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Bacteriana, Universidad de León, León, Spain

Abstract

We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the
biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller
than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of
paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the
extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique
adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—
two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus
determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of
the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have
homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of
existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by
investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network
analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and
anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI
virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal
metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive
virulence of R. equi.
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Introduction

Rhodococcus bacteria belong to the mycolic acid-containing

group of actinomycetes together with other major genera such

as Corynebacterium, Mycobacterium and Nocardia [1]. The genus

Rhodococcus comprises more than 40 species widely distributed in

the environment, many with biotechnological applications as

diverse as the biodegradation of hydrophobic compounds and

xenobiotics, the production of acrylates and bioactive steroids,

and fossil fuel desulfurization [2]. The rhodococci also include an

animal pathogen, Rhodococcus equi, the genome of which we report

here.

R. equi, a strictly aerobic coccobacillus, is a multihost pathogen

that causes purulent infections in various animal species. In horses,

it is the etiological agent of ‘‘rattles’’, a lung disease with a high

mortality in foals [3]. R. equi lives in soil, uses manure as growth

substrate, and is transmitted by the inhalation of contaminated

soil dust or the breath of infected animals. Pathogen ingestion

may result in mesenteric lymphadenitis and typhlocolitis, and

multiplication in the fecal content of the intestine contributes

to dissemination in the environment. R. equi causes chronic

pyogranulomatous adenitis in pigs and cattle and severe

opportunistic infections in humans, often in HIV-infected and

immunosuppressed patients. Human rhodococcal lung infection

PLoS Genetics | www.plosgenetics.org 1 September 2010 | Volume 6 | Issue 9 | e1001145



resembles pulmonary tuberculosis and has a high case-fatality rate

[3,4].

R. equi parasitizes macrophages and, like Mycobacterium tuberculosis

(Mtb), replicates within a membrane-bound vacuole. A 80–90 kb

virulence plasmid confers the ability to arrest phagosome

maturation, survive and proliferate in macrophages in vitro and

mouse tissues in vivo, and to cause disease in horses. Virulence-

associated protein A (VapA), a major plasmid-encoded surface

antigen, is thought to mediate these effects [5–7]. The vapA gene is

located within a horizontally-acquired pathogenicity island (PAI)

together with several other vap genes [8]. Equine, porcine and

bovine isolates carry specific virulence plasmid types differing in

PAI structure and vap multigene complement, suggesting a role for

vap PAI components in R. equi host tropism [8,9].

Apart from the key role of the plasmid vap PAI, little is known

about the pathogenic mechanisms of R. equi. We investigated the

biology and virulence of this pathogenic actinomycete by

sequencing an analysing the genome of strain 103S, a prototypic

clinical isolate. With its dual lifestyle as a soil saprotroph and

intracellular parasite, R. equi offers an attractive model for

evolutionary genomics studies of niche breadth in Actinobacteria.

The comparative genomic analysis of R. equi and closely related

environmental rhodococi reported here provides insight into the

mechanisms of niche-adaptive genome plasticity and evolution in

this bacterial group. The R. equi genome also provides fundamen-

tal clues to the shaping of virulence in Actinobacteria.

Results/Discussion

General genome features
The genome of R. equi 103S consists of a circular chromosome

of 5,043,170 bp with 4,525 predicted genes (Figure S1) and a

circular virulence plasmid of 80,610 bp containing 73 predicted

genes [8]. Overall G+C content is 68.76%. Table 1 summarizes

the main features of the R. equi genome.

Comparative analysis. Orthology analyses (Figure S1) and

multiple alignments (Figure 1A) with representative published

actinobacterial genomes showed the highest degree of homology

and synteny conservation with Rhodococcus jostii RHA1 [10]. Next

in overall genome similarity was Nocardia farcinica, followed by

Mycobacterium spp., whereas Streptomyces coelicolor appeared much

more distantly related, consistent with 16S rRNA-derived

actinobacterial phylogenies. Some phylogenetic studies have

been inconclusive, positioning R. equi either with the nocardiae

or rhodococci [1,11]. Our genome-wide comparative and

phylogenomic analyses indicate this species is a bona fide member

of the genus Rhodococcus (Figure 1, Figure S2).

Interestingly, R. equi has a substantially smaller genome than the

soil-restricted versatile biodegrader R. jostii RHA1 (9.7 Mb) [10]

and two recently sequenced environmental rhodococci, Rhodococcus

erythropolis PR4 (6.89 Mb) and Rhodococcus opacus B4 (8.17 Mb) (see

http://www.nite.go.jp/index-e.html). The rhodococcal genomes

also differ in structure: R. equi and R. erythropolis have covalently

closed chromosomes, whereas those of R. jostii and R. opacus are

linear (Table 1, Figure S2). Chromosome topology does not seem

to correlate with phylogeny, as R. equi and R. erythropolis belong to

different subclades, and the latter is the prototype of the

Table 1. General features of the genomes of R. equi 103S and the environmental species, R. jostii RHA1.

Replicon Size (bp) Topology GC %
No. of
CDS

Pseudo-
genes Coding %

Coding density
(average CDS
length in bp)

rRNA
clusters tRNAs

R. equi
103S

Chromosome 5,043,170 Circular 68.82 4,525 14 90.3 0.89 (1009) 4 51

pVAPA1037 80,610 Circular 64.61 73 8a 72.7 0.81 (901) 0 0

R. jostii
RHA1

Chromosome 7,804,765 Linear 67.52 7,211 5 91.2 0.92 (987) 4 50

pRHL1 1,123,075 Linear 65.05 1,146 2 82.1 1.02 (805) 0 2

pRHL2 442,536 Linear 64.01 454 4 83.7 1.03 (816) 0 0

pRHL3 332,361 Linear 64.91 334 0 84.9 1.00 (845) 0 0

See http://www.nite.go.jp/index-e.html and Table S3 for data from two other sequenced genomes from environmental Rhodococcus spp., R. erythropolis PR4 and R.
opacus B4 (released online by NITE, the Japanese National Institute for Technology and Evaluation).
aOf which seven in the HGT vap PAI.
doi:10.1371/journal.pgen.1001145.t001

Author Summary

Rhodococcus is a prototypic genus within the Actinobac-
teria, one of the largest microbial groups on Earth. Many of
the ubiquitous rhodococcal species are biotechnologically
useful due to their metabolic versatility and biodegrada-
tive properties. We have deciphered the genome of a
facultatively parasitic Rhodococcus, the animal and human
pathogen R. equi. Comparative genomic analyses of
related species provide a unique opportunity to increase
our understanding of niche-adaptive genome evolution
and specialization. The environmental rhodococci have
much larger genomes, richer in metabolic and degradative
pathways, due to gene duplication and acquisition, not
genome contraction in R. equi. This probably reflects that
the host-associated R. equi habitat is more stable and
favorable than the chemically diverse but nutrient-poor
environmental niches of nonpathogenic rhodococci, ne-
cessitating metabolically more complex, expanded ge-
nomes. Our work also highlights that the recruitment or
cooption of core microbial traits, following the horizontal
acquistion of a few critical genes that provide access to the
host niche, is an important mechanism in actinobacterial
virulence evolution. Gene cooption is a key evolutionary
mechanism allowing rapid adaptive change and novel trait
acquisition. Recognizing the contribution of cooption to
virulence provides a rational framework for understanding
and interpreting the emergence and evolution of microbial
pathogenicity.

Rhodococcus equi Genome and Cooptive Virulence
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‘‘erythropolis subgroup’’, which includes R. opacus [11]. Streptomy-

cetes also have large linear (.8.5 Mb) chromosomes [12], so

linearization appears to have occurred independently in different

actinobacterial lineages during evolution, apparently in association

with increasing genome size.

Overview of functional content. The functional content of

the R. equi 103S genome is summarized in Figure S3A. About one

quarter of the genome corresponds to coding sequences (CDS)

involved in central and intermediate metabolism (n = 1,108) and

another quarter corresponds to surface/extracellular proteins

(n = 1,073). ‘‘Regulators’’ is the next most populated functional

category (n = 464, 10.3%). After adjusting for genome size, the

number of membrane-associated proteins is average, but the

regulome and secretome are clearly larger than in other

Actinobacteria (Figure S4A, S4B, S4C), possibly reflecting specific

needs associated with the habitat diversity of R. equi, from soil and

feces to the macrophage vacuole. R. equi has 23 two-component

regulatory systems, more than twice as many as host-restricted

Mtb [13], and more regulators as a function of genome size than S.

coelicolor [12] (Figure S4B). About 29% of the genome encodes

products of unknown function. This percentage rises to 44.5% for

secreted products (Figure S3B), 13% of which are unique to R.equi.

Ortholog comparisons with representative closely related mycolata

(R. jostii, N. farcinica and Mtb) showed R. equi to have the highest

proportion of species-specific surface/extracellular proteins,

consistent with its large secretome. By contrast, R. jostii RHA1

has the largest proportion of unique metabolic genes (Figure S5),

consistent with its catabolic versatility [10]. Indeed, R. jostii RHA1

is unique among Actinobacteria in its unusual overrepresentation of

metabolic genes (Figure S4D).

Expansive evolution of rhodococcal genomes
The 5.0 Mb R. equi chromosome contains relatively few

pseudogenes (n = 14, Table 1), most associated with horizontally

acquired regions (n = 10, including two degenerate DNA mobility

genes), consistent with a slow ‘‘core’’ gene decay rate. This suggests

that the differences in chromosome size between rhodococci result

mainly from genome expansion in environmental species rather

than contraction in R. equi.

