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Highlight [<30 words] 31 

Combining models of biology across scales, for fundamental understanding and crop 32 

improvement, presents multiple challenges. We review practical experiences and promising 33 

approaches in the pursuit of digital organism models.  34 

Abstract [198 words] 35 

A recent initiative named “Crops in silico” proposes that multi-scale models “have the potential 36 

to fill in missing mechanistic details and generate new hypotheses to prioritize directed 37 

engineering efforts” in plant science, particularly directed to crop species. To that end, the group 38 

called for “a paradigm shift in plant modelling, from largely isolated efforts to a connected 39 

community” (Marshall-Colon et al., 2017). ‘Wet’ (experimental) research has been especially 40 

productive in plant science, since the adoption of Arabidopsis thaliana as a laboratory model 41 

species allowed the emergence of an Arabidopsis research community. Parts of this community 42 

invested in ‘dry’ (theoretical) research, under the rubric of Systems Biology. Our past research 43 

combined concepts from systems biology and crop modelling (Chew et al., 2017; Chew et al., 44 

2014b). Here we outline the approaches that seem most relevant to connected, ‘digital organism’ 45 

initiatives. We illustrate the scale of experimental research required, by collecting the kinetic 46 

parameter values that are required for a quantitative, dynamic model of a gene regulatory 47 

network. By comparison to the SBML community, we note computational resources and 48 

community structures that will help to realise the potential for plant systems biology to connect 49 

with a broader crop science community. 50 

Introduction 51 

What distinguishes crop modellers from systems biologists, one of us was told ten years ago, is 52 

some responsibility to feed the world population. Systems Biology aims to understand the 53 

interactions among the component parts of a living system and the emergent properties that arise 54 

from such interactions (Alberghina and Westerhoff, 2005; Kitano, 2002). Its aspiration was to 55 

include components across multiple scales from the molecular to at least the organism. In 56 

practice the research started from intracellular pathways and only gradually intersected with 57 

physiological, organism-level approaches; most often, the organism in mind was a human 58 

(Kitano, 2015). Readers seeking to pin down systems biology, to a claim for novelty or 59 

otherwise, should consult earlier commentaries (Bothwell, 2006; Hammer et al., 2004; Marcum, 60 

2008). The holistic, systems approach led to a meeting with mission-orientated research in crop 61 

science, though the whole-plant scale to which Systems Biology aspired was then at the lower 62 
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bound for crop models. The approach also distinguished Systems Biology from much research 63 

focusing on the properties of individual, biological components.  64 

 65 

Along with the move from reductionism towards holism came a need for the ‘dry’ methods of 66 

formal modelling, because the unaided human brain is quite inept in reasoning quantitatively 67 

about dynamical systems as complex as those in biology. Several areas of plant science (cell 68 

physiology and ecology, to name but two) and crop science, have been ‘amphibious’ for decades, 69 

mixing ‘wet’ (experimental) and ‘dry’ (theoretical) approaches. The benefits of interfacing plant 70 

systems biology with crop modelling were recognised over a decade ago (GARNet Advisory 71 

Committee, 2006; Thomas, 2007), not only for modelling expertise but also for the real-world 72 

impacts. Crop models are regularly used by growers, breeders and Earth scientists, amongst 73 

others. Ten years later, an initiative named “Crops in silico” proposed that multi-scale models 74 

“have the potential to fill in missing mechanistic details and generate new hypotheses to 75 

prioritize directed engineering efforts” in plant science, particularly directed to crop species. To 76 

that end, the group (including A.J.M.) called for “a paradigm shift in plant modelling, from 77 

largely isolated efforts to a connected community” (Marshall-Colon et al., 2017; Zhu et al., 78 

2016). However, formal models have been largely absent from the training of plant biologists, so 79 

this seemingly-natural interface has emerged only slowly. The diversity of models may also be 80 

less obvious for plant researchers, though it is arguably as great as the diversity of experimental 81 

methods. Crops in silico aims to link several, current approaches, such as functional-structural 82 

plant models that have organ-scale spatial resolution and process-based crop models with lower 83 

spatial resolution. 84 

 85 

Dealing with diverse models is inevitable in the holistic agenda of Systems Biology. This article 86 

outlines some types of model that seem valuable for a community initiative such as “Crops in 87 

silico”. Our experiences, tools and approaches to combine and use them arose particularly from 88 

joint work on the Framework Model for Arabidopsis growth (Chew et al., 2017; Chew et al., 89 

2014b), which in part followed practices from crop modelling. Arabidopsis thaliana emerged as 90 

the laboratory model species for plant science, with an open research community (Ankeny and 91 

Leonelli, 2011; Leonelli, 2007), about fifteen years before Systems Biology emerged as a 92 

research field (Vermeulen, 2017). We illustrate results, resources and social organisation of 93 

Arabidopsis research that are benefitting plant Systems Biology, and could further contribute to 94 

and benefit from the interaction with crop science. The challenge is to ensure that actual 95 

researchers with particular skill sets are motivated and able to complete research in realistic time, 96 
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and to make the results comprehensible, useful and reproducible for others. We point to current, 97 

computational tools and resources that will help to realise this potential. 98 

Standpoint 99 

The authors represent a spectrum of systems biology research, spanning plant science, molecular 100 

biology, computer science, research management, software engineering and advanced 101 

computation. We are linked by research in or associated with SynthSys, the centre for Synthetic 102 

and Systems Biology at the University of Edinburgh, which has a long association with Systems 103 

Biology (Bard, 2008) and with Science, Technology and Innovation Studies in social science 104 

(Henry, 2008). A.J.M. previously coordinated GARNet, the UK community organisation for 105 

Arabidopsis researchers (see Box 1) and contributed to the “Crops in silico” proposals. 106 

The diversity of “models” 107 

A biologist’s “model” often describes the contemporary understanding of a biological process, 108 

expressed in text, or as a diagram or cartoon (Figure 1A). Such descriptions are informal and 109 

very useful as a distillation of biological knowledge, but they are fatally flexible, ultimately 110 

ambiguous and difficult to reuse in a formal context. In contrast, mathematical models are formal 111 

and unambiguous, inflexibly imposing a rigour of description that often exposes serious gaps in 112 

biological knowledge. Identifying such gaps can be extremely valuable to direct ongoing work 113 

but the gaps must be bridged with assumptions in order to complete a model.  114 

 115 

We summarise below some modelling approaches used in Systems Biology, based broadly upon 116 

their explanatory ability. An explanatory model can illuminate the mechanisms of a biological 117 

system and its principles of operation, whereas a descriptive model simply aims to predict the 118 

behaviour of the system based upon its past behaviour, irrespective of the biological 119 

mechanisms. Models in crop science and in systems biology each span this range. Models of 120 

“Crops in silico” will usually combine several approaches, so more detailed classification is 121 

difficult (Coveney and Fowler, 2005). Rather, we highlight opportunities for each model type in 122 

building complex models in plant and crop science. Detailed spatial models of plant 123 

development have been reviewed elsewhere (Ndour et al., 2017; Prusinkiewicz and Runions, 124 

2012; Truskina and Vernoux, 2018). Despite omitting this area for brevity, we note that models 125 

of cellular processes at the shoot apical meristem (Jonsson et al., 2006; Kierzkowski et al., 2012) 126 

or in lateral root formation (Dyson et al., 2014; Xuan et al., 2016) have often combined multiple 127 

model types. 128 
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Graphical models 129 

A useful, formal description of a biological process can start without equations or computer 130 

programming, because a diagram can be formal (as can a text description). A defined vocabulary 131 

of graphical symbols (glyphs) can represent the various types of biological components as nodes 132 

in the diagram, with a defined set of connecting arcs to represent the processes by which the 133 

components interact. Drawing such a diagram can reveal gaps in understanding and record the 134 

assumptions made to bridge the gaps, as noted above. Maps of the metabolic network are a 135 

familiar example but complex models need to represent much more than metabolism. The 136 

