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Plasticity of the truth table of low-leakage genetic logic gates

S Smith and R Grima

Abstract

The design and implementation of genetic logic gates is a fundamental component of biological

computation. In this article we show that the function of a common class of synthetic genetic

AND and NAND gates is not completely dictated by the circuit connectivity, even if promoter

leakage is very small. Rather the logic function is strongly determined by a simple power law

relationship between the promoter leakage rate and the binding affinity of the protein complex

carrying the information from the input to the output of the gate. Depending on the value of

the power law exponent, a circuit designed to be an AND gate can actually operate as a TRUE,

OR, AND or FALSE gate, even if the leakage rate is practically negligible. Surprisingly all these

functionalities are compatible with the physiological range of parameter values showing that the

design of genetic logic gates which preserve functionality across cell types and conditions requires

careful consideration of both circuit connectivity and parameter values.
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I. INTRODUCTION

Analogous to digital Boolean logic gates, genetic logic gates encode logic operations in

gene regulatory networks, using protein concentrations as input and output signals [1–3].

Individual logic gates can be used as biosensors, allowing cells to detect and neutralize

toxins [4] or pathogens [5]. At a more complex level, several orthogonal logic gates can

be combined allowing cells to perform predetermined computations or run simple programs

[6, 7]. However there are a number of significant challenges, not least the fact that genetic

programs run in the imprecise and constantly changing cellular environment. Consequently,

it is essential to understand the robustness of genetic logic gates to the inconvenient realities

of cell biology [8].

Previous computational studies have used a combination of deterministic modelling and

stochastic simulation techniques to investigate logic gate design [9–12], robustness to noise

[10, 13–15], and robustness to varying input concentrations [16]. An important factor which

can determine logic gate function is promoter leakage [17], which refers to the fact that

promoters are not perfectly efficient and transcribe mRNA at a low rate even when inactive.

Inefficiencies of this type have clear implications for genetic logic gates: instead of the

ON/OFF states of digital logic, genetic logic instead uses high/low protein concentrations,

and it is easy to see how the distinction between low and high could become blurred for a

leaky system. Hence engineering logic gates with minimal leakage has been one of the goals

of various studies [2, 18, 19].

In this article we use rate equations (REs) [20] to derive truth tables for the output of

genetic AND and NAND gates with low promoter leakage. In particular, we show that dif-

ferent logic gate functions are intimately related to the value of the exponent characterising

the power law relationship between the leakage rate and the binding affinity of the protein

complex carrying the information from the input to the output of the gate. Our study thus

identifies the optimal parameter relationships leading to a desired gate function and impor-

tantly shows that even if leakage is practically negligible, still a network can display logic

function which is completely different than the one suggested by the network’s connectivity.

We also confirm the predictions of our deterministic theory with stochastic simulations of

the corresponding logic gates using the Gillespie algorithm [21].
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II. RESULTS

A. AND gate

Following the design of Wang et al. [2] we consider a genetic AND gate comprising five

proteins - I1, I2 (inputs), R1, R2 (intermediates), and R3 (output) - and three promoters

- P1, P2, and P3. As shown schematically in Fig. 1, the AND gate operates as follows.

Each of the input proteins (I1, I2) can activate a promoter (P1, P2 respectively), which in

turn expresses another protein (R1, R2 respectively). These proteins bind to form a complex

(R12) which in turn activates a third promoter (P3) which expresses the output protein (R3).

P1

P2

I1

I2

R1

R2

P3

R1

R3

R2

I1

I2

R3

P4 R4

R3

R3

R4

FIG. 1: Diagram of a genetic AND gate. Input proteins I1 and I2 bind to promoters P1 and P2

respectively, inducing the expression of proteins R1 and R2 respectively. These cooperatively bind

to a promoter P3, inducing the expression of the output protein R3 (color online).

In principle, this system functions as an AND gate. If both input proteins (I1, I2) are

present in sufficiently high concentrations, then R1 and R2 will both be expressed, leading

to the formation of the R12 complex and the subsequent expression of the output protein

R3. However, if one or both of the inputs is not present (or present in a low concentration),

then one or both of the intermediate proteins (R1, R2) will be absent, leading to a very low

concentration of the complex (R12) and minimal expression of the output R3.

This system can be mathematically modelled using the REs (see Methods for details).