Gene duplication versus HGT. We analyzed the para-

logous families and local DNA compositional biases to assess the

impact of gene duplication (GD) and horizontal gene transfer

(HGT) in rhodococcal genome evolution (Tables S1, S2). As

expected, both contributed to the chromosome size increase, but

with different patterns: linear for GD (i.e. similar percentage of

duplicated genes, 32.1, 33.2 and 33.6%, in R. equi, R. erythropolis

and R. jostii, respectively), and exponential for HGT (9.5, 14.8 and

19.5%, respectively) (Figure 2). A possible explanation is that

HGT involves the simultaneous acquisition of several genes (mean

no. of genes per HGT ‘‘island’’ in rhodococci, 8.2 to 10.6). The

probability of HGT in rhodococci also increases with chromosome

size, as indicated by the mean frequencies of HGT events (1 every

87.0, 67.0 and 54.2 genes in R. equi, R. erythropolis and R. jostii,

respectively) (Table S1). Moreover, recently acquired HGT

islands, mostly containing ‘‘non-adapted’’ DNA dispensable in

the short term in the new host species, are likely to evolve more

freely and to tolerate further HGT insertions. This may be the case

for two large chromosomal HGT ‘‘archipelagos’’ of <90 and

190 Kb in 103S, which probably were generated by an

accumulation of HGT events. The mosaic structure of these

HGT regions and the diversity of source species, as indicated by

reciprocal BLASTP best-hit analysis, suggest that they are a

composite of several independent HGT events rather than the

result of a single ‘‘en-block’’ acquisition (Figures S1 and S6).

Rhodococcal genome expansion also involves a linear increase in

the number of paralogous families (with larger numbers of

paralogs per family) and non-duplicated genes (Table S2), and

an increasing number of unique hypothetical proteins (e.g. 164 in

R. equi, 408 in R. jostii). Thus, genome expansion in rhodococci

involves greater functional redundancy, diversity and innovation.

About 20% of R. equi HGT islands (Figure S1) are located

close to tRNA genes, suggesting the involvement of phages or

Figure 1. Comparative genomics and phylogenomics of R. equi
103S. (A) Pairwise chromosome alignments of R. equi 103S, R. jostii
RHA1, N. farcinica IFM10152, M. tuberculosis (Mtb) H37Rv and S.
coelicolor A3(2) genomes. Performed with Artemis Comparison Tool
(ACT), see Table S12. Red and blue lines connect homologous regions
(tBLASTx) in direct and reverse orientation, respectively. Mean identity
of shared core orthologs between R. equi and: R. jostii RHA1, 75.08%; N.
farcinica, 72.1%; Mtb, 64.6% (see also Figures S1, S2, and S5). (B)
Phylogenomic analysis of Rhodococcus spp. and four other represen-
tative actinobacterial species. Unrooted neighbor-joining tree based on
percent amino-acid identity of a sample of 665 shared core orthologs.
The scale shows similarity distance in percentage.
doi:10.1371/journal.pgen.1001145.g001

Rhodococcus equi Genome and Cooptive Virulence
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integrative plasmids in their acquisition. However, almost no DNA

mobilization genes or remnants thereof were found associated with

HGT regions, suggesting that the lateral gene acquisitions in the R.

equi chromosome are evolutionarily ancient. Most HGT genes

(52.5%) probably originated from other Actinobacteria, 3.5% of the

best hits were from other bacteria, and 44% had no homologs in

the databases. Only four integrase genes, one of them degenerate,

and an IS1650-type transposase pseudogene were identified in the

103S chromosome. R. equi seems therefore to be genetically stable

in terms of mobile DNA element-mediated rearrangements. DNA

mobility genes —mostly associated with HGT regions and

increasing in abundance with genome size— are more numerous

in environmental rhodococci (Table S3). Thus, increasing genetic

flux and plasticity are associated with increasing chromosome size

in rhodococci.

Role of plasmids. Rhodococcal genome expansion can be

largely attributed to extrachromosomal elements. R. equi has a

single 80 Kb circular plasmid whereas environmental rhodococci

have three to five plasmids, including large linear replicons up to

1,123 Kb in size, accounting for a substantial fraction of the

genome (e.g. <20% in R. jostii RHA1) (Table 1, Table S3). Thus,

as observed for chromosomal HGT DNA, the amount of plasmid

increases exponentially with genome size. Indeed, one third of the

plasmid DNA was HGT-acquired (32.4%, range 19.35–49.7 vs

14.5%, range 9.5–19.5 for the chromosomes), and plasmids may

themselves be considered potentially mobilizable DNA.

Rhodococcal plasmids also have a much higher density of DNA

mobilization genes (Table S3), pseudogenes (Table 1), unique

species-specific genes (mean 44.3616.0% vs 3.6% to 5.6%), and

niche-specific determinants (e.g. the intracellular survival vap PAI

in R. equi [8] and 11 of the 26 peripheral aromatic clusters in R.

jostii [10]) than the corresponding chromosomes. Rhodococcal

plasmids are therefore clearly under less stringent selection and

are key players in rhodococcal genome plasticity and niche

adaptability.

Niche-adaptive features
Basic nutrition and metabolism. No genes with an obvious

role in carbohydrate transport were identified in 103S, consistent

with the reported inability of R. equi to utilize sugars [14],

confirmed here by Phenotype MicroArray (PMA) screens [15] and

growth experiments in chemically defined mineral medium (MM)

(Figure S7A). By contrast, R. jostii, R. erythropolis and R. opacus can

grow on carbohydrates [16–18] and their genomes encode sugar

transporters, including phosphoenolpyruvate-carbohydrate phos-

photransferase system (PTS) permeases. Interestingly, the

intracellular pathogens R. equi, Mtb and Tropheryma whipplei are

the only mesophilic Actinobacteria lacking PTS sugar permeases

(Table S4). However, Mtb grows on carbohydrates transported via

non-PTS permeases. As the PTS is widespread in Actinobacteria,

including nonpathogenic rhodococci and mycobacteria, the

absence of PTS components in R. equi, Mtb and the genome-

reduced obligate endocellular parasite T. whipplei probably results

from gene loss.

The PMA and MM experiments showed that the only carbon

sources used by R. equi 103S were organic acids (acetate, lactate,

butyrate, succinate, malate, fumarate; but not pyruvate) and fatty

acids (palmitate and the long-chain fatty acid-containing lipids

Tween 20, 40 and 80) (Figure S7A). In addition to monocarbox-

ylate and dicarboxylate transporters, the 103S genome encodes an

extensive lipid metabolic network, with 36 lipases (16 of which

secreted) and many fatty acid b-oxidation enzymes, with 40 acyl-

CoA synthetases, 48 putative acyl-CoA dehydrogenases, and 23

enoyl-CoA hydratases/isomerases. Thus, R. equi seems to assim-

ilate carbon principally through lipid metabolism. A mutant in the

glyoxylate shunt enzyme isocitrate lyase (REQ38290) [19],

required for anaplerosis during growth on fatty acids [20], has

severely impaired intramacrophage replication and virulence [21],

indicating that, as reported for Mtb [22], lipids are a major growth

substrate for R. equi during infection in vivo.

The 103S genome encodes 21 putative amino acid/oligopeptide

transporters, and PMA screens and MM growth assays confirmed

that R. equi uses several amino acids (tryptophan, tyrosine,

phenylalanine, cysteine, methionine) and dipeptides as sources of

nitrogen. However, 103S also has pathways for the de novo

synthesis of all essential amino acids, consistent with the ability of

R. equi to grow in MM containing only an inorganic nitrogen

source (Figure S7A). Thus, R. equi can flexibly adapt to fluctuating

conditions of amino-acid availability and grow in amino acid-

deficient environments, as typically encountered in the infected

host by intracellular pathogens [23]. See Figure 3 for a schematic

overview of R. equi 103S nutrition and metabolism.

Thiamine auxotrophy. R. equi strains cannot grow without

thiamine and an analysis of the loci involved in its biosynthesis

revealed that thiC is absent from 103S, probably due to an HGT

event affecting the thiCD genes (Figure S7B, S7C, S7D). The

auxotrophic mutation is probably irrelevant for R. equi in the

intestine and manure-rich soil owing to the availability of

Figure 2. Role of gene duplication and horizontal gene transfer
(HGT) in rhodococcal genome evolution. Scatter plots of (A)
duplicated (paralogous) genes and (B) HGT genes versus the total
number of genes in rhodococcal and actinobacterial genomes (curve
fits of rhodococcal data in red, general trendline in black). HGT genes
were excluded from the paralogy analyses.
doi:10.1371/journal.pgen.1001145.g002

Rhodococcus equi Genome and Cooptive Virulence
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microbially synthesized thiamine. Host-derived thiamine is also

probably available to R. equi during infection.

Specialized metabolism. We investigated the nutritional

and metabolic aspects of rhodococcal niche adaptation by

comparing the metabolic network of R. equi with that of R. jostii

RHA1, the only other rhodococcal species for which a detailed

manually annotated genome is available. RHA1 originated from

lindane-contaminated soil and was identified by screening for

biodegradative capabilities on multiple aromatic compounds,

including polychlorinated biphenyls and steroids. Not surprisingly,

its genome has an abundance of aromatic degradation pathways

and oxygenases involved in aromatic ring cleavage [10]. R. equi is

also soil-dwelling but is primarily isolated from clinical specimens

and manure-rich environments, involving clearly different selection

criteria and habitat conditions. We used reciprocal best-match

BLASTP comparisons to identify the species-specific metabolic

gene complements, in which the catabolic specialization is likely

concentrated. The related pathogenic Actinobacteria, N. farcinica

(which shares a dual soil saprophytic/parasitic lifestyle with R. equi)

and Mtb (quasiobligate parasite) were also included in the analyses.

R. jostii RHA1 contains a disproportionately larger number of

unique metabolic genes than R. equi, N. farcinica and Mtb (n = 1,260

or 47.2% of total metabolic CDS vs only 326 to 375 or 22.9 to

29.2%, respectively) (Figure S8). The oversized metabolic network

of RHA1 results from an expansion in the number and gene content

of paralogous families (Table S5) and nonparalogous genes (643

CDS in RHA1 vs 209 to 288). Only three of the 29 aromatic gene

clusters present in R. jostii [10] were identified in the 103S genome.

