum prognosis and treatment selection, so 

ultrasensitive detection methods are needed. Inherent error rates of up to 1% limit the 

suitability of massively parallel next-generation sequencing and targeted sequencing 

techniques for detection of rare mutations[242,243].  

Improved tools include the development of sequencing methods with reduced background 

error and greater sensitivity for screening of liquid biopsies[241,244–247]. PCR-based 

methods for allele-specific mutant detection have also been developed[245,246,248,249] and 

digital droplet PCR (ddPCR) in particular has been used for ESR1 mutation assessment in many 

of the studies to date[142,145,253,235–237,239,240,250–252].  

6. Conclusion 

ER expression and HER2 overexpression are well-established predictive markers for response 

to endocrine and anti-HER2 therapies, respectively, in both primary and advanced breast 

cancers. However, the management of metastatic disease continues to face significant 

challenges. The constant evolution of advanced disease leads to temporal heterogeneity, 

complicating receptor status assessment, and contributes to the invariable development of 
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resistance to treatment and thus poor prognosis in advanced disease. Additionally, traditional 

sampling and assessment techniques are often insufficient for their use in metastatic disease, 

which is often inaccessible and would ideally require frequent testing for continued 

monitoring of the evolving disease. These biological and technical limitations are the main 

reasons why tumour profiling for the management of MBC is still in the early stages.  

As a result of extensive research in recent years, genomic alterations in ER and HER2 have 

emerged which evidence suggests hold the potential to greatly add to the well-established 

predictive value of the expression or overexpression of the wild type variants of these 

receptors. Here we have summarised the evidence to date on the predictive value of ESR1 

point mutations, amplification, alternative splicing and translocations, as well as HER2 

somatic mutations (see Figure 2 for summary diagram).  

We have also described the new methodologies that have emerged in recent years to address 

the practical limitations for assessment of metastatic cancers. Liquid biopsies and specifically 

isolation of ctDNA have shown great potential for study of circulating biomarkers when 

complemented by ultrasensitive methods for their detection and monitoring, although 

further work is still needed.  

In short, the accumulating evidence suggests that, in their evolving role as predictive markers, 

genomic alterations in ER and HER2 hold potential to help meet the need for better 

biomarkers. By providing an insight into the underlying mechanisms of resistance, these 

predictors might help monitor the loss of response to treatment in the metastatic setting, 

helping select alternative agents, adjust dosage or identify patients likely to benefit from 

extended or combination treatments, as well as allowing for the identification of novel 

potential treatment targets and new combinatorial strategies for multiple pathway targeted 

therapy.  

A good example of these advances are LBD-mutant variants of ER: as the best characterised 

novel predictors in this field, prospective retrospective studies have already yielded evidence 

on their promise for patient stratification and treatment selection, while the better 

understanding of the underlying mechanisms of resistance has led to the proposal of 

alternative combination therapeutic strategies.  

7. Expert commentary 
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As summarised in this review, the optimal application of targeted therapies and the overall 

clinical management of metastatic breast cancer are significantly impacted by both the 

biological complexity of the disease and limitations in the methods available for its 

assessment. Ultimately, the main challenge remains in incorporating the underlying 

heterogeneity and genetic complexity of the disease into its clinical management.   

In our opinion, a three-point strategy is required to guide and improve the use of predictive 

biomarkers in the metastatic setting: firstly, assessment of the status of established 

biomarkers (ER, PR and HER2) in advanced disease should be improved (see section 3.1.); 

secondly, novel biomarkers with improved predictive value need to be identified and 

validated (see section 4); thirdly, new tools for biomarker discovery and sensitive and 

accurate detection are required to aid the advancement of the two previous points (see 

sections 5). As presented throughout this review, work in recent years has largely followed 

this approach, but greater efforts are needed to bring advances closer to the clinic and to 

address specific limitations in the work to date. 

Regarding the first point, increasing awareness on the issue of temporal heterogeneity has 

led to recent updates in European and American guidelines, supporting testing of receptor 

status in de novo metastases. Nevertheless, practical experience makes it clear that 

implementation of these guidelines is often unfeasible, particularly using traditional biopsy 

techniques. If we are to improve our approach to the selection of first line endocrine and anti-

HER2 therapies in metastatic breast cancer, work needs to focus in establishing liquid biopsies 

as a suitable alternative technique. In line with this, recent studies have used CTCs from liquid 

biopsies to assess receptor status with promising results[254,255], exemplifying how such 

approaches could improve receptor status assessment in metastatic cancers. The DETECT 

study, a large prospective trial comprising clinical phase III and one phase II studies, is 

currently undergoing to investigate treatment personalisation for patients with MBC based 

on the HER2 status of CTCs[256–258]. 

On the second point, despite significant advances made in the characterisation of genomic 

traits of ER and HER2 with novel predictive value, several aspects need to be improved upon. 

Importantly, the methodologies used in these studies must be standardised to enable robust 

validation of the findings and a better description of these aberrant receptors, so a consensus 

can be reached on their clinical implications and potential implementation. For instance, 
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despite the initial description of ESR1 amplifications in the 1990s, their study has been set 

back by inconsistencies in their assessment and debate in their incidence and clinical 

relevance, including disagreement on whether amplifications are indicative of better or 

poorer response to endocrine therapy. The study of ESR1 point mutations exemplifies a better 

case, as emerging sequencing technologies have provided greater insight into their 

significance in recent years. We expect that similar approaches will help advance our 

understanding of the other genomic alterations described here.  

Finally, the next stage to move these novel biomarkers closer to their clinical application must 

be larger dedicated studies. Most findings to date have largely been the result of preclinical 

studies or post hoc retrospective analyses, such as in the case of ESR1 mutation assessment 

in the SoFEA and PALOMA trials. More comprehensive and prospective trials including large 

patient cohorts and incorporating biomarker assessment for patient stratification into their 

study design are now needed.  