At steady-state, we can write the concentration of the output protein R3 as:

[R3] =
C1C2C3 [I1] [I2]

K3K12 ([I1] +K1) ([I2] +K2) + C1C2 [I1] [I2]
, (1)

where [I1,2] are the concentrations of the input proteins, Ci is the maximum concentration

of Ri (at full expression), Ki is the dissociation constant for Pi, and K12 is the dissociation
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constant for R12. We can write a truth table, analogous to the standard logic gate tables,

to determine the function of this system under different input conditions. Table I has the

[I1] [I2] [R3]

0 0 0

∞ 0 0

0 ∞ 0

∞ ∞ C1C2C3
K3K12+C1C2

TABLE I: Truth table for an idealised genetic AND gate with no promoter leakage.

characteristic form of an AND gate truth table, since the outputs are zero except when both

inputs are present. Note that the input concentrations range from 0 to∞: by∞ we mean a

“very high concentration”, such that the corresponding promoter is permanently activated.

Note also that the output concentration with both inputs on is not equal to C3. This is

because, even with maximal concentations of R1 and R2, the complex R12 may be present

in low concentrations if the dissociation constant K12 is large (i.e. if R1 and R2 have a low

binding affinity). If R1 and R2 have a high binding affinity, then K12 will be small and

[R3] ≈ C3.

We now modify the above expressions to account for the effect of promoter leakage.

We model promoter leakage in the following way. Each unit concentration of promoter

Pi, whether active or not, expresses protein at a low basal rate li. An activated promoter

expresses protein at an additional rate ti, so that the total expression rate will be li when

inactive and li + ti when active. We define the non-dimensional parameter λi = li/ti as the

relative leakage of promoter Pi. λi � 1 implies that the leakage is very high, such that an

active and inactive Pi will express at roughly the same rate; λ ≈ 1 implies that the leakage

is high, such that an active Pi will express at double the rate of an inactive Pi; λ� 1 implies

that the leakage is low, so that an inactive Pi expresses at a very low rate compared to an

active Pi.

Modifying Eq. (1) to account for leakage (see Methods for details), we get:

[R3] = C3

λ3 +
C1C2

(
λ1 + [I1]

[I1]+K1

)(
λ2 + [I2]

[I2]+K2

)
K3K12 + C1C2

(
λ1 + [I1]

[I1]+K1

)(
λ2 + [I2]

[I2]+K2

)
 . (2)

We note that experimentally the leakage parameter λ can typically range from 10−3− 10−1,
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values which are much smaller than one [2]. Hence we use this simplifying assumption in all

the calculations that follow. The corresponding truth table with leakage is shown in Table

II. We note that all inputs generate some non-zero output, and this output is due partly to

[I1] [I2] [R3]

0 0 C3

(
λ3 + C1C2λ1λ2

K3K12+C1C2λ1λ2

)
∞ 0 C3

(
λ3 + C1C2λ2

K3K12+C1C2λ2

)
0 ∞ C3

(
λ3 + C1C2λ1

K3K12+C1C2λ1

)
∞ ∞ C3

(
λ3 + C1C2

K3K12+C1C2

)
TABLE II: Truth table for an AND gate with small leakage (λi � 1).

leakage in the output promoter P3, but also due to leakage in the input promoters (P1, P2)

inducing normal (non-leaky) expression of R3. Unlike the non-leaky case displayed in Table

I, the function of the leaky AND gate is parameter-dependent.

We define the non-dimensional parameter γ = K3K12

C1C2
, and assume that all three promoters

are roughly equally leaky (λ1 ≈ λ2 ≈ λ3 = λ). If we define [R3]I1,I2 as the concentration

of R3 given the inputs I1 and I2 then it is straightforward to show that [R3]0,0 < [R3]∞,0 =

[R3]0,∞ < [R3]∞,∞. Defining ∆1 = ([R3]∞,0 − [R3]0,0)/C3 and ∆2 = ([R3]∞,∞ − [R3]∞,0)/C3,

using the expressions in Table II we obtain:

∆1 '
γλ

(γ + λ2)(γ + λ)
, (3)

∆2 '
γ

(1 + γ)(γ + λ)
. (4)

Note that ∆i is a non-dimensional variable since it is expressed in terms of the non-

dimensional parameters γ and λ. OR gate functionality occurs when [R3]∞,∞ ≈ [R3]0,∞ =

[R3]∞,0 � [R3]0,0 which means ∆1 should be very large and ∆2 should be very small. It

is optimal when ∆1 takes its largest possible value of 1 and ∆2 takes the minimum possi-

ble value of zero. By similar reasoning, we find that AND gate functionality occurs when

[R3]∞,∞ � [R3]0,∞ = [R3]∞,0 ≈ [R3]0,0 which means ∆1 should be very small and ∆2 should

be very large. It is optimal when ∆1 takes its minimum possible value of 0 and ∆2 takes

the maximum possible value of 1. A density plot of ∆1 −∆2 is shown in Fig. 2.