Figure 3. Schematic overview of relevant metabolic and virulence-related features of R. equi 103S. Complete glycolytic, PPP, and TCA
cycle pathways, and all components for aerobic respiration, are present. The TCA cycle incorporates the glyoxylate shunt, which diverts two-carbon
metabolites for biosynthesis. The methylcitrate pathway enzymes (pprCBD, REQ09040-60) are also present. The lutABC operon may take over the
function of the D-lactate dehydrogenase (cytochrome) REQ00650, which is a pseudogene in 103S. REQ15040 (L-lactate 2-monoxygenase) and
REQ27530 (pyruvate dehydrogenase [cytochrome]) can directly convert lactate and pyruvate into acetate. Unlike Mtb and other actinomycete
pathogens, R. equi 103S has no secreted phospholipase C (Plc), only a cytosolic phospholipase D (Pld, REQ09260); a secreted Plc is however encoded
in the genomes of environmental Rhodococcus spp. Rbt1/IupS (REQ08140-60) is a dimodular BhbF-like siderophore synthase [90]. Rbt1 rhequibactins
are synthesized from (iso)chorismate via 2,3-dihydroxybenzoate (DHB) as for enterobactin or bacillibactin (REQ08130-100 encode homologs of Ent/
DhbCAEB) [90,91]. Two MFS transporters and a siderophore binding protein (REQ08180-200) encoded downstream from iupS may be involved in
rhequibactin export/uptake. There is also a putative Ftr1-family iron permease (REQ12610). R. equi may store intracellular iron via two bacterioferritins
(REQ01640-50) and the Dps/ferritin-like protein (REQ14900). IdeR- (REQ20130), DtxR- (REQ19260) and Fur- (REQ04740-furA, REQ29130-furB)-like
regulators may contribute to iron/metal ion regulation. Homologs of the Mtb DosR (dormancy) regulon are also present in the R. equi genome (Table
S6).
doi:10.1371/journal.pgen.1001145.g003

Rhodococcus equi Genome and Cooptive Virulence
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R. equi therefore has a much smaller metabolic network than, and

essentially lacks the vast aromatic catabolome of, R. jostii RHA1.

R. equi resembles other environmental Actinobacteria in being able

to produce oligopeptide secondary metabolites. The 103S genome

encodes 11 large non-ribosomal peptide synthetases (NRPS),

including three involved in siderophore formation (see below). The

only polyketide synthase (REQ02050) is involved in the synthesis

of mycolic acids. By contrast, RHA1 has 24 NRPS and seven

polyketide synthases [10]. Thus, genome expansion in R. jostii has

been accompanied by an extensive amplification of secondary

metabolism.

Other metabolic traits. R. equi reduces nitrates to nitrites

[14] through a NarGHIJ nitrate reductase (REQ04200-30). There

is also a NirBD nitrite reductase (REQ32900-30), a NarK nitrate/

nitrite transporter (REQ32940) and a putative nitric oxide (NO)

reductase (REQ03280) (Figure 3). nirBD is conserved in envir-

onmental rhodococci whereas narGHIJ and REQ03280 are not,

indicating that R. equi is potentially well equipped for anaerobic

respiration via denitrification, a useful trait for survival in mic-

roaerobic environments, as typically found in necrotic

pyogranulomatous tissue [24], the intestine or manure. A narG

mutation has been shown to attenuate R. equi virulence in mice

[25], consistent with the bacteria encountering hypoxic conditions

during infection, although this may also reflect defective nitrate

assimilation in vivo [26].

Intriguingly, R. equi possesses a D-xylulose 5-phosphate (X5P)/

D-fructose 6-phoshate (F6P) phosphoketolase (Xfp, REQ21880),

the key enzyme of the ‘‘Bifidobacterium’’ F6P shunt, which converts

glucose into acetate and pyruvate and is the main hexose

fermentation pathway in bifidobacteria [27]. Unexpected fermen-

tative metabolism has been detected in some strictly aerobic

bacteria, such as Pseudomonas and Arthrobacter [28], but no NAD+

(anaerobic)-dependent lactate dehydrogenase or other obvious

pyruvate fermentation enzyme was identified in 103S. As R. equi

does not use sugars, a catabolic role for the F6P shunt is possible

only if fed via gluconeogenesis/glycogenolysis. Alternatively, the

F6P shunt may function in reverse (anabolic) mode in R. equi, in

parallel to gluconeogenesis, directing excess acetate and glyceral-

dehyde-3-phosphate (GAP), generated from lipid metabolism, into

the pentose phosphate pathway (PPP) (Figure 3). R. equi 103S has a

lutABC operon (REQ16290-320), recently implicated in lactate

utilization via pyruvate in Bacillus [29].

Alkaline optimal pH. R. equi tolerates a wide pH range, but

growth is optimal between pH 8.5 and 10 (Figure S9). This

alkaline pH is similar to that of untreated manure, potentially

providing a selective advantage for colonization of the farm

habitat. The 103S genome encodes a urease (REQ45360-410), an

arginine deiminase (REQ11880), an AmiE/F aliphatic amidase/

formamidase (REQ26530, next to REQ26520 encoding a UreI-

like urea/amide transporter in an HGT island) and other amidases

which, by releasing ammonia [30], may favor R. equi growth in

acidic host habitats such as the macrophage vacuole (pH#5.5), the

airways or the intestine (typical pH values in horse, 5.3–5.7 and

6.4–6.7, respectively [31,32]).

Stress tolerance. Like other soil bacteria [33], R. equi encodes

a large number of s factors (21 s70) and stress proteins (e.g. eight

universal stress family proteins [Usp], five cold shock proteins, three

heat shock proteins and several Clp proteins). It also synthesizes the

ppGpp alarmone involved in adaptation to amino acid starvation

[34]. R. equi is transmitted by soil dust in hot, dry weather [3]

and must therefore resist low water availability and desiccation-

associated oxidative damage. There are two ABC glycine betaine/

choline transporters (REQ00540-70 and REQ14620-60), an

aquaporin (REQ29580), and genes for the synthesis of an

exopolysaccharide (see below) and the osmolytes ectoine (ectABC,

REQ07850), hydroxyectoine (ectD, REQ07850) and trehalose

(REQ27400-30), potentially important for osmoprotection and

water stress tolerance. R. equi is well equipped to face oxidative

stress, with four catalases, four superoxide dismutases, six alkyl

hydroperoxide reductases and two thiol peroxidases. It also

synthesizes the unique actinobacterial redox-storage thiol com-

pound, mycothiol [35], the antioxidant thioredoxin (REQ47340-

50), and the protein-repairing peptide-methionine sulfoxide

reductases MsrA (REQ01570) and MsrB (REQ20650) [36].

Three homologs of the virulence-associated mycobacterial

histone-like protein Lsr2 [37] (one plasmid vap PAI-encoded [8],

REQ03140 and 05980 chromosomal), and a Dps family protein

[38] (REQ14900, cotranscribed with REQ14890 encoding a CsbD-

like putative stress protein [39]), may protect against oxidative DNA

damage. NO reductase REQ03280 and a putative NO dioxygenase

(REQ10890) may confer resistance to nitrosative stress (Figure 3).

‘‘Innate’’ drug resistance. R. equi 103S showed a degree

of resistance to many antibiotics in the PMA screens, including

13 aminoglycosides, nine sulfonamides, six tetracyclines, 10

quinolones, 18 b-lactams and chloramphenicol. Standard

susceptibility tests confirmed the resistance of 103S to a number

of clinically relevant antibiotics (Table S7). This correlates with the

presence in 103S of an array of antibiotic resistance determinants,

including five aminoglycoside phosphotransferases, 10 b-lactamases

and four multidrug efflux systems. Except for b-lactamase

REQ26610, none of the resistance genes are associated with

HGT regions or DNA mobility genes, suggesting they are ancient

traits selected to confer resistance to naturally occurring

antimicrobials rather than recent acquisitions associated with the

medical use of antibiotics. Soil organisms tend to carry multiple

drug resistance determinants [40], and homologs of most R. equi

resistance genes are present in the genomes of environmental

rhodococci, at the same chromosomal location in some cases

(Figure S10).

Virulence
Potential virulence-associated determinants were identified in

silico based on (i) homology with known microbial virulence

factors, (ii) literature mining for Mtb virulence mechanisms, (iii)

automated genome-wide screening for virulence-associated motifs

[41] and (iv) systematic inspection of HGT genes, the secretome,

and of genes shared with pathogenic actinomycetes but absent

from nonpathogenic species.

Mycobacterial gene families. The 103S genome harbors

three complete mce (mammalian cell entry) clusters. Despite their

name, the mechanisms by which these clusters contribute to

mycobacterial pathogenesis remain unclear [42]. The mce4 operon

from R. jostii and its homolog mce2 in R. equi have recently been

shown to mediate cholesterol uptake, consistent with emerging

evidence that mce clusters constitute a new subfamily of ABC

importers [43,44]. The recently reported lack of effect of an mce2

mutation on R. equi survival in cultured macrophages [43] does not

exclude a role in cholesterol utilization in vivo or in IFNc-activated

macrophages, as shown for an Mtb mutant in the homologous mce

operon [45]. The surface-exposed PE and PPE proteins account

for <7% of the coding capacity of the Mtb genome due to massive

gene duplication, and are thought to play an important role in

mycobacterial pathogenesis [46]. The R. equi genome also harbors

PE/PPE genes, although only a single copy of each (Figure S11A).

They lie adjacent in an operon (REQ01750-60) with the PE gene

first, as frequently observed in Mtb, possibly reflecting the

functional interdependence of the PE and PPE proteins [47].

REQ35460-550 is identical in structure to ESX-4, one of the five

Rhodococcus equi Genome and Cooptive Virulence

PLoS Genetics | www.plosgenetics.org 6 September 2010 | Volume 6 | Issue 9 | e1001145



Mtb ESX clusters, and to the single ESX cluster present in

Corynebacterium diphtheriae. ESX loci encode two small proteins,

ESAT-6 (REQ35460) and CFP-10 (REQ35440), and their type

VII secretion apparatus, which also mediates the export of PE and

PPE proteins. ESAT-6 and CFP-10 form heterodimeric complexes

and are major T-cell antigens and key virulence factors in

Mtb [48]. R. equi possesses six mmpL genes, encoding members

of the ‘‘mycobacterial membrane protein large’’ family of

transmembrane proteins, which are involved in complex lipid

and surface-exposed polyketide secretion, cell wall biogenesis and

virulence [49]. There are also four Fbp/antigen 85 homologs

(REQ01990, 02000, 08890, 20840), involved in Mtb virulence as

fibronectin-binding proteins and through their mycolyltransferase

activity, required for cord factor formation and integrity of the

bacterial envelope [50].