Systems Biology Graphical Notation (SBGN) is a community standard for drawing intracellular 137 

pathways (Le Novere et al., 2009), representing various types of molecules, their modifications, 138 

complexes, compartments and so on. SBGN is supported by free software tools, such as 139 

VANTED (Rohn et al., 2012) and Cytoscape (Goncalves et al., 2013). These can be extended to 140 

support other notations, for example for plant structures. Several online repositories provide 141 

SBGN diagrams of pathway information or models for download (Buchel et al., 2013; Naithani 142 

et al., 2017). A diagram of this type can comprehensively represent the state of knowledge, as a 143 

valuable addition to a review publication. A hand-curated diagram of mTOR response pathways 144 

included 964 molecular components, for example (Caron et al., 2010) but such a large diagram is 145 

difficult to read in practice. Moving from a diagram to a quantitative model requires additional 146 

stoichiometry and parameter values, which can be added in graphical modelling software such as 147 

Cell Designer (Funahashi et al., 2008) and Simile (Muetzelfeldt and Massheder, 2003).  148 

 149 

For a diverse and growing community like “Crops in silico”, investing in graphical models offers 150 

three advantages. A non-modeller should be able to find, download and start to modify an 151 

existing diagram to represent their process of interest within 30 minutes, without prior 152 

preparation. This is the fastest route to modifying a model, similar in approach to the graphical 153 

languages used to teach computer programming (Marji, 2014). An expert modeller could use 154 

such a diagram as a starting point for detailed modelling of an unfamiliar process, similar to the 155 

pseudo-code that is used to sketch software functions prior to full coding. For experts and non-156 

experts alike, the diagrams also offer a human-readable format to orient themselves quickly 157 

within a model.  158 

Data-driven modelling 159 

High-throughput technologies such as automated phenotyping platforms capture information on 160 

many components of a system simultaneously. Analysis of high-throughput data involves 161 

modelling with statistical techniques such as clustering, principal component analysis (PCA) and 162 
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regression (Jagaman and Danuser, 2006). Similar methods can apply to the meta-analysis of data 163 

curated from the literature (Poorter et al., 2012), with very broad scope (Diaz et al., 2016). These 164 

data-driven methods can use little or no prior knowledge about the system and overlap with the 165 

expanding range of machine learning approaches, such as neural networks (reviewed in Ma et 166 

al., 2014). Data-driven methods are usually descriptive and can inform simple, mathematical 167 

relationships that are used in many models where more detail is unavailable or undesirable. They 168 

represent a relevant process concisely, in sufficient detail to lead to the formation of specific 169 

hypotheses, for example about the mechanisms that underlie the differences between clusters 170 

(Janes and Yaffe, 2006) or the connections among variables (Dalchau et al., 2011; Onoda et al., 171 

2017). Thus advanced analysis by data-driven methods grades into conceptual modelling 172 

(Valladares et al., 2014).  In a spatial context, Mundermann et al. (Mundermann et al., 2005) 173 

modelled the development of the Arabidopsis shoot in the L-studio software, using 174 

measurements of architectural parameters to support detailed simulation and realistic 175 

visualisation of plant growth (Figure 3).  176 

 177 

The articles by Dalchau et al. and Mundermann et al. used data generated by the same labs that 178 

conducted the modelling, which is common in small or emerging fields that use laborious assays. 179 

In contrast, the work of Poorter and colleagues allows meta-analysis of many data sets from 180 

well-established, eco-physiological assays (Poorter et al., 2010). The more data is required for a 181 

modelling project, the more data availability can limit its progress and the career prospects of the 182 

modellers. The Open Research movement, with its FAIR and Open data principles, deserves 183 

their wholehearted support (see final section). 184 

 185 

Baker et al. (2018) argue that data-driven methods’ rapid focus on results may be more attractive 186 

for research that is close to professional practice (clinical medicine in their case), whereas other 187 

disciplines emphasise explanatory power. Several benefits can clearly follow from integrating 188 

these approaches. Our work on the circadian clock encountered some practical difficulties in this 189 

process. Data-driven approaches to learn the gene circuit structure were hampered by the very 190 

non-linearity, time-dependency and density of interactions that had originally motivated us to 191 

initiate modelling studies, remaining difficult even with a series of new methods (for example, 192 

Aderhold A., 2013; Grzegorczyk et al., 2008; Higham and Husmeier, 2013). In contrast, data-193 

driven connections of the clock to metabolism were published (Grzegorczyk et al., 2015) and 194 

personnel had moved on, years before the follow-up experimental studies were complete (Flis et 195 

al., 2015; Flis et al., 2018).  196 
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Qualitative modelling  197 

Whereas data-driven models can represent detailed data with little explanatory power, qualitative 198 

models offer explanatory power with limited detail. Boolean models are the most common type, 199 

where components and connections are represented as present or absent, and this coarse state of 200 

the system may change over time. These models test hypotheses about the logical and causal 201 

relationship between events, stimuli and system responses (De Jong, 2002). An early example in 202 

plant science represented the network of transcription factors that specify organ identity during 203 

Arabidopsis flower development. The model’s logical rules tested (and supported) the 204 

conceptual “ABC model” of gene interactions (Espinosa-Soto et al., 2004). Complex waveforms 205 

can be represented by allowing a time delay between the activation of one component and the 206 

next, yet the models remain attractively concise. A time-delay model (Figure 2) allowed us to 207 

test all possible connections among the genes of the Arabidopsis circadian clock (Akman et al., 208 

2012), for example, highlighting a new circuit that explained the experimental data better than 209 

the circuit proposed at the time. This qualitative model’s circuit was independently confirmed by 210 

new data and in a more detailed, quantitative model from our lab (Pokhilko et al., 2013). Note 211 

that we could not have tested all possible circuits in the quantitative model in a reasonable 212 

computation time. 213 

 214 

For Crops in silico, Boolean models (and other qualitative models) might be the easiest way to 215 

incorporate large gene-regulatory networks. They do, however, risk discarding information for 216 

the best-studied components, which may have sufficient data for more detailed treatment. Hybrid 217 

models are then natural, where some components are represented in qualitative and others in 218 

quantitative form. For example, a binary representation of (unmeasured) transcriptional 219 

activation of a reporter gene allowed us to test several possible gene circuits in an algal clock, 220 

combined with a continuous, quantitative model for the levels of a luminescent reporter protein 221 

that reproduced experimental data (Ocone et al., 2013). The software to support logic models is 222 

growing, exemplified by development of the Systems Biology Markup Language (SBML) 223 

“qual” standard for model exchange (see below)(Buchel et al., 2013). Software tools can also 224 

help in converting qualitative models to quantitative forms (Wittmann et al., 2009), which is not 225 

yet a common path (Ortiz-Gutierrez et al., 2015) but might become a natural progression for 226 

Crops in silico as more data becomes available (Le Novere, 2015).  227 

Constraint-based modelling 228 

Even dynamic, biological systems can be treated as being in steady state, when their homeostatic 229 

mechanisms buffer changes, at least substantially. The numbers of some molecule being 230 
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generated and degraded are equal, for example, so its level is almost constant in time. 231 

Additionally, the time scale for metabolic events (seconds) is typically much faster than for 232 

genetic regulation (hours): from the perspective of genetic regulation, the metabolic system is 233 

always in steady state. The characteristics of this constant state depend on the structure of the 234 

system (the related biochemical reactions and their stoichiometry), general thermodynamics laws 235 

and external parameters, such as the cellular energy supply. Where a metabolic network is well 236 

understood, for example, constraint-based analysis is able to identify a set of fluxes through the 237 

network that are compatible with the observed steady state, to predict missing reactions and 238 

alternative pathways, and to find steady states that become accessible under different conditions. 239 