Next we find parameter regimes where these optimal gate behaviour occurs. For a fixed

value of the leakage parameter λ, ∆1 approaches zero as γ → 0 and γ →∞ and achieves a
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FIG. 2: A density plot of ∆1−∆2 as a function of the two non-dimensional parameters λ and γ for

the genetic circuit shown in Fig. 1. The (upper) blue-purple region shows the region of parameter

space where ∆2 � ∆1 implying AND gate behaviour. Contrastingly, the (lower) red-orange region

shows the region of parameter space where ∆1 � ∆2 implying OR gate behaviour. Note that the

log is base 10 (color online).

maximum equal to ≈ 1 when:

γ = λ3/2. (5)

The function ∆2 has similar behaviour however it reaches a maximum equal to ≈ 1 when:

γ =
√
λ. (6)

Furthermore when ∆1 achieves it maximum of ≈ 1, we find that ∆2 is equal to ≈
√
λ which

is very small since λ� 1 (and viceversa). Thus it follows by our discussion in the previous

paragraph that optimal OR and AND gate functionalities are achieved when γ = λ3/2 and

γ = λ1/2 respectively. For γ = λ, we find that ∆1 = ∆2 which implies that in this case

there are 3 clearly separated output concentrations, i.e., there is no possible interpretation

as a high/low output of logic gates and thus the gate behaviour is here undetermined. Fig.

3 shows the variation of the output [R3] for the four different inputs as a function of the
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parameter γ, at fixed value of λ; the values of γ derived above and which give optimal OR

and AND gates are shown as vertical lines.

γλ1/2γλ3/2

10-7 10-5 0.001 0.100 10 1000

0

200

400

600

800

1000

γ

[R3]0,0

[R3]∞,0

[R3]∞,∞

FIG. 3: Plot of the output [R3] for the four different inputs of the genetic circuit shown in Fig. 1

as a function of the parameter γ. The expressions plotted are shown in Table II. The parameters

are λ1 = λ2 = λ3 = λ = 0.001 and C3 = 1000. The vertical lines γ = λ3/2 and γ = λ1/2 show the

parameters leading to optimal OR and AND gate functionality, respectively (color online).

As we decrease γ below the optimal OR value of λ3/2, we find using the equations in

Table II that [R3]∞,∞ ≈ [R3]0,∞ = [R3]∞,0 stay approximately equal to the maximum of C3

while [R3]0,0 increases from its minimum of C3

√
λ and approaches C3 as γ → 0 (this can also

be seen in Fig. 3). Hence OR gate functionality becomes less pronounced as γ decreases

below the value of λ3/2 and in the limit of very small γ, the gate’s function becomes that

of a TRUE gate (also known as T or Tautology [22]), which returns a high concentration

regardless of input.

As we increase γ above the optimal AND value of λ1/2, we find using the equations

in Table II that [R3]0,∞ = [R3]∞,0 ≈ [R3]0,0 stay approximately equal to the minimum of

C3

√
λ while [R3]∞,∞ decreases from its maximum of C3 and approaches C3

√
λ as γ → ∞

(this can also be seen in Fig. 3). Hence AND gate functionality becomes less pronounced

as γ increases above the value of λ1/2 and in the limit of very large γ, the gate’s function

becomes that of a FALSE gate, which returns a low concentration regardless of input. Hence

we expect the AND gate output to become highly noisy, as γ increases beyond λ1/2 since

molecular fluctuations tend to increase with decreasing molecule numbers [23].
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In summary, the gate’s function is determined by simple power law relationships between

γ and λ (see Table III).

Case Regime Gate functionality

I γ �
√
λ noisy AND or FALSE

II γ ≈
√
λ optimal AND

III γ ≈ λ undetermined

IV γ ≈ λ3/2 optimal OR

V γ � λ3/2 TRUE

TABLE III: Gate functionality as a function of the two non-dimensional parameters γ and λ for

the circuit shown in Fig. 1

Next we test whether our deterministic theoretical predictions using stochastic simula-

tions. The reason for doing such a comparison is that stochasticity in molecule numbers

plays a large role in determining intracellular dynamics [23] and in some cases stochastic

models lead to completely different predictions than REs [24, 25]. In Fig. 4 we compare

deterministic theory with stochastic simulations by fixing λ at a low level of leakage, and

varying γ. When γ = λ−1, the gate has notional AND functionality in the deterministic

model, but the stochastic simulations show that noise is so high as to render the gate es-

sentially useless (Case I in Table III). When γ = λ1/2, our modelling predicts optimal AND

functionality, and indeed this is what we see deterministically, and stochastically with rel-

atively low noise (Case II in Table III). Similarly, when γ = λ3/2, our modelling predicts

optimal OR functionality, which is confirmed with both deterministic and stochastic simu-

lations (Case IV in Table III). When γ is reduced even further, our modelling predicts that

the gate should approach a TRUE gate, which can be seen in the rightmost panels of Fig.