Cytoadhesive pili. A nine-gene HGT island (REQ18350-

430) encodes the biogenesis of Flp-subfamily type IVb pili, recently

described in Gram-negative bacteria [51]. We confirmed the

presence of pilus appendages in 103S (Figure 4). Gene deletion

and complementation analysis demonstrated that the identified R.

equi pili (Rpl) mediated attachment to macrophages and epithelial

cells (P. González et al., manuscript in preparation). The rpl island

is absent from environmental rhodococci and is unrelated to the

pilus determinants recently identified in Mtb and C. diphtheriae

[52,53].

Other putative virulence factors. R. equi is thought to

produce capsular material [7,54], and an HGT region encom-

passing REQ40580-780 contains genes potentially responsible for

extracellular polysaccharide synthesis. Two other HGT islands

encode sortases, transpeptidases that attach surface proteins

covalently to the peptidoglycan and which are important for

virulence in Gram-positive bacteria [55]. Both srt islands encode

the putative substrates for the sortases (secreted proteins of

unknown function) (Figure S11B).

Several secreted products are putative membrane-damaging or

lipid-degrading factors, including a transmembrane protein with a

putative hemolysin domain (REQ12980), three cholesterol oxidases

(REQ06750, REQ26800, and REQ43910/ChoE [56]), four ‘‘cuti-

nases’’/serine esterases (REQ00480, REQ02020, REQ08540,

REQ46060) with potential phospholipase A activity [57], and 16

lipases. REQ34990 encodes a secreted lipoprotein homologous to

MBP70 and MPB83, two major mycobacterial antigens strongly

expressed in Mycobacterium bovis BCG [58]. The REQ34990 product

has a FAS1/BigH3 domain involved in cell adhesion via integrins

[59]. There are also homologs of two mycobacterial cytoadhesins, the

heparan sulfate-binding hemagglutinin HbhA (Rv0475) involved in

Mtb dissemination (REQ38170), and the multifunctional histone-

like/laminin- and glycosaminoglycan-binding protein Lbp/Hlp

(REQ31340) [60] (Figure 3).

Iron is essential for microbial growth and the ability to acquire

ferric iron from the host is directly related to virulence. Two

NRPS, Rbt1/IupS (bimodular, REQ08140-60) and IupU

(REQ23810), are involved in the formation of catecholic side-

rophores [61] or ‘‘rhequibactins’’. A third NRPS homologous to

Mycobacterium smegmatis Fxb (REQ07630) may be involved in the

formation of an oligopeptide ferriexochelin-like extracellular

siderophore. This ‘‘rhequichelin’’ is probably transported by the

iupABC (REQ24080-100)-encoded putative siderophore ABC

permease [61], homologous to the M. smegmatis FxuABC

ferriexochelin transporter [62] (Figure 3). The redundancy of iron

acquisition systems may explain the lack of effect on virulence of

individual iupU, rbt1/iupS and iupABC mutations [61].

Virulence gene acquistion versus cooption. Only a few

species-specific putative virulence loci were found in the 103S

Figure 4. R. equi pilus locus (rpl). (A) The 9 Kb rpl HGT island (REQ18350-430) is absent from nonpathogenic Rhodococcus spp. rpl genes have been
detected in all R. equi clinical isolates (P. Gonzalez et al., manuscript in preparation). Putative rpl gene products: A, prepilin peptidase; B, pilin subunit;
C, TadE minor pilin; D, putative lipoprotein; E, CpaB pilus assembly protein; F, CpaE pilus assembly protein; GHI, Tad transport machinery [51]. (B)
Electron micrograph of R. equi 103S pili (indicated by arrowheads; generally 2–4 per bacterial cell). Bar = 0.5 mm. (C) R. equi 103S pili visualized by
immunofluorescence microscopy (61,000 magnification).
doi:10.1371/journal.pgen.1001145.g004
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genome, all in HGT islands (e.g. the plasmid vap PAI or the

chromosomal rpl locus). Most (<90%) of the potential virulence-

related determinants identified in R. equi were present in the

environmental Rhodococcus spp. and/or had homologs in

nonpathogenic Actinobacteria (Table 2, Table S8). These included

orthologs of many experimentally-determined Mtb virulence

genes, most of which (<84%) are conserved among non-

pathogenic mycobaceria or have close homologs in environ-

mental actinomycetes (Table S9). The case of the mce, ESX, and

PE/PPE loci is illustrative. Initially thought to be Mycobacterium-

specific virulence traits, members of these multigene families are

present in R. equi and in nonpathogenic rhodococci (Table S8),

consistent with growing evidence that they are actually widely

distributed among high-G+C gram-positives, whether environ-

mental or pathogenic [42,63,64]. Notwithstanding that some of

the unknown function genes of the 103S genome may encode

novel, previously uncharacterized pathogenic traits, these

observations are consistent with a scenario in which R. equi

virulence largely involves the ‘‘appropriation’’ or cooption of core

actinobacterial functions, originally selected in a non-host

environment. Gene cooption (also known as preadaptation or

exaptation) is a key evolutionary process by which traits that have

evolved for one purpose are employed in a new context and

acquire new roles, thus allowing rapid adaptive changes [65–67].

Cooptive evolution operates through critical modifications in gene

expression and function [65]. These changes are particularly

feasible in the larger genomes of soil bacteria, with a characteristic

profusion of regulators and functionally redundant paralogs

[68,69]. Without the need for major changes, stress-enduring

mechanisms and other housekeeping components, such as the cell

envelope mycolic acids or the bacterial metabolic network, may

directly contribute to virulence by affording nonspecific resistance

or by enabling the organism to feed on host components. We

suggest that a few decisive niche (host)-adaptive HGT events

in a direct ancestor of R. equi, such as acquisition of the plasmid

vap ‘‘intramacrophage survival’’ PAI [8] and the rpl ‘‘host

colonization’’ HGT island (Figure 4), triggered the rapid

conversion of a ‘‘preparasitic’’ commensal organism into a

pathogen via the cooption of preexisting bacterial functions.

Virulence plasmid–chromosome crosstalk
Based on the well-established principle that coexpression with

pathogenicity determinants is a strong indicator of involvement in

virulence [70,71], we sought to identify novel R. equi virulence-

associated chromosomal factors through their coregulation with

the plasmid virulence genes. The expression profiles of 103S and

an isogenic plasmid-free derivative (103SP2) were compared, using

a custom-designed genomic microarray and in vitro conditions

known to activate (37uC pH 6.5) or downregulate (30uC pH 8.0)

the virulence genes of the plasmid vap PAI [72,73]. The plasmid

had little effect on the chromosome in vap gene-downregulating

conditions, but significantly altered expression was observed for

numerous genes in vap gene-activating conditions (n = 88 with $2

fold change) (Table S10). Most of the differentially expressed genes

(68%) were upregulated in the presence of the plasmid. These data

suggest that the virulence plasmid activates the expression of a

number of chromosomal genes, but whether this upregulation

involves direct, specific (potentially virulence related) interactions

or incidental pleiotropic effects is unclear.

Network analysis. To define the extent and nature of the

virulence plasmid-chromosome crosstalk, we subjected the

microarray expression data to network analysis. Unlike classical

pairwise comparisons, the network approach captures higher-

order functional linkages between genes, facilitating the graphic

visualization of gene interconnections. It is thus more powerful for

biological inference and gene prioritization for experimental

validation. Noisy data also tend to be randomly distributed in

the network structure [74]. We used BioLayout Express3D, an

application that constructs three-dimensional networks from

microarray data by measuring the Pearson correlation

coefficients between the expression profiles of every gene in the

dataset. This is followed by graph clustering using the Markov

Clustering (MCL) algorithm to divide the network graph into

discrete modules with similar expression profiles [75]. Microarray

data of 103S bacteria exposed to various combinations of

temperature (20uC, 30uC and 37uC) and pH (5.5, 6.5 and 8)

were included in the computations to control for the excessive

weight of the variable presence/absence of plasmid and strengthen

the correlation analysis.

Figure 5A shows a network representation of the functional

connections detected in the R. equi transcriptome with a Pearson

correlation threshold r $0.85. The graph model grouped the

virulence plasmid genes into two distinct coregulated modules or

clusters: one comprised 36 of the 73 plasmid genes, alsmost all

from the housekeeping backbone (replication and conjugal transfer

functions) [8]; the other contained 15 of the 26 vap PAI genes

together with a number of chromosomal genes (Table S11). The

plasmid housekeeping backbone nodes clustered together outside

the main regulation network, reflecting functional independence

from the rest of the regulome, as would be expected from the

autonomous nature of the extrachromosomal replicon (Figure 5A).

This indicates that the graph structure is biologically significant

and reflects actual functional relationships, validating the network

model. By contrast, the vap PAI nodes were clearly embedded in

the network and established multiple connections with chromo-

somal nodes (Figure 5A, Figure S12A), suggesting that the plasmid

virulence genes have undergone a process of regulatory integration

with the host R. equi genome. About half of the predicted products

of the chromosomal vap PAI-coregulated cluster genes are

metabolic enzymes, the others being transcriptional regulators

and transporters (Table S11C). Raising the correlation threshold

to a highly stringent r$0.95 disintegrated the network graph into a

multitude of discrete, unconnected subgraphs (see Dataset S2).

This did not substantially alter the structure of the two plasmid

Table 2. Bacterial groups in which homologs of potential
R. equi virulence-associated genes were identified.

Categories No. of genes %

Actinobacteria (shared by pathogenic and non-
pathogenic spp.)

228 84.75

No significant match (R. equi-specific) 25a 9.29

Rhodococcus (non-pathogenic spp.) 10 3.71

Mtb and/or pathogenic mycobacteria, Nocardia farcinica 2 0.74

Chloroflexi 2 0.74

Cyanobacteria 1 0.37

Proteobacteria 1 0.37

Total 269b,c

Homology cutoff, $30% identity over 70% of sequence length. Mutually
exclusive allocation to each category based on BLASTP best match. See Table
S8 for complete list of genes.
aAll in HGT islands, of which 76% in the virulence plasmid vap PAI.
b72.0% present in Mtb.
c50.9% of the encoded products are surface proteins/extracellular proteins.
doi:10.1371/journal.pgen.1001145.t002
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gene-containing clusters, but isolated two chromosomal genes,

REQ23860 and REQ23850, as the most significantly and strongly

coregulated with the vap PAI genes (Figure 5B), suggesting a direct

regulatory interaction [76].