More prior knowledge is required than for qualitative models, and the models have greater 240 

explanatory power. In the areas relevant to Crops in silico, De Reuille et al. used constraint-241 

based modelling to create the geometry of the shoot apical meristem, subsequently using this 242 

geometry as a constraint for auxin transport to evaluate the distribution of auxin fluxes (Reuille 243 

et al., 2006). The approach can be extended to represent data that change over time, such as day 244 

and night states of central carbon metabolism (Cheung et al., 2014) or the hourly dynamics of 245 

the starch pathway (Sorokina et al., 2011). These extensions for dynamic systems are limited and 246 

development is ongoing. They are attractive in principle for Crops in silico, because constraint-247 

based models are computationally tractable and do not require the detailed kinetic parameters of 248 

full, quantitative models. 249 

Quantitative modelling 250 

Quantitative modelling techniques represent the most detailed explanation of the underlying 251 

mechanisms and allow the most extensive numerical comparison of simulation results with 252 

experimental data. Correspondingly, they require the most prior information on the system 253 

(illustrated below). Where changes over time (dynamics) are of interest in the biology, for 254 

example in the cell cycle or the circadian clock, these methods have given impressive results 255 

(Bujdoso and Davis, 2013; Novak and Tyson, 2008; Tyson and Novak, 2015). Systems of 256 

ordinary differential equations (ODE) are a popular approach where time is continuous, as are 257 

the equivalent, difference equations with discrete time steps. Each equation describes the change 258 

in one variable (organ mass, protein concentration etc.) as a sum of reactions (synthesis, 259 

destruction, transport etc.) that are represented with empirical, kinetic terms (law of mass action, 260 

Michaelis-Menten approximation, piecewise-linear functions etc.). Variables can justifiably be 261 

continuous, implying an infinite number of intermediate concentrations, if molecular numbers 262 

are in fact large, reactions are frequent and the system behaves reproducibly. This style of 263 

modelling is common in plant Systems Biology and has been reviewed elsewhere (Chew et al., 264 
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2014a; Middleton et al., 2012). However, data at the single-cell level increasingly reveals 265 

components that are present in small numbers (Libault et al., 2017), where the continuous, 266 

deterministic approach is inaccurate and instead discrete, stochastic models describe the 267 

probabilities of each reaction event (Shahrezaei and Swain, 2008). Stochastic models of the plant 268 

clock circuit suggested that circadian timing would be variable at the single-cell level, for 269 

example (Guerriero et al., 2012), as recently confirmed experimentally (Gould et al., 2018). 270 

Multi-model frameworks like Crops in silico must therefore anticipate stochasticity at this micro-271 

scale, in addition to the formation of discrete organs in a plant model, or germination of 272 

individual weeds in a field model. 273 

 274 

Multiple types of model are as natural in a digital organism as the many biological processes that 275 

contribute to a physical organism (or the many research perspectives to understand it). 276 

Integrating these diverse model types is by no means only a technical topic. In the example of 277 

data-driven and quantitative modelling approaches to the circadian clock (above), flexible 278 

management was required (Balmer et al., 2016) to reconcile the timelines of each modelling 279 

approach and their different concepts of the “publishable unit” of research. New approaches to 280 

research dissemination could be adopted in a Crops in silico community, as preprints, data 281 

publications, model archive files, and institutional innovations such as “inside-out” libraries 282 

(Bergmann et al., 2014; Dempsey, 2013; Leitner et al., 2016; Schloss, 2017) offer more 283 

flexibility in what constitutes a “unit” for dissemination. We return to these social factors in the 284 

context of community standards, below, and in the final section. 285 

 286 

Modelling frameworks and languages  287 

 288 

The technical challenge to link heterogeneous models is long-standing and well recognised 289 

(Adam et al., 2012; Ghosh et al., 2011; Goldberg et al., 2018; Macklin et al., 2014; Marshall-290 

Colon et al., 2017; Pradal et al., 2008). The approaches can be simplified to two extremes, either 291 

to rewrite all the models in a common modelling language or to devise an integration system that 292 

links the models in their diverse, native forms, as loosely-coupled “black boxes” (Figure 3). 293 

Tightly woven into this problem is the distinction between declarative and procedural models. 294 

Declarative models are a formal specification of the model, such as its mathematical definition. 295 

Separate software is then required to simulate the model, leading to advantages described 296 

elsewhere (Muetzelfeldt, 2007). If in addition a declarative model uses a standardised format, 297 
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then the model becomes easy to exchange between software tools (discussed in the following 298 

section), and therefore easier to understand and modify.  299 

 300 

In contrast, implementing the model in a programming language is procedural (or ‘imperative’): 301 

the model specification is also the computer code for simulation, whether it is in a scripting 302 

language such as python or R, a high-level language such as Matlab, or a general-purpose 303 

language such as C++. Good programming conventions can separate the declarative part of the 304 

model but there is no guarantee of this. The code may then be executable but obscure, making 305 

the model a black box. Modelling procedures are clearly important as well as the models. Open-306 

source, well-documented code makes these more accessible than a closed-source or 307 

undocumented modelling framework. The importance of open-source software for reproducible 308 

research is discussed elsewhere (Mendes, 2018). 309 

 310 

To illustrate these general considerations with a detailed example, we consider the development 311 

of the Arabidopsis Framework Model from four previously-separate models (Chew et al., 312 

2014b). Rewriting each of the constituent sub-models into a common language in the Simile 313 

modelling environment, then re-validating them in numerical simulation, was a major effort 314 

(Muetzelfeldt and Massheder, 2003). A preliminary project, PlaSMo, first collected likely 315 

component models from idiosyncratic computing code (Davey et al., 2009). The refactoring 316 

process depended on access to the model files. Files for one model had been deleted online and 317 

were only available from the Google cache. The commercial, Simile environment was selected 318 

for refactoring because it offered a rich, graphical interface and supported a declarative, XML 319 

model format, SimileXMLv3 (see Box 1). Like SBML, this was based on the widely-used 320 

MathML standard (Hucka et al., 2003). In practice, refactoring the various model codes required 321 

unusually broad skills. As benefits of this investment, the component models in a web portal (see 322 

Box 1) became more readily and uniformly accessible for future work, and the process of model 323 

curation and re-validation provided stringent quality control. Among the challenges were IF … 324 

ELSE … conditions: standard programming tools, which might distinguish parts of a model that 325 

are used at different stages of plant development. These effectively, and very concisely, embed 326 

multiple, alternative models within the same procedural code. Rewriting such models could 327 

involve untangling a web of conditional statements, improving clarity but expanding the model 328 

description. The Agricultural Model Exchange Initiative (Martre et al., 2018) are currently 329 

embarking on a similar approach, with contemporary software tools (see Box 1).  330 

 331 
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The “black box” approach is initially faster, at least for a small number of models. The L-studio 332 

framework, for example, can call external model codes (Figure 3), and the emerging Crops in 333 

silico interface links models in four programming languages (see Box 1). More ambitious model 334 

integration systems have been applied in projects (Marshall-Colon et al., 2017; Zhu et al., 2016) 335 

such as the European agricultural assessment project SEAMLESS (van Ittersum et al., 2008). 336 

The promise of this loose coupling is that modellers continue to develop their diverse, 337 

component models independently, and yet can still interact with the ensemble. The practical risk 338 

is that their unencumbered innovation flies beyond the reach of the integration system, so the 339 

ensemble can no longer be simulated. More dangerously for the long term, a growing set of 340 