4 (Case V in Table III).

These simulations confirm what our modelling predicted: no matter how low the leakage

(λ), there is always only a range of parameter (γ) values for which AND functionality is

optimised. Straying too far from the optimal γ risks either having functionality swamped

by noise, or else switching to OR-type behaviour.

The relevance of our theory relies on the assumption that γ and λ can be comparable in

size for realistic parameter values. In Table VI we display experimentally determined ranges
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FIG. 4: Surface plots of gate output for the AND gate with varying values of γ, using deterministic

theory (Eq. (2)) and stochastic simulations of the gate. The gate functionality shifts from noisy,

to AND, to OR, to TRUE as the γ decreases relative to λ which is fixed to 0.002. Other parameter

values are given in the Methods section. The log is base 10. Note that the y-axis shows the gate

output normalised by the deterministic maximum (color online).

for the relevant parameter values from various sources in the literature, finding that λ can

typically range from 10−3 − 10−1, while γ can in principle range widely from 10−7 − 1010.

In reality γ will typically be nearer the lower end of this spectrum, because the upper limit

of 1010 corresponds to the extreme case where the maximal concentration of R1 and R2 is

around 10−8M (∼ 10 molecules per E. coli cell). Using a more conservative (albeit ad hoc)

assumption that Ci is never less than 10−5M (∼ 104 molecules per E. coli cell), γ would

range from 10−7 − 104. This places the range of λ in the centre of the possible range of γ,

implying that all five functionalities listed in Table III are realistically possible.
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Parameter Type Range Source

Ki Promoter dissociation constant 10−9 − 10−4M [2]

K12 Protein-protein dissociation constant 10−6 − 10−2M [26]

Ci Maximal protein concentration 10−8 − 10−4M [27]

λi Relative leakage 10−3 − 10−1 [2]

γ Non-dimensional parameter 10−7 − 1010 see main text

TABLE IV: Experimentally determined ranges for the AND gate parameters.

B. NAND gate

Next, we study a genetic NAND gate, again following the design of Wang et al. [2]. This

gate is constructed by simply appending a NOT gate to the AND gate shown in Fig. 1.

An example of a genetic NOT gate is shown in Fig. 5. An input protein R3 can bind to a

promoter P4, repressing the expression of the output protein R4. Thus, a high concentration

of R3 should result in a low concentration of R4, and vice-versa. If the R3 in Fig. 5 is the

same R3 as that in Fig. 1, then the collective behaviour of the systems is that of a NAND

gate.

P1

P2

I1

I2

R1

R2

P3

R1

R3

R2

I1

I2

R3

P4 R4

R3

R3

R4

FIG. 5: Diagram of a genetic NOT gate. Input protein R3 (the output from the AND gate in Fig.

1) binds to promoter P4, repressing the expression of protein R4 (color online).

Applying the REs to the updated NAND system, we find that the steady-state concen-

10



tration of R4 (the new output protein) is given by:

[R4] = C4

λ4 +K4

K4 + C3

λ3 +
C1C2

(
λ1 + I1

I1+K1

)(
λ2 + I2

I2+K2

)
K3K12 + C1C2

(
λ1 + I1

I1+K1

)(
λ2 + I2

I2+K2

)
−1

 ,

(7)

where K4, C4, and λ4 are defined for P4 analogously to the parameters for the other Pi

(see Methods for details). The truth table for the NAND gate (assuming λi � 1 for all

i) is shown in Table V, for reference we also show the gate function with zero leakage (i.e.

λ1 = λ2 = λ3 = λ4 = λ = 0). We note that, unlike the AND gate, the NAND gate

is an imperfect gate even with zero leakage, since some R4 is expressed even when the

output should be zero (when [I1] = [I2] = ∞). This is because of the parameter K4, the

dissociation constant for the protein R3 and promoter P4: if K4 is large, then P4 may not

be completely bound even when R3 is maximally expressed, and so the NOT gate will not

function perfectly; however, if K4 is small, then the NOT gate should work well and the

NAND output will be close to zero when both inputs are large.