The genes from the plasmid backbone cluster were expressed

constitutively in the conditions tested, whereas those from the vap

PAI-coregulated cluster responded strongly to temperature, with

activation at 37uC. Chromosomal genes in this cluster, particularly

REQ23860 and REQ23850, displayed the same pattern, with

downregulation in 103SP2 at 37uC, suggesting that plasmid factors

are required for their induction at high temperature (Figure S12B,

Table S11B). The vap PAI encodes two transcription factors, VirR

(orf4) and an orphan two-component regulator (orf8) [8], both of

which have been shown to influence vap gene expression [77,78]

and could be involved in the observed plasmid-mediated

thermoregulation of the vap PAI-coexpressed cluster.

REQ23860 and REQ23850 are required for efficient

intracellular proliferation in macrophages. REQ23860

and REQ23850 null mutants were constructed and tested in J774

macrophages to determine whether the observed coregulation with

the plasmid vap PAI correlates with a role in virulence. The

plasmidless derivative 103SP2, unable to proliferate intracellularly

[5], was used as an avirulent control. The two mutants had a

significantly attenuated capacity to grow in macrophages, restored to

wild-type levels upon complementation with the deleted genes

(Figure 6), indicating that REQ23860 and REQ23850 are required

for optimal intramacrophage proliferation. The mutated genes

encode an AroQ (type II) chorismate mutase (CM) and a

bifunctional anthranilate synthase (AS) with fused TrpE and TrpG

subunits, respectively, two key metabolic enzymes catalyzing the

initial committed steps in aromatic amino-acid biosynthesis. CM

generates prephenate, the first intermediate in the pathway

leading to phenylalanine and tyrosine, whereas AS catalyzes the

first reaction in tryptophan biosynthesis [79]. Downstream at the

same locus, REQ23840 encodes a prephenate dehydrogenase

(Figure 7), which catalyzes the oxidative decarboxylation of

prephenate to the tyrosine precursor 4-hydroxyphenylpyruvate

[79]. The intracellular growth defect caused by the mutations may

therefore be related to a diminished capacity for de novo synthesis of

aromatic amino acids. The R. equi genome encodes four other CM

enzymes (including one in the vap PAI [8]) and an additional AS

(bipartite, one subunit encoded in a trpECBA operon and the other

by a solitary trpG gene elsewhere in the chromosome). Through

their coregulation with the plasmid vap PAI, the redundant

REQ23850-60-encoded chorismate-utilizing enzymes may be

important for R. equi intracellular fitness and full proliferation

capacity, by enhancing the de novo supply of aromatic amino acids,

which generally appear to be present at limiting concentrations in

Figure 5. Network analysis of virulence plasmid–chromosome regulatory crosstalk. (A) Integration of the virulence plasmid vap PAI in the
R. equi regulatory network. 3D graph of the R. equi 103S transcriptome (see text for experimental conditions) constructed with BioLayout Express3D,
an application for the visualization and cluster analysis of coregulated gene networks [74,75]. Settings used: Pearson correlation threshold, 0.85;
Markov clustering (MCL) algorithm inflation, 2.2.; smallest cluster allowed, 3; edges/node filter, 10; rest of settings, default. Network graph viewable in
Dataset S1. Each gene is represented by a node (sphere) and the edges (lines) represent gene expression interrelationships above the selected
correlation threshold; the closer the nodes sit in the network the stronger the correlation in their expression profile. Note that the plasmid vap PAI
genes (red spheres) are embedded within, and establish multiple functional connections with, chromosomal nodes (see also Figure S12A) whereas
those of the plasmid housekeeping backbone lie outside the main network, reflecting an independent regulatory pattern. (B) Isolated subgraph of
the R. equi transcription network obtained with r = 0.95 Pearson correlation threshold, showing the coregulation of the chromosomal genes
REQ23860 (putative AroQ chorismate mutase) and REQ23850 (putative TrpEG-like bifunctional anthranilate synthase) (see Figure 7) with the virulence
plasmid vap PAI genes. Color codes for nodes as indicated in (A) (spheres, vap PAI-coregulated cluster; cubes, plasmid housekeeping backbone
cluster). MCL inflation, 2.2, smallest cluster allowed, 3; rest of settings, default. See Dataset S3.
doi:10.1371/journal.pgen.1001145.g005

Rhodococcus equi Genome and Cooptive Virulence

PLoS Genetics | www.plosgenetics.org 9 September 2010 | Volume 6 | Issue 9 | e1001145



the in vivo replication niche of intramacrophage vacuole-residing

microbial pathogens [23,80,81].

Conclusions
Somewhat counterintuitively for an organism with a dual

lifestyle as a soil saprotroph and intracellular parasite, the R. equi

genome is significantly smaller than those of environmental

rhodococci. This may reflect that the main R. equi habitats –

herbivore intestine, manure and animal tissues– provide a richer

and more stable environment than the chemically diverse and

probably nutrient-scarce environments of the nonpathogenic

species. In nutrient-poor conditions, the simultaneous use of all

available compounds as sources of carbon and energy may offer a

competitive advantage, driving the selection of expanded genomes

with greater metabolic versatility [10,68]. Indeed, the much larger

genome of the polychlorinated biphenyl-biodegrading R. jostii

RHA1 encodes a disproportionately large metabolic network [10],

with a wider diversity of paralogous families, unique metabolic

genes and catabolic pathways. The relatively small number of

pseudogenes and virtual lack of DNA mobilization genes in R. equi

suggests that this species has not experienced a sudden

evolutionary bottleneck with a concomitant relaxation of selective

pressure and increase in mutation fixation [82]. The ‘‘coprophilic’’

and parasitic lifestyle specialization of R. equi seems to result from a

‘‘non-traumatic’’ adaptive process in an organism that, despite

having suffered some specific functional losses (e.g. sugar

utilization, thiamine synthesis), remains an ‘‘average’’ soil

actinomycete with a normal-sized genome under strong selection.

The greater genomic complexity of the environmental Rhodococcus

spp. may reflect a ‘‘multi-substrate’’ niche specialization necessar-

ily linked to the strict selection criteria —for unusual metabolic

versatility— under which these species are generally isolated, [10].

Our analyses show that genome expansion in the environmental

rhodococci has involved a linear gain of paralogous genes and an

accelerated pattern of gene acquisition through HGT and

extrachromosomal replicons, which evolve more rapidly and

clearly play a critical role in rhodococcal niche specialization.

The lipophilic, asaccharolytic metabolic profile and capacity for

assimilating inorganic nitrogen may be key traits for proliferation

in herbivore intestine and feces, which are rich in volatile fatty

acids [3], and in the macrophage vacuole and chronic pyogranu-

lome, presumably poor in amino acids and rich in membrane-

derived lipids [20,23]. The potential for anaerobic respiration via

denitrification may be critical for survival in the anoxic intestine

or, as suggested for Mtb [83,84], in necrotic granulomatous tissue.

The inability to use sugars, unique among related actinomycetes,

may confer a competitive advantage in the intestine and feces,

dominated by carbohydrate-fermenting microbiota generating

large amounts of short-chain fatty acids, which R. equi use as

main carbon source. Alkalophily is probably an advantage in fresh

manure, a major R. equi reservoir. R. equi is also well equipped to

survive desiccation, important for dustborne dissemination in hot,

dry weather, when rhodococcal foal pneumonia is transmitted

[3,4].

R. equi infections are notoriously difficult to treat due to the

intracellular localization of the pathogen, compounded by a lack of

susceptibility to antibiotics (e.g. penicillins, cephalosporins, sulfa-

mides, quinolones, tetracyclines, clindamycin, and chloramphen-

icol) (Table S7 and refs. therein). With its panoply of drug

resistance determinants, the 103S genome illustrates how naturally

selected resistance traits, typically abundant in soil organisms, may

have an important impact on the clinical management of

microbial infections [40].

Finally, our analyses suggest that the appropriation of

preexisting core actinobacterial components and functions are

key events in the evolution of rhodococcal virulence. Although the

underlying notion may be intuitively apparent when considering,

for example, the contribution of housekeeping genes to bacterial

virulence [85], here we are identifying it specifically as ‘‘gene

cooption’’, a key mechanism enabling rapid adaptive evolution

and the emergence of new traits [65–67]. Underpinned by a few

critical ‘‘host niche-accessing’’ HGT events, such as acquisition of

the ‘‘intracellular survival’’ plasmid vap PAI or the ‘‘cytoadhesion’’

chromosomal rpl locus, this evolutionary mechanism is likely to

have facilitated the rapid conversion of what was probably an

Figure 6. Intracellular growth kinetics of DREQ23860 and
DREQ23850 mutants in J774 macrophages. Data were normalized
to the initial bacterial counts at t = 0 using an intracellular growth
coefficient (IGC); see Materials and Methods. Positive IGC indicates
proliferation, negative values reflect decrease in the intracellular
bacterial population. Bacterial counts per well at t = 0: 103S (wild type),
9.8460.556104; 103SP2, 4.6760.626104; DREQ23860 (putative CM),
11.2662.786104; complemented DREQ23860, 4.2460.106104;
DREQ23850 (putative AS), 9.6760.126104; complemented DREQ23850,
8.2960.226104. Means of at least three independent duplicate
experiments 6SE. Asterisks denote significant differences from wild
type with P#0.001 (two-tailed Student’s t test). Except for the
intracellular proliferation defect, the two mutants were phenotypically
indistinguishable from the wild-type parental strain 103S, including
growth kinetics in broth medium.
doi:10.1371/journal.pgen.1001145.g006

Figure 7. Structure of the chromosomal locus of the putative
chorismate mutase (CM) and anthranilate synthase (AS) genes
REQ23860 and REQ23850. The locus contains two additional genes,
REQ23840 and REQ23830, encoding a putative prephenate dehydro-
genase (PD) and a hypothetical protein (HP), respectively. The four
genes are conserved at the same chromosomal location in the
environmental Rhodococcus spp (CDS numbers indicated), including
R. opacus B4.
doi:10.1371/journal.pgen.1001145.g007
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animal-associated commensal into the pathogenic R. equi. Given

the pervasive distribution of the ‘‘virulence-associated’’ gene pool

among nonpathogenic species (Tables S8, S9), the notion of

cooptive virulence is possibly applicable to all pathogenic

actinomycetes and, indeed, universally to bacterial pathogens.