‘black box’ models is harder for any individual to understand, frustrating the need for modellers 341 

to refine and revise the component models. This seems to be an opportunity for biology to 342 

inspire new computer science, for example using domain-specific languages that naturally 343 

express the relevant biology (Honorato-Zimmer et al., 2017; Kniemeyer et al., 2007; Zardilis et 344 

al., 2019) and meta-languages that integrate these models and control their simulation 345 

(Mjolsness, 2018). 346 

 347 

Standards-based modelling for Crops in silico 348 

If a growing number of plant modellers are to understand and use a wider range of model types, 349 

investing in a standards-based approach can speed up the process. Systems Biology uses several 350 

modelling standards, notably Systems Biology Markup Language (7) and Cell Markup Language 351 

(CellML). SBML is a standard for constraint-based and quantitative models (Hucka et al., 2018). 352 

CellML adds support for various cellular interactions (Lloyd et al., 2004). These machine-353 

readable, model exchange formats (Figure 1C) that have spurred investment in a mutually-354 

reinforcing economy of online repositories and software tools that use the standard format as 355 

input and/or output. For example, storing a private SBML model file in the self-service 356 

FAIRDOM data repository (Wolstencroft et al., 2015) automatically allows simulation of the 357 

model at the JWS-online resource (Snoep and Olivier, 2002). Complementary standards are 358 

growing the economy. The Simulation Experiment Description Markup Language (SED-ML), 359 

for example, describes how a particular SBML model simulation was run (Waltemath et al., 360 

2011). Uploading a SED-ML file to an online resource can exactly reproduce a published 361 

simulation figure. The file specifies how the resource should retrieve a model file from an online 362 

repository, send it to an online simulator and plot the relevant part of the simulation results. This 363 

level of transparency and replicability is a highly attractive product of the global SBML 364 
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economy (Mendes, 2018). Given these potential advantages, we considered how SBML would 365 

represent a plant growth model that might arise from Crops in silico. 366 

 367 

The plant growth use case highlighted three main issues for SBML: input weather data, 368 

expressing some key concepts, and simulators for multi-models. First, systems biology models 369 

usually reflect controlled, laboratory conditions. The Input Signal Step Function in SBML 370 

represents step and cyclic experimental manipulations (Adams et al., 2012), for example, 371 

motivated by the light-dark cycle in a plant growth chamber. Most crop models, in contrast, read 372 

in timeseries of fluctuating weather data during the simulation. SBML does support custom-373 

defined functions, including splines and piecewise-linear functions. These can represent input 374 

timeseries data as new variables in the SBML model file, interpolating between timepoints to 375 

make environmental data available at any point in the simulation. Simple SBML Data Tools 376 

were therefore created to support such modification of SBML files, for crop and other models 377 

(see Box 1). Secondly, core SBML cannot represent the creation of compartments during a 378 

simulation, as required to model the formation of new plant organs. SBML development was 379 

revised in 2010 to extend the core (Hucka et al., 2018) with specialised, modular packages, 380 

which are proposed by the community (“qual” was noted above). Three packages were 381 

particularly relevant for the Arabidopsis Framework Model, which would be representative for 382 

many plant-level models: arrays, dynamic processes (the package known as “dyn”) and 383 

hierarchical model composition (“comp”), among a larger set that was discussed earlier 384 

(Muetzelfeldt, 2010). Productive interaction with any such community effort needs some 385 

understanding of the community norms. The packages are at varying stages of development 386 

(SMBL community, 2017). SBML community rules focus their resources on the exchange of 387 

models between software tools, where there is demand for the exchange and support for its 388 

standardisation (Hucka et al., 2015; Schreiber et al., 2015). To be formally adopted, new SBML 389 

packages must be implemented in two, independent software products. A potential drawback of 390 

the modular approach is that, even if each of the three packages mentioned is fully developed in 391 

SBML, there is no guarantee that any simulation software will support all three together. 392 

Engaging with SBML models offers a bridge to Systems Biology but the sensible norm that 393 

demand and software tools together lead the development of SBML standards, as noted above, 394 

has a significant repercussion. Both demand and tools will initially be limited, when an initiative 395 

such as Crops in silico aims to lead a field. Engagement with community standards might 396 

therefore be a later step. Lastly, controlling disparate simulation timesteps and reconciling the 397 

availability of shared resources among competing sub-models were considered at a workshop in 398 

2015, which tested the representation of a landmark “whole cell” model (Karr et al., 2012) in a 399 
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standardised form (Waltemath et al., 2016). One option considered for modular, multipart 400 

models was a model-control system, using a standard akin to SED-ML. This approach might be 401 

equally relevant to integrating diverse models for Crops in silico. However, the workshop report 402 

coyly notes that “Significant effort will also be needed to develop an efficient, parallelized, 403 

multi-algorithm simulator.” (Waltemath et al., 2016). 404 

 405 

After a suitable modelling approach has been selected, the modellers must represent the 406 

biological processes of interest with enough detail to address the relevant issues. The question of 407 

“what’s in the model” (specifying the model’s variables) usually has many reasonable answers, 408 

which provoke debate rather than consternation. If the biological issues require a quantitative 409 

model, however, specifying the rates that are associated with each process (the values of the 410 

model’s parameters) can be an overwhelming and contentious task. We next provide a specific 411 

example that illustrates this challenge. 412 

Parameter values for a quantitative model 413 

The 24-hour, circadian clock in Arabidopsis thaliana has been a paradigmatic system for studies 414 

of dynamic gene regulation over 20 years (Millar, 2016). Because timing was the critical, 415 

biological issue, quantitative, dynamic models were a natural approach (Bujdoso and Davis, 416 

2013). They operated with time in real hours and their success was judged on whether the 417 

simulated waveforms of rhythmic gene expression helped to understand (explain and predict) the 418 

experimental timeseries data, in various conditions. The RNAs and proteins of the dozen or so 419 

clock genes were represented with arbitrary concentration units, in contrast to the real hours. 420 

These models were built to understand results from molecular genetic assays, which often uses 421 

relative or arbitrary units, rather than biochemical kinetics, where absolute units are more 422 

common. Models in absolute units are advantageous, however (as outlined below). We therefore 423 

summarise the parameter values that would be required to convert a model of a plant gene 424 

regulatory network, such as P2011 (Pokhilko et al., 2012), to absolute concentration units. The 425 

values described are listed in Table 1, extending similar resources of parameter estimates for 426 

other organisms (Milo et al., 2010).  427 

 428 

Macromolecular synthesis and degradation 429 

Most of the models deal with the birth and death of the clock gene RNAs and proteins. However, 430 

absolute RNA transcription rates have not been measured in plants. Sidaway-Lee et al. 431 

(Sidaway-Lee et al., 2014) measured the distribution of nucleotide incorporation rates in 432 
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Arabidopsis and their temperature-dependence. The results were reported in microarray 433 

fluorescence units per hour. We are therefore limited to estimating a maximum transcription rate 434 

for eukaryotes in general, from a maximum RNA polymerase II elongation rate of 5 kbp/minute 435 

in human cell lines (Danko et al., 2013) and 4.5 kpb/min in zebrafish (Hanisch et al., 2013), and 436 

occupancy of typically one RNA polymerase complex per gene (Zenklusen et al., 2008). 437 

Maximal transcription rate is then 2min-1 for a 2.5kb RNA, for example, ignoring short-term 438 

transcriptional bursting (Harper et al., 2011). RNA degradation rates have been measured in 439 

large-scale studies (Narsai et al., 2007; Sidaway-Lee et al., 2014), either after transcriptional 440 

inhibition or by inference from the nucleotide incorporation data. Mean RNA half-life was 5.9h 441 

in plant cell cultures at 22°C  (Narsai et al., 2007), or 1.9h (at 27°C) to 5.0h in plants (17°C, 442 