[I1] [I2] [R4] [R4] |λ=0

0 0 C4

(
λ4 +K4

[
K4 + C3

(
λ3 + C1C2λ1λ2

K3K12+C1C2λ1λ2

)]−1)
C4

∞ 0 C4

(
λ4 +K4

[
K4 + C3

(
λ3 + C1C2λ2

K3K12+C1C2λ2

)]−1)
C4

0 ∞ C4

(
λ4 +K4

[
K4 + C3

(
λ3 + C1C2λ1

K3K12+C1C2λ1

)]−1)
C4

∞ ∞ C4

(
λ4 +K4

[
K4 + C3

(
λ3 + C1C2

K3K12+C1C2

)]−1)
C4K4

[
K4 + C1C2C3

K3K12+C1C2

]−1
TABLE V: Truth table for a NAND gate with and without leakage.

We use the non-dimensional parameter γ = K3K12

C1C2
previously defined and define a new

non-dimensional parameter α = C3/K4 and assume that all three promoters are roughly

equally leaky (λ1 ≈ λ2 ≈ λ3 ≈ λ4 = λ). It is straightforward to show that [R4]0,0 >

[R4]∞,0 = [R4]0,∞ > [R4]∞,∞. Next we perform a similar analysis as for the AND gate

previously and find parameter regimes where different behaviours occur. Defining ∆1 =

([R4]0,0 − [R4]∞,0)/C4 and ∆2 = ([R4]∞,0 − [R4]∞,∞)/C4, using the expressions in Table V
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we obtain:

∆1 '
αγλ

(γ + αγλ+ λ2(1 + α))(γ + αγλ+ λ(1 + α))
, (8)

∆2 '
αγ

(γ + αγλ+ λ(1 + α))(γ + α(1 + λ(3 + 3λ+ γ)))
. (9)

Note that ∆i is a non-dimensional variable since it is expressed in terms of the non-

dimensional parameters γ and λ. NOR gate functionality occurs when [R4]∞,∞ ≈ [R4]0,∞ =

[R4]∞,0 � [R4]0,0 which means ∆1 should be very large and ∆2 should be very small. It is

optimal when ∆1 takes its largest possible value of 1 and ∆2 takes the minimum possible

value of zero. By similar reasoning, we find that NAND gate functionality occurs when

[R4]∞,∞ � [R4]0,∞ = [R4]∞,0 ≈ [R4]0,0 which means ∆1 should be very small and ∆2 should

be very large. It is optimal when ∆1 takes its minimum possible value of 0 and ∆2 takes

the maximum possible value of 1.

One can deduce that if the leakage parameter λ is fixed, ∆1 approaches zero as γ → 0

and γ →∞ and achieves a maximum equal to ≈ 1 when:

γ ≈ λ, α ≈ λ−1/2. (10)

The function ∆2 has similar behaviour however it reaches a maximum equal to ≈ 1 when:

γ ≈ 1, α ≈ λ−1/2. (11)

The reasoning behind these conditions is as follows. For general α, the maximum reached

by ∆1 occurs at γ ≈ (1+α)λ3/2/(1+αλ) and is equal to α/(1+α)(1+αλ). Furthermore the

latter expression reaches its maximum value of ≈ 1 when α ≈ λ−1/2; hence follows Eq. (10).

Note that the only assumption we have here made is that λ� 1 since this is experimentally

justified. By similar arguments for ∆2, one can obtain Eq. (11).

Furthermore when ∆1 achieves its maximum, we find that ∆2 is very small and equal

to ≈
√
λ (and viceversa). Thus it follows by our discussion in the previous paragraph

that optimal NOR and NAND gate functionalities are achieved when γ ≈ λ and γ ≈ 1,

respectively provided that the condition α ≈ λ−1/2 is also fulfilled. For γ ≈ λ1/2, we

find that ∆1 = ∆2 which implies that in this case there are 3 clearly separated output

concentrations, i.e., there is no possible interpretation as a high/low output of logic gates

and thus the gate behaviour is here undetermined. Fig. 6 shows the variation of the output

[R4] for the four different inputs as a function of the parameter γ, at fixed value of λ and
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α = λ1/2; the values of γ derived above and which give optimal NOR and NAND gates are

shown as vertical lines.

γ=1γ=λ
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0
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[R4]∞,0

[R4]∞,∞

FIG. 6: Plot of the output [R4] for the four different inputs of the genetic circuit shown in Fig. 5 as

a function of the parameter γ. The expressions plotted are shown in Table V (the case of non-zero

λ). The parameters are λ1 = λ2 = λ3 = λ4 = λ = 0.001, α = λ−1/2 and C4 = 1000. The vertical

lines γ = λ and γ = 1 show the parameters leading to optimal NOR and NAND gate functionality,

respectively (color online).