The incorporation of adaptive changes in the regulation of the

‘‘appropriated’’ genes is a key mechanism in genetic cooption [65].

Our genome-wide microarray experiments and transcription

network analyses indicate that the plasmid vap PAI, essential for

intracellular survival and pathogenicity, has recruited housekeep-

ing genes from the rhodococcal core genome under its regulatory

influence. Among these are two chromosomal genes encoding key

metabolic enzymes involved in aromatic amino-acid biosynthesis,

coexpressed with the virulence genes of the vap PAI in response to

an increase in temperature to 37uC (the body temperature of the

warm-blooded host). These two metabolic genes are required by

R. equi for full proliferation capacity in macrophages, providing

supporting experimental evidence for the cooptive nature of R. equi

virulence. A cooptive virulence model is consistent with the

sporadic isolation of ‘‘nonpathogenic’’ (pre-parasitic) Actinobacteria,

including environmental rhodococci (e.g. R. erythropolis [86]), as

causal agents of opportunistic infections. An appreciation of the

importance of gene cooption in the acquisition of pathogenicity

provides a conceptual framework for better understanding and

guiding research into bacterial virulence evolution.

Materials and Methods

Genome sequencing and analysis
We sequenced the original stock of the foal clinical isolate 103,

designated clone 103S, to avoid mutations associated with

prolonged subculturing in vitro. Strain 103 belongs to one of the

two major R. equi genogroups (DNA macrorestriction analysis,

unpublished data), is genetically manipulable, and is regularly used

for virulence studies [25,56]. Random genomic libraries in pUC19

were pair-end sequenced using dye terminator chemistry on

ABI3700 instruments, with subsequent manual gap closure of

shotgun assemblies and sequence finishing, as previously described

[8]. The 103S genome sequence was manually curated and

annotated with the software and databases listed in Table S12. A

conservative annotation approach was used to limit informational

noise [8]. For phylogenomic analyses, putative core ortholog genes

were identified by reciprocal FASTA using a minimum cutoff of

50% amino acid similarity over 80% or more of the sequence. A

similarity distance matrix was built with the average percentage

amino acid sequence identity obtained by pairwise BLASTP

comparisons (distance = 100 2 average percent identity of 665

loci) and used to infer a neighbor-joining tree with the Phylip

package [87]. The accession numbers of the genome sequences

used in comparative analyses are listed in Table S13.

The sequence from the R. equi 103S genome has been deposited

in the EMBL/GenBank database under accession no. FN563149.

Phenotype analysis and microscopy
The nutritional and metabolic profile of R. equi 103S and its

susceptibility to various drugs were analysed in Phenotype

MicroArray screens (Biolog Inc., http://www.biolog.com) [15].

Substrate utilization was validated in supplemented mineral

medium (MM) containing salts, trace elements, and ammonium

chloride as the sole nitrogen source [19] (see Figure S7). For

electron microscopy, a bacterial cell suspension in 0.1 M Tris-HCl

(pH 7.5) was negatively stained with 1% uranyl acetate and

observed at 80.0 kV in a Phillips CM120 BioTwin instrument

(University of Edinburgh). Fluorescence microscopy was carried

out on paraformaldehyde-fixed bacteria with an R. equi whole-cell

rabbit polyclonal antiserum and Alexa Fluor 488-conjugated

secondary antibodies (both diluted 1:1000 in 0.1% BSA).

Microarray expression profiling and network analysis
Total RNA was obtained from logarithmically growing R. equi

bacteria (OD600 = 0.8) in Luria-Bertani (LB) medium, by homog-

enization in guanidinium thiocyanate-phenol-chloroform (Tri

reagent, Sigma) with FastPrep-24 lysing matrix and a FastPrep

apparatus (MP bio), followed by chloroform-isopropanol extrac-

tion, DNAase treatment (Turbo DNA-free, Ambion) and purifi-

cation with RNeasy kit (Qiagen). RNA quantity and quality were

determined with a Nanodrop (Thermo Scientific) and 2100

Bioanalyzer with RNA 6000 Nano assay (Agilent). RNA samples

(500 ng) were amplified with the MessageAmp II-bacteria kit and

5-(3-amionallyl)-UTP (Ambion), labeled with Cy3 or Cy5 NHS-

ester reactive dyes (GE Healthcare), and purified with RNeasy

MinElute (Qiagen). Whole-genome 8615K custom microarrays

with up to four different 60-mer oligonucleotides per CDS (13,823

probes for the chromosome, 201 for the virulence plasmid)

(Agilent) were hybridized in Surehyb DNA chambers (Agilent)

with 300 ng of Cy3/Cy5-labeled aRNA, using Gene Expression

Hybridisation and Wash Buffer kits (Agilent). Three experimental

replicates per condition were analyzed, one with dye swap. The

hybridization signals were captured and linear intensity-normal-

ized, with Agilent’s DNA microarray scanner and Feature

Extraction software. Data were subsequently LOESS-normalized

by intensity and probe location and analyzed with Genespring GX

10 software (Agilent). Network analysis of microarray expression

data was carried out with Biolayout Express3D 3.0 software [74],

using log base 2 normalized ratios of Cy3/Cy5 signals and

methods described in detail elsewhere [75]. Biolayout Express3D is

freely available at http://www.biolayout.org/.

Mutant construction and complementation
In-frame deletion mutants of REQ23860 and REQ23850 were

constructed by homologous recombination [56], using the suicide

vector pSelAct for positive selection of double recombinants on 5-

fluorocytosine (5-FC) [43]. Briefly, oligonucleotide primer pairs

CMDEL1/CMDEL2 and CMDEL3/CMDEL4 were used for

PCR amplification of two DNA fragments of <1.5 Kb corre-

sponding to the seven 39- and six 59-terminal codons plus adjacent

downstream and upstream regions of REQ23860. The CMDEL2

and CMDEL3 primers are complementary and were used to join

the two amplicons by overlap extension. The PCR product

carrying the DREQ23860 allele was inserted into pSelAct, using

SpeI and XbaI restriction sites; the resulting plasmid was

introduced into 103S by electroporation and transformants were

selected on LB agar supplemented with 80 mg/ml apramycin. The

same procedure was followed for DREQ23860, with primers

ASDEL 1 to 4. Allelic exchange double recombinants were

selected as previously described [43,56]. For complementation, the

REQ23860-50 genes plus the entire upstream intergenic region

were amplified by PCR with CACOMP1 and 2 primers and stably

inserted into the R. equi chromosome, using the integrative vector

pSET152 [88]. PCR was carried out with high-fidelity PfuUltra II

fusion HS DNA polymerase (Stratagene). The primers used are

shown in Table S14.

Macrophage infection assays
Low-passage (,20) J774A.1 macrophages (ATCC) were

cultured in 24-well plates at 37uC, under 5% CO2 atmosphere,

in DMEM supplemented with 2mM L-glutamine (Gibco) and

10% fetal bovine serum (Lonza) until confluence (<26105 cells/
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well). J774A.1 monolayers were inoculated at 10:1 MOI with

washed R. equi from an exponential culture at 37uC in brain-heart

infusion (BHI, OD600<1.0). Infected cell monolayers were

immediately centrifuged for 3 min at 1726g and room temper-

ature, incubated for 45 min at 37uC, washed three times with

Dulbecco’s PBS to remove nonadherent bacteria, and incubated

in DMEM supplemented with 5mg/ml vancomycin to prevent

extracellular growth. After 1 h of incubation with vancomycin

(t = 0) and at specified time points thereafter, cell monolayers were

washed twice with PBS, detached with a rubber policeman and

lysed by incutation for 3 min with 0.1% Triton X-100.

Intracellular bacterial counts were determined by plating appro-

priate dilutions of cell lysates onto BHI. The presence of the

virulence plasmid was checked by PCR on a random selection of

colonies, using traA- and vapA- specific primers [9] to exclude the

possibility of intracellular growth defects being due to plasmid loss.

As the intracellular bacterial population at a given time point

depends on initial numbers, bacterial intracellular kinetics data are

expressed as a normalized ‘‘Intracellular Growth Coefficient’’ [89]

according to the formula IGC = (IBt = n2IBt = 0)/IBt = 0, where

IBt = n and IBt = 0 are the intracellular bacterial numbers at a

specific time point, t = n, and t = 0, respectively.

Supporting Information

Dataset S1 Layout file of expression network analysis with

r = 0.85. Viewable with Biolayout Express 3D (http://www.

biolayout.org/).

Found at: doi:10.1371/journal.pgen.1001145.s001 (0.34 MB ZIP)

Dataset S2 Layout file of expression network analysis with

r = 0.95. Viewable with Biolayout Express 3D (http://www.

biolayout.org/).

Found at: doi:10.1371/journal.pgen.1001145.s002 (0.06 MB ZIP)

Dataset S3 Layout file of expression network analysis with

r = 0.95 (nodes not belonging to plasmid gene-containing clusters

have been removed). Viewable with Biolayout Express 3D (http://

www.biolayout.org/).

Found at: doi:10.1371/journal.pgen.1001145.s003 (0.03 MB ZIP)

Figure S1 Circular diagram of the R. equi 103S genome

(chromosome and virulence plasmid). Outer two rings, coding

sequences in the forward and reverse strand colored according to

functional class (see Figure S3). Left, R. equi 103S chromosome

with ortholog comparison and horizontally acquired (HGT)

islands. Ortholog plots from 13 actinobacterial genomes are

shown concentrically (outside to inside, from more to less related:

R. jostii RHA1, Nocardia farcinica IFM10152, Mycobacterium smegmatis

MC2 155, Streptomyces coelicolor A3(2), Mycobacterium tuberculosis

H37Rv, Arthrobacter sp. FB24, Corynebacterium glutamicum ATCC

13032, Thermobifida fusca YX, Frankia sp. CcI3, Corynebacterium

diphtheriae NCTC 13129, Propionibacterium acnes KPA171202,

Bifidobacterium longum NCC2705 and Tropheryma whipplei TW08

27; see Table S13 for accession nos.). HGT DNA identified by

Alien Hunter [92] is shown in red (HGT ‘‘archipelagos’’ 1 and 2

boxed; see Figure S6). The HGT islands tend to coincide with void

areas in the ortholog plots, indicating they are species-specific

DNA regions; note that they are regulary distributed across the

genome. Inner plots: G+C % (gray) and G+C skew (violet/yellow,

origin of replication is clearly detectable). Right, circular diagram

of the pVAPA1037 virulence plasmid (not represented to scale);

the vap PAI (HGT-acquired) is indicated by a thick black line. A

detailed annotation and analysis of pVAP1037 has been published

elsewhere [8].