Sidaway-Lee et al., 2014). The microarray readout signals were less reliable for rare and 443 

unstable RNAs, however, and RNAs with daily rhythms must be unstable. Specific analyses of 444 

clock-relevant RNAs are therefore important, again using inhibitors (Lidder et al., 2005) or by 445 

inference from statistical timeseries models without inhibition (Finkenstadt et al., 2008). Note 446 

that the inhibitors could give paradoxical results (Finkenstadt et al., 2008): if the degradation of a 447 

target RNA is regulated by an RNA mediator that is itself unstable, then rapid depletion of the 448 

mediator during a transcriptional block may stabilize the target RNA.  449 

 450 

Protein translation rates were measured by Piques et al. (Piques et al., 2009) for a set of 451 

metabolic-related genes in Arabidopsis, using calibrated qRT-PCR assays to measure the 452 

absolute number of transcripts in free RNA or bound to ribosomes. The fraction of transcripts 453 

engaged in translation can be calculated, yielding a range of 0.56-0.9, mean 0.77. A ribosome 454 

translation velocity of 3 amino acids/second and density of 6.6 ribosomes/kb of coding sequence 455 

(CDS), based on data from bacteria (Brandt et al., 2009) were then used to estimate protein 456 

synthesis rates (mol protein g-1FWh-1) and their increase in the light compared to the dark period 457 

(Ishihara et al., 2015; Piques et al., 2009). Protein degradation rates have been measured in large 458 

studies following metabolic labelling (Li et al., 2017), though the mass spectrometry methods 459 

involved are biased towards abundant and therefore often stable proteins and the dynamics of 460 

amino acid pools introduce further limitations (Ishihara et al., 2015). The median half-life of 6 461 

days (Li et al., 2017) clearly does not represent the clock regulators with high-amplitude, daily 462 

rhythms. However, constraints on the possible protein degradation rates can be estimated from 463 

the available timeseries data, where the clock protein has been detected as a tagged fusion 464 

protein or with antibodies to the native protein (for example, Knowles et al., 2008; Nakamichi et 465 

al., 2010).  466 
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Volume and transport 467 

Given these synthesis and degradation rates, various models can estimate molecular copy 468 

number per cell. The next critical values are the volumes of the relevant cellular compartments, 469 

to convert copy number estimates to concentrations. Koffler et al. (Koffler et al., 2013) 470 

quantified the volumes of A. thaliana mesophyll cells in young and old leaves, reporting each 471 

compartment as a fraction of total cellular volume. For example, the mean volume occupied by 472 

the nucleus was 0.16% of the cell volume in an older leaf. Wuyts et al. (Wuyts et al., 2010) 473 

report the distribution of volumes for palisade mesophyll cells, with a mean cell volume of 474 

73,000µm3. Combining these gives a nuclear volume of 117µm3. This is reassuringly close to an 475 

estimate of 113µm3 that we calculate from the nuclear diameter of 5.99 ± 0.72µm measured by 476 

3D-FISH (Tirichine et al., 2009), assuming a spherical nucleus. 477 

 478 

Finally, model components must be transported among cellular compartments; in our case the 479 

nucleus is particularly relevant. No data is present for the size, number or distribution of A. 480 

thaliana nuclear pore complexes (NPCs), the route for such transport. Data on tobacco BY-2 cell 481 

cultures showed around 50 NPCs per µm2 of nuclear envelope (Fiserova et al., 2009). 482 

Furthermore, in human cultured HeLa cells the transport rates of NTF2 and Transportin are 170 483 

and 140 molecules/s/NPC respectively (Kubitscheck et al., 2005). If we assume that similar 484 

transport rates are achievable in A. thaliana, using the nuclear diameter above suggests possible 485 

transport rates up to 960,000 molecules/s into the nucleus. These are unlikely to affect dynamics 486 

on a circadian timescale of multiple hours, unless nuclear transport is specifically regulated.  487 

Binding affinity 488 

Clock proteins function in the model by interacting either with each other or with the DNA in a 489 

clock gene’s promoter. The affinity (Kd) of each interaction affects the model’s behavior but 490 

almost none of the specific values have been measured. General (Kastritis et al., 2011; Kumar 491 

and Gromiha, 2006) or more specific (Stiffler et al., 2007) databases describe protein-protein 492 

interactions in other species. Wide variation in even the median Kd  (233nM, 12nM and 14µM, 493 

respectively) in part reflects the inclusion of protein classes such as high-affinity antibodies, 494 

emphasizing the importance of more targeted resources. A sample of 42 published DNA-protein 495 

affinities for plant DNA-binding proteins gives median Kd of 20nM (Figure 4A) (Aggarwal et al., 496 

2010; Hao et al., 1998; Hofr et al., 2009; Izawa et al., 1993; Liang et al., 2008; Moyroud et al., 497 

2009; O'Neill et al., 2011; Prouse and Campbell, 2013; Reymond et al., 2012). A similar 498 

collection of plant protein-protein interactions (n=45) suggested a median Kd of 86nM (Figure 499 

4B) (Ballut et al., 2005; Bauer et al., 2013; Bernal-Bayard et al., 2014; Bisson and Groth, 2010; 500 
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Dong et al., 2010; Fuglsang et al., 2003; Hao et al., 2011; Levskaya et al., 2009; Li et al., 1999; 501 

Liu et al., 2007; Luoni et al., 2006; Mantovani et al., 2014; Ogawa et al., 2008).  502 

Means and ends of detailed models with absolute parameterisation 503 

One advantage of a model species such as Arabidopsis is the concentration of research effort, 504 

resulting in measured values for parameter such as the nuclear volume (above). Nonetheless, 505 

building a quantitative model of a plant gene regulatory network such as the P2011 clock model 506 

seems to demand more parameter values than have been measured. Parameter fitting is one 507 

means to overcome the incomplete parameter measurement, and was used extensively to 508 

construct past clock models (Bujdoso and Davis, 2013). Rather than being constrained by input 509 

parameters alone, the model outputs were constrained to match functional data, in this case the 510 

detailed waveforms of rhythmic timeseries. The data in Fig. 1D would help to constrain the clock 511 

model, for example. Timeseries data have been published by many research groups for tens of 512 

light-dark conditions and clock-mutant plants. Each timeseries typically has 10-100 data points. 513 

Public, reference data sets are available (Flis et al., 2015), only for Arabidopsis, to ease the 514 

burden of data collation (Fogelmark and Troein, 2014). Mathematical analysis suggests that the 515 

clock might be particularly tractable to parameter fitting, because the interlocked, negative-516 

feedback loops of gene regulation constrain the system’s dynamic behaviour (Rand et al., 2006). 517 

Regulatory networks of this form have much less flexible behaviour than a modeler might expect 518 

to gain from the many parameters, so correspondingly fewer sets of parameter values can 519 

produce model outputs that match the timeseries data. Indeed, detailed measurements in 520 

Arabidopsis have subsequently validated some of the fitted parameter estimates of clock models 521 

(Pudasaini et al., 2017), suggesting that more such measurements could further validate the 522 

approach.  523 

 524 

Model development still required searching a high-dimensional space (several 10’s of 525 

parameters) to discover sets of parameter values that were consistent with the data, which is 526 

computationally demanding. We have shown that open data, free software (Alves et al., 2006) 527 

and public computational resources can make this process accessible (Flis et al., 2015) but 528 

experts in advanced computation will remain important contributors to Crops in silico. Absolute 529 

parameter estimates (above) are valuable here too, in limiting the range of values that the search 530 

algorithms must explore, speeding the parameter search. Moreover, qRT-PCR assays calibrated 531 

to absolute RNA copy numbers are now providing the first gene expression timeseries data that 532 

naturally match the simulation outputs from models with absolute parameter values (Baudry et 533 

al., 2010; Flis et al., 2015; Piques et al., 2009).  534 
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 535 