As we decrease γ below the optimal NOR value of λ, we find using the equations in

Table V that [R4]∞,∞ ≈ [R4]0,∞ = [R4]∞,0 stay approximately equal to the minimum of

C4

√
λ while [R4]0,0 decreases from its maximum of C4 and approaches C4

√
λ as γ → 0 (this

can also be seen in Fig. 6). Hence NOR gate functionality becomes less pronounced as γ

decreases below the value of λ and in the limit of very small γ, the gate’s function becomes

that of a FALSE gate, which returns a low concentration regardless of input. Hence we

expect the NOR gate output to become highly noisy, as γ approaches zero since molecular

fluctuations increase with decreasing molecule numbers.

As we increase γ above the optimal NAND value of 1, we find using the equations in

Table V that [R4]0,∞ = [R4]∞,0 ≈ [R4]0,0 stay approximately equal to the maximum of C4

while [R4]∞,∞ increases from its minimum of C4

√
λ and approaches C4 as γ → ∞ (this

can also be seen in Fig. 6). Hence NAND gate functionality becomes less pronounced as γ

increases above the value of 1 and in the limit of very large γ, the gate’s function becomes

that of a TRUE gate, which returns a high concentration regardless of input.
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In summary, the gate’s function is determined by simple power law relationships between

α, γ and λ (see Table VI).

Case Regime Gate functionality

I γ � 1 TRUE

II γ ≈ 1 optimal NAND

III γ ≈ λ1/2 undetermined

IV γ ≈ λ optimal NOR

V γ � λ noisy NOR or FALSE

TABLE VI: Gate functionality as a function of the two non-dimensional parameters γ and λ for the

circuit shown in Fig. 5. Note that in all cases α ≈ λ−1/2 since this value maximises the differences

between concentrations representing logic high and low.

To test the prediction of an optimal choice of γ for NAND and NOR functionalities, in

Fig. 7 we compare deterministic theory with stochastic simulations, fixing λ = 0.002 and

α = λ−1/2, and varying γ. When γ = (1+α)λ−1 ≈ λ−3/2, the gate is predicted to have TRUE

functionality, which is confirmed in both the deterministic and stochastic simulations. When

γ = (1 +α)λ1/2 ≈ 1, our modelling predicts optimal NAND functionality, and indeed this is

what we see deterministically, and stochastically with relatively low noise. Similarly, when

γ = (1 + α)λ3/2 ≈ λ, our modelling predicts optimal NOR functionality, which is confirmed

with both deterministic and stochastic simulations. When γ is reduced even further to

γ = (1 + α)λ5/2 ≈ λ2 our modelling predicts that the gate functionality should break down

due to noise, and this can be seen in the rightmost panels of Fig. 7, where the basal level

of expression is high relative to the maximal expression, and noise is starting to swamp any

discernible gate-like behaviour.

These simulations again confirm what our theory has predicted: there is only a nar-

row range of parameter values for which NAND functionality is optimised. Straying too

far from these optimal parameters risks either having functionality swamped by noise, or

else switching to NOR- or TRUE-type behaviour. The relevance of our theory is that the

range of realistic parameter values (as shown in Table IV) are compatible with all five gate

functionalities listed in Table VI.

14



0

log[I1]

10
20

3030
20

log[I2]

10

0

0.5

1

0

N
or

m
. o

ut
pu

t

0

log[I1]

10
20

3030
20

log[I2]

10

0.5

0

1

0

N
or

m
. o

ut
pu

t

0

log[I1]

10
20

3030
20

log[I2]

10

1

0.5

0
0

N
or

m
. o

ut
pu

t

0

log[I1]

10
20

3030
20

log[I2]

10

0

0.5

1

1.5

0

N
or

m
. o

ut
pu

t

0

log[I1]

10
20

3030
20

log[I2]

10

1

0

0.5

0

N
or

m
. o

ut
pu

t

0

log[I1]

10
20

3030
20

log[I2]

10

0

0.5

1

0

N
or

m
. o

ut
pu

t

0

log[I1]

10
20

3030
20

log[I2]

10

0

0.5

1

0

N
or

m
. o

ut
pu

t

0

log[I1]

10
20

3030
20

log[I2]

10

0

0.5

1

1.5

0

N
or

m
. o

ut
pu

t

Theory

Simulation

γ ≈λ-3/2 γ ≈1 γ ≈λ γ ≈λ2

FIG. 7: Surface plots of gate output for the NAND gate with varying levels of promoter leakage,

using deterministic theory (Eq. (7)) and stochastic simulations of the gate. The gate functionality

shifts from FALSE, to NAND, to NOR, to noisy as the leakage increases. The parameters λ1 =

λ2 = λ3 = λ4 = λ = 0.002 and α = 21.8 implying α ≈ λ−1/2. Other parameter values are given in

the methods. The log is base 10. Note that the y axis shows the gate output normalised by the

deterministic maximum (color online).