Found at: doi:10.1371/journal.pgen.1001145.s004 (0.93 MB PDF)

Figure S2 Pairwise ACT alignments of rhodococcal chromo-

somes (R. equi 103S, R. jostii RHA1, R. opacus B4 and R. erythropolis

PR4); see Figure 1A for interpretation. R. opacus has a large

(7.25 Mb) linear chromosome like R. jostii (Table 1). The

chromosome of R. erythropolis (6.52 Mb) is circular, as in R. equi.

The four rhodococcal species sequenced to date share a common

core of 2,674 orthologs. Mean identity of shared core orthologs

between R. equi and: R. opacus, 75.08%; R. erythropolis, 73.8.

Between R. jostii RHA1 and: R. erythropolis PR4, 76.88%; R. opacus,

94.87%. The chromosomes of R. jostii and R. opacus are highly

homologous and syntenic and share 72% of the coding sequences

(CDS). Based on the number of shared orthologs, average percent

identity among shared core genes, and overall genome homology,

R. equi appears to be phylogenetically equidistant to R. erythropolis,

R. jostii and R. opacus, while the last two species are clearly very

closely related (see also Figure 1B). R. jostii RHA1 genome

published in [10], R. opacus B4 and R. erythropolis PR4 genomes

published online by NITE, the Japanese National Institute for

Technology and Evaluation (http://www.nite.go.jp/index-e.html;

accession nos. in Table S13).

Found at: doi:10.1371/journal.pgen.1001145.s005 (3.23 MB

PNG)

Figure S3 Functional classification of R. equi 103S genome.

According to the Ecocyc classification scheme [93]. (A) Functional

categories of R. equi 103S genes. ‘‘Surface/extracellular proteins’’

includes products with a signal sequence and/or transmembrane

domain not allocated to another main functional category (e.g.

central metabolism, degradation of small molecules, regulators,

etc.). About 17% of R. equi CDSs correspond to ‘‘hypothetical

proteins’’ or ‘‘conserved hypothetical’’ proteins. In addition to the

517 annotation entries as ‘‘putative membrane protein’’, ‘‘integral

membrane protein’’ or ‘‘secreted protein’’, 28.5% of the R. equi

genome products are of unknown function. (B) Functional

categories of R. equi 103S secretome. The R. equi secretome

comprises 736 CDSs, of which 44.5% encode proteins of unknown

function, 20.3% correspond to transporters, 17.1% to lipoproteins,

and 10.3% to extracellular enzymes possibly involved in nutrient

breakdown and assimilation.

Found at: doi:10.1371/journal.pgen.1001145.s006 (0.17 MB PDF)

Figure S4 Scatter plots of selected functional categories vs

genome size ($4 Mb) of R. equi 103S and 10 other representative

Actinobacteria. Data were inferred using the Comprehensive

Microbial Resource (http://cmr.jcvi.org/) and the available

genomes (Data Release 23.0). See Table S13 for accession nos.

Membrane-associated and secreted proteins, as determined from

TMHMM and SignalP outputs (see Materials and Methods). The

number of regulators per genome has been calculated from

keyword parsing of protein annotation. (A) Membrane-associated

proteins. (B) Regulators. (C) Secreted proteins. (D) Metabolic

proteins.

Found at: doi:10.1371/journal.pgen.1001145.s007 (0.11 MB PDF)

Figure S5 Species-specific gene complements of R. equi 103S, R.

jostii RHA1, N. farcinica IFM10152, and M. tuberculosis H37Rv. The

Venn diagram shows the number of chromosomal CDSs shared

within a particular relationship (in brackets those unique to that

relationship) as determined by ortholog comparisons (reciprocal

FASTA best hits). Below the name of each species, the total

number of genes in the genome is shown. The pie charts show the

functional classification of the CDSs unique to each species and

the shared common core.

Found at: doi:10.1371/journal.pgen.1001145.s008 (0.35 MB

PDF)
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Figure S6 Genetic structure of the two large chromosomal HGT

regions in R. equi 103S. The position of these regions on the

chromosome is indicated in Figure S1. Functional categories of the

genes are indicated in color code as in Figure S3. Alien Hunter

[92] HGT hits are indicated as black bars in the center. HGT

region 1 (positions 1,684,996-1,775,619, REQ16110-770) encom-

passes 68 CDSs and is rich in genes encoding nucleases, helicases

and restriction enzymes. HGT region 2 (positions 2,734,493-

2,848,474, REQ25610-26970) encompasses 132 CDSs with a

diversity of functional categories but mostly involved in metabo-

lism. It also includes three of the 14 pseudogenes found on the R.

equi 103S chromosome. The mosaic structure of these regions and

the diversity of source species, as indicated by reciprocal BLASTP

best-hit analysis, suggest they are a composite of several

independent HGT events rather than the result of a single ‘‘en

block’’ acquisition.

Found at: doi:10.1371/journal.pgen.1001145.s009 (1.14 MB

PNG)

Figure S7 R. equi nutrition and metabolism. (A) Carbon source

utilization. Growth assays of R. equi 103S in mineral medium

(MM) [19] at 37uC. MM was supplemented (unless otherwise

stated) with 20 mM of the indicated carbon sources and bacterial

growth was monitored at OD600 every 30 min in a Fluostar

Omega plate reader (BMG Labtech). Growth was detected only

with lactate and acetate (mean of three experiments 6SD).

Chemicals were purchased from Sigma. The nutritional and

metabolic profile of R. equi (and its susceptibility to various

chemicals and antibiotics) was initially investigated with Phenotype

MicroArray (PMA) screens [15]. In the PMA plates PM1 and

PM2 (carbon sources), certain substrates (e.g. glucose, arabinose,

ribose, xylose, D-glucosamine, dihydroxyacetone and lyxose)

sometimes give false positive results due to abiotic dye reduction

(source: Michael Ziman, Biolog Inc). Experiments in MM

confirmed that R. equi 103S does not utilize these substrates as

sole carbon source. (B) ACT pairwise comparison of the thiamine

biosynthesis gene clusters thiCD and thiGSOE in R. equi 103S and

environmental rhodococci. In R. equi, the thiC gene has been

replaced by an HGT region (black bar in the center) encoding

proteins of unknown function. (C) Thiamine auxotrophy. Growth

assay of R. equi 103S in 20 mM lactate MM medium. HMP, 4-

amino-5-hydroxymethyl-pyrimidine phosphate (5% v/v of the

crude preparation described in [94]). Negative control: no

supplement. Most (,80%) of the R. equi strains displayed thiamine

auxotrophy. Experimental conditions as described in the legend to

(A). (D) Diagram of the rhodococcal thiamine biosynthesis

pathway. The thiCD genes are required for the production of 4-

amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate; thiG-

SOM are involved in the generation of 4-methyl-5-(b-hydro-

xyethyl) thiazole phosphate, the second substrate required for the

thiE-mediated synthesis of thiamine phosphate. Thiamine phos-

phate is ultimately phosphorylated by the product of the thiL gene

to generate the biologically active thiamine pyrophosphate. As

shown in (C), HMP did not support R. equi 103S growth,

indicating that the thiamine biosynthetic pathway of R. equi 103S is

also functionally affected downstream from thiC.

Found at: doi:10.1371/journal.pgen.1001145.s010 (0.61 MB PDF)

Figure S8 Species-specific metabolic gene complements of R.

equi 103S, R. jostii RHA1, N. farcinica IFM10152, and M. tuberculosis

H37Rv. Determined by ortholog comparison (reciprocal FASTA

best hits). As the functional categories used for the annotation of

the four genomes were not directly comparable, we first extracted

the metabolism-related CDSs manually, on the basis of their

predicted function. The Venn diagram shows the number of CDSs

shared within a particular relationship (in brackets those unique to

that relationship). Below the name of the species, the total number

of metabolic genes present in the genome is shown. See Table S5

for paralogy analysis of the species-specific metabolic gene

complements.

Found at: doi:10.1371/journal.pgen.1001145.s011 (0.36 MB

PNG)

Figure S9 Optimal growth pH of R. equi 103S. Phenotype

MicroArray [15] output of the relevant wells of plate PM10.

Incubation was for 48 h at 37uC in an OmniLog instrument with

readings taken every 15 minutes. Data were analyzed with

OmniLog PM software. Consensus phenotypes for at least two

replicas were determined based on the area difference under the

kinetic curve of dye formation. Reported optimal pH values for

other rhodococcal species: R. imtechensis 7.0 [95], R. koreensis 7.0–

7.8 [96], R. kroppenstedtii 8.0 [97], R. kunmingensis 7.0–7.5 [98], R.

kyotonensis 7.0 [99], R. percolatus 7.0–7.5 [100], R. pyridinivorans 7.5–

8.5 [101], R. tukisamuensis 5.5–8.5 [102], R. yunnanensis 7.0–8.0

[103].

Found at: doi:10.1371/journal.pgen.1001145.s012 (0.23 MB

PNG)

Figure S10 Examples of antibiotic resistance determinants

located at the same chromosomal position in R. equi and two

environmental Rhodococcus spp. Homologous resistance determi-

nants indicated by yellow stripes in the ACT alignments.

Found at: doi:10.1371/journal.pgen.1001145.s013 (0.49 MB

PNG)

Figure S11 Virulence-related loci of R. equi 103S. (A) PE/PPE

locus and corresponding chromosomal regions in R. jostii RHA1,

R. erythropolis PR4, N. farcinica IFM10152 and M. tuberculosis

H37Rv. Arrows in ACT alignments indicate PE and PPE genes.