Modelling with absolute biochemical units should benefit our understanding of the clock, 536 

judging by earlier examples in biology. We should discover whether the models’ arbitrary units 537 

concealed some processes that required unusual or impossible parameter values, suggesting that 538 

the plant uses a different biochemical mechanism to achieve that aspect of its circadian timing. 539 

Unrelated studies (including high-throughput surveys) will more easily test parts of the model, 540 

by measuring a relevant biochemical parameter value or the level of a model component, 541 

compared to the model’s predicted value (as noted above, Pudasaini et al., 2017).  542 

 543 

The most important benefit may come not in fundamental understanding but in engineering. The 544 

models in absolute units should better represent particular manipulations, such as altering the Kd 545 

for a particular clock protein binding to a particular promoter. This is the level of understanding 546 

that the Crops in silico initiative and others propose for some key processes in crop growth, in 547 

order to apply molecular genetic tools most powerfully to crop improvement (Zhu et al., 2016). 548 

Detailed models will be required to design interventions in those processes, such as the 549 

comprehensive, OnGuard stomatal physiology model (Hills et al., 2012) or the ePhotosynthesis 550 

model (Zhu et al., 2013). The biochemical and biophysical parameter values in ePhotosynthesis 551 

derive from many species but none is from Arabidopsis. In part, this reflects the technical 552 

challenges that a very small plant presents for photosynthesis research (Stitt et al., 2010). 553 

However, the (excellent) researcher who most directly measured parameter values for our clock 554 

models rated that as their most boring work ever, hinting at the social factors that also shape 555 

research. 556 

Process and Pizzazz for a digital plant community 557 

Crops in silico aims to link discovery science that is far from agricultural production, with crop 558 

models that are closely linked to practice (Figure 5). Such different research areas bring distinct 559 

types of social organisation, as Vermeulen pointed out in another context: “In (post-)genomics 560 

research understanding is geared towards innovation, which requires higher levels of integration 561 

[among research groups], while ecology research is primarily oriented towards understanding 562 

nature and environmental change, allowing more decoupled forms of organisation. This different 563 

orientation of molecular biology and ecology also causes a difference in financial resources for 564 

collaboration, as the goal of improving human health attracts more research funding than 565 

increased understanding of basic environmental processes.” (Vermeulen et al., 2013). The Crops 566 

in silico initiative foresees a substantial effort in social organisation, drawing from examples 567 

including SBML, the Physiome and “virtual organism” initiatives such as the Virtual Rat or 568 
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Virtual Physiological Human (Marshall-Colon et al., 2017). These networked, interdisciplinary 569 

research organisations are an active domain for social science research, which is generating 570 

results and concepts that seem relevant for practitioners (Freeman and Millar, 2017). The 571 

“Community of Practice”, for example, links members who share a common goal across the 572 

boundaries of previously-separate fields: Crops in silico seeks to establish such a community. 573 

One challenge is to attract members. The relative youth of the Arabidopsis field might offer 574 

some advantage here, in providing new members to an emerging plant modelling community 575 

(see final section).  576 

The promise and challenge of shared resources 577 

“Boundary Organisations” can also support the emerging community, particularly if they 578 

manage “Boundary Objects” (Star and Griesemer, 1989). These can be physical: the high-579 

throughput plant phenotyping facilities and the EMPHASIS network that coordinates them in the 580 

EU form one example (Roy et al., 2017). The Biomodels repository of models (Glont et al., 581 

2018) is such an Object from the Systems Biology community, and its original focus was on 582 

models in SBML format. Biomodels addresses a practical need specific to that community, 583 

attracts investments from different constituencies (models from biologists and software tools 584 

from computer science) and thereby creates a form of shared, social capital. Plant science is not, 585 

however, a major component: 38 models include Arabidopsis components or literature, of a total 586 

1649 published models (in mid-2018); 2 models include maize references; 0 for wheat or barley. 587 

Biomodels policy is now to accept models in any format, increasing its relevance for crop 588 

models. It seems relevant that Biomodels is hosted by the European Bioinformatics Institute 589 

(EBI), itself part of the inter-governmental, treaty organisation EMBL (established 1974). One or 590 

more anchor institutions with stable mission and funding will be extremely beneficial for the 591 

risky, long-term development of complex plant models and their associated communities.  592 

 593 

Crops in silico must link very diverse data with the diverse models, so resources to manage the 594 

data might form another, helpful, Boundary Object. Alongside the experimental phenotyping 595 

facilities mentioned above, data resources have been developed to manage and share large-scale 596 

plant phenotyping data (Neveu et al., 2018). The Agricultural Models Intercomparison and 597 

Improvement Project (AgMIP) has worked to assemble benchmark data as well as crop models, 598 

for example (Asseng et al., 2013; Rosenzweig et al., 2013). Systems biology models, in contrast, 599 

are too rarely benchmarked: open, community-based benchmarking would help to give credit for 600 

model improvements. However, many of the data that we need are acquired at the single-project 601 

scale (as in Table 1), where data sharing is still not routine.  602 
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 603 

The Open Research movement (The Royal Society, 2012) promotes sharing of data (Open Data), 604 

as well as publications (Open Access), software (Open Source) and in some cases, even lab 605 

notebooks (Open Notebook Science). “Data” is very broadly conceived, including protocols, 606 

analysis or visualisation scripts, and models, as well as experimental data. The principles of 607 

FAIR data are more recent but equally important for Crops in silico, as they promote data that 608 

are Findable, Accessible, Interoperable and Re-usable (Wilkinson et al., 2016). FAIR data need 609 

not be Open, but if access is granted then they should be easier to use. In contrast, Open data that 610 

is not FAIR might be unusable. FAIR is therefore being proposed as a guiding principle for 611 

international initiatives such as the European Open Science Cloud and the US NIH Data 612 

Commons (see Box 1).  613 

 614 

To get FAIR data beyond the principles and into common research practice, we need easy-to-use 615 

software tools and resources. Resources to manage the “long-tail” data (Ferguson et al., 2014) 616 

that is required for detailed modelling can in theory be “explicitly created to meet the 617 

researchers' needs, support extensive curation, and embody a heightened awareness of what it 618 

takes to make data re-useable by others” (Leonelli et al., 2013). Although this is clearly 619 

desirable, few biology groups have such data management resources, or the software skills to 620 

customise them for their needs, or much appetite to add data curation to their overloaded 621 

schedules. The data curated in Table 1, for example, were assembled only because they were 622 

required for a specific research project. The software that might underpin such resources is 623 

fragmented (Kwok, 2018), except where research funders have coordinated internationally as in 624 

the AgMIP and FAIRDOM projects (see Box 1) (Rosenzweig et al., 2013; Wolstencroft et al., 625 