III. DISCUSSION

In this article, we have used deterministic modelling to understand how the function of

low-leakage genetic logic gates varies with the rate constants characterising the reactions at

the heart of the gate. We have identified simple power law relationships between parameters

which lead to specific gate functions and showed that even if leakage is practically negligible,

still a network can display logic function which is completely different than the one suggested

by the network’s connectivity. The main results of our findings are summarised in Tables III

and VI. Our findings are consistent with those found regarding network motifs not involved

15



in genetic logic gates [28] namely that network connectivity is not by itself sufficient to

determine function.

Previous studies [29, 30] have shown that the truth table of the classic (wild type) lacZYA

operon of Escherichia coli (as a function of its two inducers, cAMP and IPTG) is interme-

diate between that of an AND gate and an OR gate. It was also shown that mutations can

result in purer AND-like or OR-like functions. Our results are in broad agreement with the

latter, in particular verifying that the plasticity of the truth table is not a property of just

naturally occurring biochemical systems but it is also shared by purposefully designed syn-

thetic genetic logic gates. An interesting observation is that the optimal AND gate function

obtained in our synthetic AND gate has a much sharper switching threshold than the same

optimal AND gate function obtained by a mutation of the lacZYA operon (compare the case

γ = λ1/2 in Fig. 4 in this paper with Fig. 5b in the paper [29]). We note that in contrast

to previous studies, our study determines the non-trivial mathematical relationship between

parameters leading to a desired optimal logic gate function.

Good agreement of deterministic theory with stochastic simulations using the Gillespie

algorithm show that the logic gate function is robust to intrinsic noise, i.e fluctuations in the

molecule numbers stemming from uncertainty in the time between successive reactions and

which reaction fires next. This means that if there is little cell-to-cell variation in a popu-

lation of cells, i.e. parameter values for the gates are essentially the same for all cells, then

each cell will display the same logic gate behaviour. However if there is significant variation

in the parameters between cells then because of the sensitivity of logic gate behaviour to

parameter values, one might have some cells displaying one logic gate function whilst others

displaying a second one.

A criticism of our study would be that it is conducted in steady-state conditions while

cells are constantly growing, dividing and adapting to their environmental conditions. It has

been recently shown that for various cell types, an approximate constancy in gene product

concentration is achieved, independent of cell size and hence of the cell cycle, by means of

size-dependent expression or scaling of gene dosage with size [31]. Hence our enforcement

of steady-state conditions can be seen as a rough approximation to the intracellular concen-

tration homeostasis enforced by various mechanisms. It is difficult to further increase the

predictive power of the model without specifying a particular cell type. A more detailed

stochastic study incorporating homeostatic mechanisms, gene replication, cell growth, par-
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titioning of proteins at cell division, and details of the cell cycle specific to a particular cell

type will be needed to make accurate predictions on the robustness and function of genetic

logic gates in living cells.

IV. METHODS

A. AND Gate

The AND gate - with inputs I1, I2 and output R3 as illustrated in Fig. 1 - is defined by

the following chemical reaction network:

P1

a1[I1]−−−⇀↽−−−
a′1

P ?
1 , P

?
1

t1−→ P ?
1 +R1, R1

d1−→ ∅, P2

a2[I2]−−−⇀↽−−−
a′2

P ?
2 , P

?
2

t2−→ P ?
2 +R2, R2

d2−→ ∅, (12)

R1 +R2

kf−⇀↽−
kb

R12, P3 +R12
a3−⇀↽−
a′3

P ?
3 , P

?
3

t3−→ P ?
3 +R3, R3

d3−→ ∅

where ai, a
′
i are the association and dissociation rates respectively for Pi; ti, di are the

transcription and degradation rates respectively for Ri and kf , kb are the association and

dissociation rates for the R12 complex. In these reactions we have neglected promoter

leakage; if we take this into account, the new reaction scheme reads:

P1

a1[I1]−−−⇀↽−−−
a′1

P ?
1 , ∅

l1n1/V−−−−⇀↽−−−−
d1

R1, P
?
1

t1−→ P ?
1 +R1, P2

a2[I2]−−−⇀↽−−−
a′2

P ?
2 , ∅

l2n2/V−−−−⇀↽−−−−
d2

R2, P
?
2

t2−→ P ?
2 +R2,

(13)