The PE gene is of the ‘‘short’’ subclass (only a conserved N-

terminal PE module of 99 to 102 residues); the PPE gene is of the

‘‘unique C-terminal domain’’ subclass [104]. The R. equi PE/PPE

locus is inserted at the same chromosomal position in the

nonpathogenic Rhodococcus spp. and in N. farcinica; no PE/PPE

genes are present at the corresponding chromosomal region of

Mtb, other mycobacteria and corynebacteria, indicating this PE/

PPE locus is specific to the Nocardiaceae within the Corynebacterinae.

The PE/PPE genes are fused in R. jostii RHA1. (B) Sortase HGT

islands srt1 and srt2 of R. equi 103S. ACT comparisons of srt1

(above) and srt2 (below) and corresponding regions of R. jostii

RHA1 and R. erythropolis PR4. Alien Hunter [92] outputs indicated

as black bars in the center. srt1 is unique to R. equi among the

sequenced Rhodococcus spp., including R. opacus B4) (not shown).

The srt2 island is conserved in R. erythropolis but at a different

chromosomal location and encoding only one of the two putative

sortase substrates (surface protein RER_38400, which like its R.

equi homolog REQ27480 contains an LPVTG sorting motif).

Apart from a serine peptidase encoded by the esx locus

(REQ35490), no proteins with the typical hallmarks of sortase

substrates, i.e. a C-terminal membrane-spanning region preceded

by a sortase recognition motif LPXTG, or a variant thereof) [105],

are encoded outside the two srt islands.

Found at: doi:10.1371/journal.pgen.1001145.s014 (0.75 MB PDF)

Figure S12 Network analysis of R. equi microarray expression

data. (A) Detail of the network graph of Figure 5A showing the

web of functional linkages (edges) between the vap PAI-coregulated

cluster (red nodes) and direct neighbor clusters (green nodes,

plasmid backbone cluster; other clusters represented in different

colors; individual directly connected nodes are in gray regardless

of whether they belong to a larger cluster; chromosomal nodes are
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represented as spheres, plasmid nodes as cubes). All other nodes

have been removed. Predominant functional classes among

neighbor clusters (n = 129 nodes): Central and energy metabolism

27.1%, Membrane-associated/surface proteins/transporters

23.3%, Hypothetical proteins 18.6%, Regulators 9.3%, Degrada-

tion of small molecules 7.75%. Metabolism-related products

encoded by direct neighbor nodes include enzymes of the

shikimate pathway/biosynthesis of aromatic amino acids (pre-

phenate dehydrogenase REQ02960, prephenate dehydratase

REQ01720); porphyrin metabolism (magnesium chelatase

REQ18110) and cobalamin biosynthesis (uroporphyrinogen-III

C-methyltransferase REQ02960, CobB homolog REQ28830);

synthesis of cysteine, activated sulfate (cysB, D, G, K/M, Q and N/C

homologs); and mycothiol (mycothiol ligase MshC REQ22990),

urease (UreA, C, D, F, and G homologs), and nitrite reductase

NirB1 (REQ32930). (B) Representative expression profiles of the

plasmid gene-containing clusters identified with r = 0.85 Pearson

correlation threshold (see Table S11). Maroon lines, vap PAI-

coregulated cluster (red and yellow nodes in Figure 5A); green

lines, plasmid backbone cluster (green nodes in Figure 5A). The

individual profiles of three biological replicates per test condition

are plotted. Note that the vap PAI-coexpressed cluster, which

includes chromosomal genes, is activated by both plasmid and

temperature (37uC) whereas the plasmid backbone cluster is

expressed constitutively in the same conditions. Common

reference: average signal of 103S at 37uC pH 6.5.

Found at: doi:10.1371/journal.pgen.1001145.s015 (2.47 MB

PNG)

Table S1 Statistics of horizontal gene acquisition (HGT) in

actinobacterial chromosomes. HGT DNA was identified with the

Alien Hunter program (http://www.sanger.ac.uk/Software/anal-

ysis/), which identifies horizontally acquired DNA by reliably

capturing local compositional biases based on a variable-order

motif distributions method [92]. The thick gray line delimits the

genomes with chromosomes of less than and more than 4 Mb in

size. Accession nos. of the genomes used are shown in Table S13.

Found at: doi:10.1371/journal.pgen.1001145.s016 (0.09 MB PDF)

Table S2 Chromosomal gene duplication and paralogous

families in R. equi 103S and 19 other representative Actinobacteria.

Paralogous families were identified by clustering of proteomes with

BLASTClust (see Table S12).

Found at: doi:10.1371/journal.pgen.1001145.s017 (0.07 MB PDF)

Table S3 DNA mobility genes in R. equi 103S and environmen-

tal Rhodococcus spp genomes. Identified by keyword parsing of

protein annotation; in brackets, genes associated with HGT

regions. Plasmids from R. erythropolis PR4 published in [106].

Found at: doi:10.1371/journal.pgen.1001145.s018 (0.09 MB PDF)

Table S4 Phosphoenolpyruvate-sugar phosphotransferase sys-

tem (PTS) components in a selection of actinobacterial genomes.

Identified using motif search in Pfam database (Pfam motif

identifiers indicated in footnotes).

Found at: doi:10.1371/journal.pgen.1001145.s019 (0.10 MB PDF)

Table S5 Ranking of the ten most populated paralogous

metabolic gene families of R. equi 103S, R. jostii RHA1, N. farcinica

IFM10152, and M. tuberculosis H37Rv. Determined by BLAS-

TCLUST analysis. In brackets, number of paralogs within the

family.

Found at: doi:10.1371/journal.pgen.1001145.s020 (0.09 MB PDF)

Table S6 Putative DosR/DevR boxes and corresponding

transcriptional units in R. equi 103S a. Identified with CLC Main

Workbench (http://www.clcbio.com/) and the 20-bp consensus

DosR/DevR box 59-NNNGGGHCNWWNGNCCCBNN-39

(N = any nucleotide, H = A/C/T, B = C/G/T, W = A/T) defined

by Park et al. [70] and modified according to [107,108]. Accuracy

cutoff $85%, intergenic position relative to start codon #150 nt.

The conserved DosR motif is boxed, the invariant G6 and C8

positions and matching nucleotides at the opposite half-site of the

palindrome are shaded in black, deviations from the consensus

motif are shown in lower case.

Found at: doi:10.1371/journal.pgen.1001145.s021 (0.12 MB PDF)

Table S7 Minimal inhibitory concentrations (MIC) of R. equi

103S to various antibiotics. Determined by the broth microdilu-

tion method. The data are consistent with previously reported

antimicrobial susceptibility studies of R. equi isolates [111–116].

Found at: doi:10.1371/journal.pgen.1001145.s022 (0.06 MB PDF)

Table S8 Potential virulence-associated genes of R. equi 103S

identified by bioinformatic mining of the genome and homologs in

other pathogenic and nonpathogenic Actinobacteria.

Found at: doi:10.1371/journal.pgen.1001145.s023 (0.13 MB

XLS)

Table S9 Experimentally determined virulence-associated genes

of M. tuberculosis and homologs in nonpathogenic Actinobacteria.

Found at: doi:10.1371/journal.pgen.1001145.s024 (0.08 MB

XLS)

Table S10 Virulence plasmid-chromosome crosstalk. Gobal

microarray expression analysis of R. equi 103S and an isogenic

plasmid-cured derivative (103SP2) during exponential growth in

LB medium (OD600 = 0.8) in the indicated conditions (part A of

table, 30uC-pH 8.0 = vap PAI gene-downregulating conditions;

part B of table, 37uC-pH 6.5 = vap PAI gene-activating conditions

[72,73]). Chromosomal genes differentially expressed with P#0.05

and fold-change cutoff $2 are listed. Expression data are

presented as average fold-change of 103S relative to 103SP2;

positive values indicate upregulation in the presence of the

plasmid.

Found at: doi:10.1371/journal.pgen.1001145.s025 (0.12 MB PDF)

Table S11 Plasmid gene-containing coregulated clusters. Gene

allocation defined by graph clustering of the transcription network

shown in Figure 5A. (A) Plasmid backbone cluster. Shown for each

gene, average pairwise comparison ratios of normalized micro-

array expression data from exponential cultures of R. equi 103S in

LB medium (OD600 = 0.8) at 37uC relative to 20uC (pH 6.5). This

cluster contains only plasmid genes, virtually all from the

housekeeping backbone and mostly constitutively expressed in

the experimental conditions tested (see Figure S12B). (B) Same

information as in (A) but for the plasmid vap PAI-coexpressed

cluster a, in the indicated conditions. P versus NP, pairwise

comparison of R. equi 103S and its isogenic plasmidless derivative

103SP2 in vap gene-activating conditions [72,73]. In bold, fold

change differences $1.5 and P#0.05. (C) Short list of vap PAI-

coexpressed chromosomal genes and putative functions. Genes

from part B not showing significant differential regulation by both

temperature (at least one experimental condition) and plasmid in

pairwise comparisons have been excluded (fold-change $1.5,

P#0.05 two-tailed Student’s t test).

Found at: doi:10.1371/journal.pgen.1001145.s026 (0.16 MB PDF)

Table S12 Software and databases used to annotate and analyze

the R. equi 103S genome.

Found at: doi:10.1371/journal.pgen.1001145.s027 (0.06 MB PDF)

Table S13 GenBank accession nos. of the genomes used in this

study. R. erythropolis PR4 and R. opacus B4 genomes published

Rhodococcus equi Genome and Cooptive Virulence

PLoS Genetics | www.plosgenetics.org 14 September 2010 | Volume 6 | Issue 9 | e1001145



online by NITE, the Japanese National Institute for Technology

and Evaluation (http://www.nite.go.jp/index-e.html).

Found at: doi:10.1371/journal.pgen.1001145.s028 (0.08 MB PDF)

Table S14 Oligonucleotide primers used for mutant construc-

tion and complementation. SpeI, XbaI and EcoRV restriction

sites used for the cloning of PCR products are underlined.

Found at: doi:10.1371/journal.pgen.1001145.s029 (0.05 MB PDF)
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