Just as the DETECT studies are implementing liquid biopsies to better assess temporal 

heterogeneity in receptor status, similar prospective approaches are also needed that study 

not only established hormone and HER2 status, but also emerging biomarkers. Some 

currently ongoing studies mentioned in this review suggest that researchers are beginning to 

move towards these important prospective trials: phase I trials testing novel SERDs include 

screening for ESR1 mutations, while the SUMMIT trial is investigating the effect of pan-HER 

inhibitor neratinib in patients carrying HER2 mutations.  

This type of molecularly-driven studies are required to confirm the potential predictive and 

clinical value of these and other biomarkers, define standardised methodologies and establish 

significant cut-off values and guidelines that will be essential before any biomarkers can be 

translated into new clinical tools. If such clinical trials are successful in upcoming years, we 

might be able to implement the recent technological advances to turn somatic mutations and 

other genetic alterations in ER and HER2 into clinically useful biomarkers that provide insight 

into the complexity of MBC and help guide the selection of the optimal treatment (or 

sequential treatments) for each patient. 

8. 5-year view 
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The recent advances in both preclinical research and prospective studies suggest that the next 

few years could see significant developments in establishing some of the novel biomarkers 

described here in the clinical and research settings. ESR1 mutations hold particular promise 

for their inclusion in more prospective trials to assess how mutant status can assist treatment 

selection in patients with MBC. If successful, in the longer term these trials could eventually 

lead to the approval of some of these new predictors for their clinical application. As 

previously discussed, the accuracy of new sampling and measurement techniques must be 

confirmed first before methodological standards for detection of these biomarkers can be 

established. This should then be followed by expert description of guidelines for their 

implementation, as well as studies to assess their cost-effectiveness.  

Further research is also likely to shed light on how specific genomic aberrations in ER or HER2 

arise. Clonal evolution plays a well-established role in the development of resistance and 

evidence has shown how treatment with aromatase inhibitors correlates with the subsequent 

increased abundance of LBD-ER mutants in ER+ MBC. Further research might provide a better 

understanding of how exposure to certain treatments in the adjuvant or first line metastatic 

setting might be linked to the emergence of specific mechanisms of resistance. 

This may also help to improve our understanding of how genomic aberrations circumvent the 

mechanism of action of current standard-of-care therapeutic agents. In turn, this may 

highlight potential novel targets to tackle resistance and help develop novel drug candidates 

or propose dose escalation strategies or alternative therapeutic approaches using 

combination treatments, such as have been proposed to target resistance led by the specific 

LBD-ER mutants. 

For less well characterised genomic aberrations, further basic research and retrospective 

studies could help clarify their clinical value. For instance, it remains unclear whether ESR1 

amplifications are predictive of a better or worse response to endocrine therapy and this 

remains a subject of debate. Work in the coming years including larger studies with 

standardised methodologies could resolve such debates and help come to a consensus. 

To conclude, much work is needed to incorporate novel biomarkers with improved predictive 

value into the treatment decision-making process for patients with MBC. However, preclinical 

and early clinical studies to date have provided encouraging evidence suggesting that ER and 

HER2 aberrations could one day fulfil this role. In the future, we could see several of these 
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predictors translated into the clinic or even incorporated into multifactor tests that, from a 

liquid biopsy, could provide important information to select and adapt a patient’s treatment 

as their disease evolves, in a move towards truly personalised medicine, thus helping delay 

progression and extend survival in patients with MBC. 

9. Key issues 

• The unavoidable development of resistance to treatment renders MBC virtually 

incurable, making it the leading cause of cancer-related death. 

• While ER and HER2 can still inform treatment selection in MBC, the receptor status 

of de novo metastases is often different from that of primary tumours (temporal 

heterogeneity). 

• Biomarker assessment in MBC is difficult due to the frequent inaccessibility to 

lesions for sampling. 

• We need better biomarkers to predict the development of resistance to treatment, 

so therapeutic strategies can be adapted to the evolving biology of the disease. 

• Genomic aberrations in ER and HER2 have emerged as potential predictive 

biomarkers, although they require further study so we can gain a better 

understanding of the underlying mechanisms of resistance and reach a consensus on 

their clinical implications. 

• Validation of the findings to date and standardisation of sampling and detection 

methodologies are also required to continue advancing the study of these novel 

predictors. 

• Prospective trials that incorporate biomarker assessment for treatment selection 

into their study design are essential to validate these novel predictors and advance 

towards their potential clinical implementation. 
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Figure 1. Diagram summarising known point mutations in the sequence of oestrogen 
receptor. First discovered in the 1990s, somatic mutations are the best characterised 
genomic aberrations in ESR1. In recent years, more dedicated studies and technological 
advances have led to the description on numerous alterations in primary and metastatic 
breast cancer. Many of the most common mutations are located in a hotspot in the ligand 
binding domain and lead to constitutively active forms of the receptor that have been linked 
to reduced sensitivity to endocrine therapies. 
 
 
 
 
 
 
 



 
 
Figure 2. Diagram summarising the evolving role of receptors as biomarkers. The 
expression (or overexpression) of oestrogen receptor (ER), progesterone receptor (PR) and 
the human epidermal growth factor receptor 2 (HER2) has long been used to guide 
treatment decision-making. Recent years have seen the description of genomic aberrations 
in ER and HER2 which are linked to cancer progression and the development of resistance to 
treatment and thus hold additional potential to aid the clinical management of the disease. 
This diagram summarises these traditional and novel predictive traits, the underlying 
mechanism they denote (solid arrows), associated predictive and prognostic value (dashed 
arrows) and some examples of the best characterised genomic alterations. 
 