R1 +R2

kf−⇀↽−
kb

R12, P3 +R12
a3−⇀↽−
a′3

P ?
3 , ∅

l3n3/V−−−−⇀↽−−−−
d3

R3, P
?
3

t3−→ P ?
3 +R3,

where li are the leakage rates respectively for Ri, ni is the total promoter number of Pi, V

is the cell volume and all other constants are as before. Since the zero leakage case (12) is

a special case of (13) we shall study in detail the latter. The REs for the concentrations of
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the species of reaction scheme (13) are:

∂t [P ?
1 ] = a1 [I1] (n1/V − [P ?

1 ])− a′1 [P ?
1 ] , (14)

∂t [P ?
2 ] = a2 [I2] (n2/V − [P ?

2 ])− a′2 [P ?
2 ] ,

∂t [P ?
3 ] = a3 [R12] (n3/V − [P ?

3 ])− a′3 [P ?
3 ] ,

∂t [R1] = l1n1/V − d1 [R1] + t1 [P ?
1 ]− kf [R1] [R2] + kb [R12] ,

∂t [R2] = l2n2/V − d2 [R2] + t2 [P ?
2 ]− kf [R1] [R2] + kb [R12] ,

∂t [R12] = kf [R1] [R2]− kb [R12]− a3 [R12] (n3/V − [P ?
3 ]) + a′3 [P ?

3 ] ,

∂t [R3] = l3n3/V − d3 [R3] + t3 [P ?
3 ] .

At steady-state, we find that:

[R3] = C3

λ3 +
C1C2

(
λ1 + [I1]

[I1]+K1

)(
λ2 + [I2]

[I2]+K2

)
K3K12 + C1C2

(
λ1 + [I1]

[I1]+K1

)(
λ2 + [I2]

[I2]+K2

)
 , (15)

where Ci = tini

V di
is the maximum concentration of Ri (without leakage), Ki =

a′i
ai

is the

dissociation constant for Pi, K12 = kb
kf

is the dissociation constant for R12, and λi = li
ti

is the

relative leakage of promoter Pi.

B. NAND Gate

The NAND gate - with inputs I1, I2 and output R4 - is defined by the following chemical

reaction network, in addition to those in Eq. (13):

P4
a4−⇀↽−
a′4

P ?
4 +R3, ∅

l4n4/V−−−−⇀↽−−−−
d4

R4, P
?
4

t4−→ P ?
4 +R4, (16)

where a4, a
′
4, d4, t4, l4 and n4 are defined analogously to Eq. (13). The ODEs for all species

except [R3] are the same as in Eq. (14). The ODEs for [R3], [R4] and [P ?
4 ] are given by:

∂t [P ?
4 ] = a4 (n4/V − [P ?

4 ])− a′4 [R3] [P ?
4 ] , (17)

∂t [R3] = l3n3/V − d3 [R3] + t3 [P ?
3 ] + a4 (n4/V − [P ?

4 ])− a′4 [R3] [P ?
4 ] ,

∂t [R4] = l4n4/V − d4 [R4] + t4 [P ?
4 ] .

At steady-state, we find that:

[R4] = C4

λ4 +K4

K4 + C3

λ3 +
C1C2

(
λ1 + I1

I1+K1

)(
λ2 + I2

I2+K2

)
K3K12 + C1C2

(
λ1 + I1

I1+K1

)(
λ2 + I2

I2+K2

)
−1

 ,

(18)
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where C4 = t4n4

V d4
, K4 = a4

a′4
, and λ4 = l4

t4
.

C. Stochastic simulations

Stochastic simulations were performed using the Gillespie algorithm [21]. Each point in

the stochastic plots in Figs. 4 and 7 shows an independent simulation at 100 seconds into

steady-state simulation.

Parameter values used in Figs. 4 and 7 were taken from experimentally-determined

ranges: a1 = a2 = a3 = a′4 = a = 4.8 × 10−20m3s−1 [32], a′1 = a′2 = a′3 = a4 = a′ = 2.2s−1

[33], ni = n = 1, V = 3 × 10−19m3 [34], ti = t = 3.0s−1 [35], di = d = 10−2s−1 [35] (for all

i), kf = 1.7 × 10−22m3s−1 [35] and λ = 0.002. In order to vary γ, kb is varied according to

the formula kb =
γt2n2akf
V 2a′d2

(which follows from the definition of γ).
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