2017). Coordination among funders, including direct funding for data curation, will be essential 626 

to get beyond pilot, example models and create a broadly-based digital organism framework that 627 

is regularly updated and refined with new information, in turn supporting the careers of a new 628 

generation of modellers.  629 

Conclusion 630 

No one should be surprised that such major research problems are relatively neglected, if 631 

funders, researchers and their institutions recognise and reward individual lab heads catching 632 

transient, project awards, like superhero characters in a video game. We have argued that 633 

projects should be valued, rather than individuals (Freeman and Millar, 2017). This requires the 634 

intellectual platform, capability and leadership to manage such projects, which is itself an area 635 

for rich debate (Mazzucato, 2014; Rip, 2000; Weber et al., 2016). Large projects in this area 636 
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require international, community-wide effort but this does not imply that they should be 637 

monolithic. Rather they need particular infrastructure, with funding mechanisms suited to 638 

infrastructure, to integrate the results from distributed projects that might be independently 639 

funded.  640 

 641 

This article focussed on the need for digital organism initiatives to create and integrate a network 642 

of diverse models, and practical steps towards integration (summarised in Figure 5). Model 643 

diversity will always be with us, due to the variety of biological, chemical and physical processes 644 

involved, the uneven states of knowledge, mathematical and computational tools, and the 645 

differing aims of model users. Digital organism initiatives recognise both the model integration 646 

tasks and the parallel challenge of managing diverse data. We touched on the technical 647 

infrastructure that is required but community structures and community dynamics also contribute 648 

to the operation and governance of such research networks (Freeman and Millar, 2017). Social 649 

infrastructure therefore has a key role and might require parallel, infrastructural funding, which 650 

will change over time. Community organisation might initially focus on understanding and 651 

testing pilot model integrations, for example, whereas standardisation might be a later stage, as 652 

we noted in the case of SBML. 653 

 654 

In a landscape of this complexity, engaging multiple research and stakeholder communities, 655 

projects like Crops in silico will be demanding of their leadership. The social sciences may 656 

contribute useful strategies (Balmer et al., 2016) but these do little to mitigate the risks for junior 657 

faculty, until concerns over lower funding and recognition for interdisciplinary research are 658 

resolved (Bromham et al., 2016; Rafols et al., 2012; Yegros-Yegros et al., 2015). We might 659 

rather harness the motivation of our youngest researchers. The success of the student-led 660 

International Genetically Engineered Machines competition (iGEM) brought a definite buzz to 661 

Synthetic Biology (Matheson, 2017), by giving them tools, keeping an open competition, and 662 

making it fun.  663 
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Text Box 1 

Box 1: Online Resources and Software 

 

• Agricultural Models Exchange Initiative (AMEI), repository of models and resources for 

model exchange in CropML, by Pierre Martre, Christophe Pradal et al. 

https://github.com/AgriculturalModelExchangeInitiative. 

• Agricultural Models Intercomparison and Improvement Project (AgMIP), international 

programme of data format interconversion and model comparison for crop models, 

http://www.agmip.org. 

• cis_interface, software tools to link “black box” models, by Meagan Lang (National 

Centre for Supercomputing Applications, Illinois, USA) 

https://github.com/cropsinsilico/cis_interface. 

• European Open Science Cloud, high-level initiative in Open Research that includes FAIR 

data principles, https://ec.europa.eu/research/openscience/. 

• FAIRDOM, international project developing software for “long-tail” research data 

management and advocating Open and FAIR data, https://fair-dom.org. 

• FAIRDOMHub, instance of FAIRDOM software providing a self-service commons for 

public or private data, models and protocols, https://fairdomhub.org. 

• GARNet (previously the Genomics Arabidopsis Research Network), organization 

representing the UK Arabidopsis research community; several relevant reports online: 

http://www.garnetcommunity.org.uk. 

• NIH Data Commons, pilot project (2017-2020) including FAIR data principles, 

https://commonfund.nih.gov/commons. 

• Plant Systems Modelling (PlaSMo), repository of plant growth models in several formats, 

https://www.plasmo.ed.ac.uk; now migrated to the FAIRDOMHub commons. 

• SBMLDataTools, software tools to add external timeseries data as a function in an 

SBML model, by Alastair Hume (EPCC, Edinburgh, UK). 

https://github.com/allyhume/SBMLDataTools. 

• SimileXMLv3, XML schema for Simile models, with a model conversion tool. 

http://www.simulistics.com/book/similexml/simile-markup-languages/similexmlv3 [the 

PlaSMo project presented a dozen models, refactored into this standard; Simile software 

support had lapsed at the time of writing]. 
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Table 1. Parameter values for detailed modelling were collated from the literature.  
1 PMID, PubMed identifier of the publication. 
 

 

 

.   

     Publication reference   

Component Process Sample Value units PMID1 First Author Year 
Data 

display Comments 

Cytosol Volume A. thaliana leaf 4.1 % of cell volume 23265941 Koffler BE  2013 Table 1 

 

Mitochondria Volume A. thaliana leaf 0.47 % of cell volume 23265941 Koffler BE  2013 Table 1 

Chloroplasts Volume A. thaliana leaf 15.63 % of cell volume 23265941 Koffler BE  2013 Table 1 

Nucleus Volume A. thaliana leaf 0.16 % of cell volume 23265941 Koffler BE  2013 Table 1 

Peroxisomes Volume A. thaliana leaf 0.14 % of cell volume 23265941 Koffler BE  2013 Table 1 

Vacuole Volume A. thaliana leaf 79.19 % of cell volume 23265941 Koffler BE  2013 Table 1 

Nucleus Diameter A. thaliana leaf 5.99 µm 19650905 Tirichine L 2009 
  

Cell Volume A. thaliana leaf 73000 µm3 20598116 Wuyts N  2010 
Fig. 8, left 
bottom 

Mean value for palisade 
mesophyll cells. 

Gene transcription transcription rate Yeast 2 - 30 mRNA/hour 21103382 Pelechano V  2010 Abstract 
Reported range is 2-30 
mRNA/hour. 

RNA Polymerase II density on DNA Yeast 0.078 Pol II molecules/kb 21103382 Pelechano V  2010 
  

RNA Polymerase II density on DNA Yeast 2 pol II/gene 19011635 Zenklusen D 2008 
 

RNA Polymerase II elongation rate Yeast 0.56 kb/min  24103494 Miguel A  2013  Fig. 1A 21ºC 

RNA Polymerase II elongation rate Mammalian cells 4 kb/min 21264352 Brody  2011 
 

RNA Polymerase II elongation rate Zebrafish 4.8 kb/min 23250218 Hanisch A 2013 Abstract Measured at 28.5 ºC. 

Ribosome density Translation  E. coli  11 ± 2 ribosomes/RNA 19167328           Brandt F 2009  Fig. 2G 
In polysomes translating 
firefly Luciferase 

Nuclear Pore Complex 
(NPC) 

density on nuclear 
envelope lymphocytes 2 - 4 NPCs/µm2 19392704 Fiserova 2009 

 
NPC  

density on nuclear 
envelope Mature Xenopus oocytes 60 NPCs/µm2 19392704 Fiserova 2009 

 
NPC 

density on nuclear 
envelope Tobacco cell cultures 50 NPC/µm2 19392704 Fiserova 2009 

 

40-50 for 3-day-old cells; 
50 for 10-day-old cells. 

Transportin protein 
Nuclear 
translocation rate Mammalian (HeLa) cells 140 molecules/s/NPC 15657394 Kubitscheck U.  2005 

 
NTF2 protein 

Nuclear 
translocation rate Mammalian (HeLa) cells 170 molecules/s/NPC 15657394 Kubitscheck U.  2006 

 Nucleoplasmin core 
domain fusion protein 

Nuclear 
translocation rate Mammalian (HeLa) cells 17 MDal/s/NPC 11250898 Ribbeck K.  2001 
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Figure legends 1 

Fig. 1. A model can usefully be represented in several forms. 2 

 3 

(A) A simple model of the circadian clock gene circuit (Locke et al., 2005) is shown as an 4 

informal diagram, linking four genes (helices) via their proteins (ovals), with inputs from light 5 

(sun). (B) The differential equation for changes in cytosolic LHY protein (cLc) in the model is 6 

human-readable (and declarative). This equation involves LHY mRNA (cLm), a translation rate 7 

parameter (p1), RNA degradation rate parameters (m2, k2), and translocation of nuclear LHY 8 

protein (cLn) with rates r1, r2. (C) A fragment of SBML represents the equation with the same 9 

names but is now machine-readable. The first line provides a stable reference to interpret its 10 

MathML format. (D) Timeseries simulation of the SBML model in suitable software provided a 11 

model output for the RNA level of gene Y (Y fit; red, open symbols; timepoints selected to 12 

match data), for comparison to RNA data acquired for a candidate gene in Arabidopsis (GI data, 13 

filled symbols). After a dark night (-12h to 0h), dawn light transiently induces both the 14 

hypothetical Y and candidate gene GI; the simulation continues in constant light. The 15 

comparison of model to data leads to future model refinement (dashed arrow) in the iterative 16 

cycle of systems biology. Adapted from (Locke et al., 2005). 17 

 18 

Fig. 2. The simple, qualitative form of a model can retain key behaviours. 19 

 20 

(A) Simulation outputs show RNA levels changing continuously, from the simple clock model 21 

(Locke et al., 2005) in quantitative form (differential equations, as in Figure 1B). (B) RNAs are 22 

either expressed (1) or not (0) in the qualitative form of the same model (Akman et al., 2012). 23 

The binary, time-delay model still shows bimodal peaks of RNA expression from gene Y (green), 24 

with light induction after dawn (as in Figs. 1D, 2A). Levels are slightly offset for clarity in (B). 25 

Time 0h is midnight. Open box, light interval; filled box, dark interval. 26 

 27 

Fig. 3. New capabilities arise from a “black-box” combination of models. 28 

 29 

The circadian clock model shown in Figure 1 (Locke et al., 2005) can communicate to the 30 

Arabidopsis architectural model (Mundermann et al., 2005) running in L-studio software. A 31 

version of the clock model in Matlab software was automatically compiled into the C 32 

programming language (creating a ‘black box’), in order to interact as a black box with the lpfg 33 

programme of L-studio. TOC1 protein level from the clock model controlled a leaf angle 34 

parameter in the architectural model, creating a simple simulation of rhythmic leaf movement in 35 

Arabidopsis over day/night cycle. The clock model’s light:dark setting also darkened plant 36 

colour at night (16h, 20h). Image generated by Paul E. Brown and A.J. Millar. 37 

 38 

Fig. 4. Published parameter values can inform detailed modelling.  39 

 40 

(A) Distribution of published Kd values for plant protein-protein interaction affinities. (B) 41 

Distribution of published Kd values for plant protein-protein interaction affinities. In the (many) 42 

cases where an interaction of interest has not been measured directly, data such as these help to 43 

constrain the range of parameter values that computational, parameter-fitting procedures should 44 

explore. Publication references are listed in the main text. 45 

 46 

Fig. 5. Linking Systems Biology with Crop Science models. 47 

 48 

The solid line links the concepts of biology, first from genome sequence via genotype, 49 

biochemical parameters and molecular regulation to whole-organism phenotype in a particular 50 

environment (yellow area); then from phenotypes to field traits and adaptation or to yield under 51 



25 

 

particular management (green area); finally, given genetic variation, through natural selection or 52 

artificial selection in crop breeding, to the evolution of genome sequences (adapted from Millar, 53 

2016). Initiatives like Crops in silico will deal with the whole cycle, by linking several models 54 

(coloured arcs) into a seamless, causal chain. The top line of graphics locate the topics 55 

considered in the main text with reference to this cycle. The arcs suggest current types of model, 56 

in systems biology (indigo), crop science (cyan) and evolution (dark blue). The dimensions that 57 

are often considered in such models are capitalized (G, P, E, M). Underpinning infrastructures 58 

(grey) help to bridge these disciplines. ‘Anchor’ institutions are shown (buildings), which might 59 

provide major experimental facilities, digital infrastructure or a focus for social infrastructure, 60 

such as training or standardisation workshops.  61 

 62 

  63 

  64 
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Fig. 1. A model can usefully be represented in several forms. 

 

(A) A simple model of the circadian clock gene circuit {Locke, 2005} is shown as 

an informal diagram, linking four genes (helices) via their proteins (ovals), with 

inputs from light (sun). (B) The differential equation for changes in cytosolic LHY 

protein (cLc) in the model is human-readable (and declarative). This equation 

also involves LHY mRNA (cLm), a translation rate parameter (p1), RNA 

degradation rate parameters (m2, k2), and translocation of nuclear LHY protein 

(cLn) with rates r1, r2. (C) A fragment of SBML represents the equation with the 

same names but is now machine-readable. The first line provides a stable 

reference to interpret its MathML format. (D) Timeseries simulation of the SBML 

model in suitable software provided a model output for the RNA level of gene Y 

(Y fit; red, open symbols; timepoints selected to match data), for comparison to 

RNA data acquired for a candidate gene in Arabidopsis (GI data, filled symbols). 

After a dark night (-12h to 0h), dawn light transiently induces both the 

hypothetical Y and candidate gene GI; the simulation continues in constant light. 

The comparison of model to data leads to future model refinement (dashed 

arrow) in the iterative cycle of systems biology. Adapted from {Locke, 2005}. 



Figure 2 

Fig. 2. The simple, qualitative form of a model can retain key behaviours. 

 

(A) Simulation outputs show RNA levels changing continuously, from the simple 

clock model {Locke, 2005} in quantitative form (differential equations, as in 

Figure 1B). (B) RNAs are either expressed (1) or not (0) in the qualitative form of 

the same model {akman, 2012}. The binary, time-delay model still shows bimodal 

peaks of RNA expression from gene Y (green), with light induction after dawn (as 

in Figs. 1D, 2A). Levels are slightly offset for clarity in (B). Time 0h is midnight. 

Open box, light interval; filled box, dark interval. 
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Fig. 3. New capabilities arise from a “black-box” combination of 

models. 

 

The circadian clock model shown in Figure 1 {Locke, 2005} can 

communicate to the Arabidopsis architectural model 

{Mundermann, 2005} running in L-studio software. A version of 

the clock model in Matlab software was compiled into the C 

programming language, in order to interact with the lpfg 

programme of L-studio. A clock protein level from the clock model 

controlled leaf angle in the architectural model, creating a simple 

simulation of rhythmic leaf movement in Arabidopsis over 

day/night cycle. The clock model’s light:dark setting also 

darkened plant colour at night (16h, 20h). Simulation by Paul E. 

Brown. 

Figure 3 



Fig. 4. Published parameter values can inform detailed modelling.  

 

(A) Distribution of published Kd values for plant DNA-interaction 

affinities. (B) Distribution of published Kd values for plant protein-

protein interaction affinities. Data such as these help to constrain 

the range of parameter values that parameter fitting procedures 

should explore. Please see main text for publication references. 
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Fig. 5. Linking Systems Biology with Crop Science models. 

 

The solid line links the concepts of biology, first from genome sequence via 

genotype, biochemical parameters and molecular regulation to whole-organism 

phenotype in a particular environment (yellow area); then from phenotypes to 

field traits and adaptation or to yield under particular management (green area); 

finally, given genetic variation, through natural selection or artificial selection in 

crop breeding, to the evolution of genome sequences {adapted from \Millar, 

2016}. Initiatives like Crops in silico will deal with the whole cycle, by linking 

several models (coloured arcs) into a seamless, causal chain. The top line of 

graphics locate the topics considered in the main text with reference to this cycle. 

The arcs suggest current types of model, in systems biology (indigo), crop 

science (cyan) and evolution (dark blue). The dimensions that are often 

considered in such models are capitalized (G, P, E, M). Underpinning 

infrastructures (grey) help to bridge these disciplines. ‘Anchor’ institutions are 

shown (buildings), which might provide major experimental facilities, digital 

infrastructure or a focus for social infrastructure, such as training or 

standardisation workshops.  
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