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Abstract 

 

Background: Perivascular Spaces (PVS), visible on brain magnetic resonance imaging 

(MRI), are thought to be associated with small vessel disease (SVD), neuroinflammation, and 

to be important for cerebral haemodynamics and interstitial fluid drainage. 

 

Aims: To benchmark current knowledge on PVS associations with risk factors, neurological 

disorders, and neuroimaging lesions, using systematic review and meta-analysis. 

 

Summary of review: We searched three databases for PVS publications, calculated odds 

ratios with 95% confidence interval and performed meta-analyses to assess adjusted 

associations with PVS. We identified 116 relevant studies (n=36,108) but only 23 (n=12,725) 

were meta-analysable. PVS assessment, imaging and clinical definitions varied. PVS were 

associated (n; OR, 95%CI, p) with ageing (8395; 1.47, 1.28-1.69, p=0.00001), hypertension 

(7872; 1.67, 1.20-2.31, p=0.002), lacunes (4894; 3.56, 1.39-9.14, p=0.008), microbleeds 

(5015; 2.26, 1.04-4.90, p=0.04) but not WMH (4974; 1.54, 0.71-3.32, p=0.27), stroke or 

cognitive impairment. There was between-study heterogeneity. Lack of appropriate data on 

other brain disorders and demographic features such as ethnicity precluded analysis. 

 

Conclusions: Despite many studies, more are required to determine potential 

pathophysiological PVS involvement in cerebrovascular, neurodegenerative and 

neuroinflammatory disorders.  
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Introduction 

 

Perivascular spaces (PVS), also known as Virchow-Robin Spaces, are seen on magnetic 

resonance imaging (MRI) as thin linear or small punctate structures, of similar signal to CSF, 

in deep grey or white matter.1 Increasing numbers of reports have detailed associations of 

visible PVS on MRI over the last two decades, notably with small vessel disease (SVD) 

lesions. PVS may provide an early biomarker for diagnosing developing disorders such as 

white matter hyperintensities (WMH)2 which increase the risk of stroke and dementia,3 or 

neurodegenerative diseases,4 and are highly heritable.5 

 

We aimed to benchmark current knowledge of associations between PVS and vascular risk 

factors, common neurological disorders and neuroimaging findings using systematic review 

with meta-analysis of all available published data.  

 

 

Methods 

We registered the study protocol (PROSPERO, CRD42017056052) and used the Preferred 

Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Guidelines6. 

  

Search Strategy 

We searched comprehensively for studies published in full up to January 14, 2017, in 

PubMed, Web of Science and Ovid EMBASE. The search keywords included “perivascular 

spaces”, “perivascular space”, “Virchow-robin spaces”, or “Virchow-robin space”, combined 

with “MRI”, “MR” or “magnetic resonance”. We assessed articles with any combination of 

the above keywords and checked reference lists of review papers, our files, and hand 

searched the last five years of Stroke. 

 

Inclusion and Exclusion Criteria 

We aimed to include all papers that reported on PVS associations with vascular risk factors, 

common neurological disorders particularly cognitive impairment, dementia or stroke, or 

neuroimaging signs of vascular disease.  We excluded case reports, animal studies and 

reviews without original data, studies with fewer than 10 subjects, on rare diseases, that were 

not published in English (we lacked resources for translation), lacked MRI, or did not provide 

quantitative data (or where quantitative data could not be extracted) on associations with 

PVS.  
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Data Extraction  

We removed duplicates, screened the remaining titles and abstracts, removed irrelevant 

papers and assessed the remaining potentially eligible papers for inclusion.  

Two reviewers (FFF, LB) extracted title, authors, publication year, number of subjects, mean 

age, sex, PVS location (basal ganglia, centrum semiovale, midbrain or hippocampus), rating 

method and scale used, and results of associations, including whether adjusted for major 

covariates. We used results that had been adjusted for major covariates wherever they were 

available. 

 

We extracted criteria on study quality, four on risk of bias (patient selection, index test, 

reference standard, study timing) and three on applicability (patient selection, index test, 

reference standard), from the Quality Assessment of Diagnostic Accuracy Studies 2 

(QUADAS-2) criteria (https://www.ncbi.nlm.nih.gov/pubmed/22007046).   

 

We excluded duplicate data, including only the most recent or largest dataset from studies 

with multiple publications, but included all available outcomes. Disagreement was resolved 

by consensus or by a third reviewer (JW) who also double-checked the data extraction (JW).  

 

Where associations were not provided as odds ratios (ORs) and 95% Confidence Intervals 

(CI) we calculated the ORs and 95%CI if possible. Where relevant information appeared to 

be available but was not in the publication, we sought additional information from authors. 

Where studies met all inclusion criteria except for providing data for meta-analysable ORs, 

we performed a qualitative narrative summary of the findings.  

 

Statistical Analysis 

We entered the ORs and 95% CI into Review Manager Software Version 5.3 (Cochrane, 

Oxford) for meta-analysis. We used generic inverse variance method and random effects 

model, plotted multivariate adjusted ORs and 95%CI and generated summary ORs. We 

assessed between-study heterogeneity using  𝜒2 test, with p0.05 considered statistically 

significant, and used Higgin’s 𝐼2 test to calculate the percentage of variance across studies 

due to heterogeneity rather than chance.7 𝐼2 of 25% or less was considered low, 26%-50% or 

https://www.ncbi.nlm.nih.gov/pubmed/22007046
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less moderate, 51-75% or less high and 76% and above as very high heterogeneity. We 

assessed publication bias using funnel plots. 

 

 

Results 

 

We identified 956 non-duplicate papers, and eliminated 301 studies based on title and 

abstract. Of the remaining 654 studies screened in full, 116 studies met the inclusion criteria. 

However, of these 116 studies, only 23/116 provided their results as ORs and were therefore 

suitable for meta-analysis. Supplementary Figure 1 summarises the search and selection.  

 

Characteristics of 23 studies included in meta-analysis 

The 23 studies with data suitable for meta-analysis included 12,725 patients (median N=268) 

from various demographic backgrounds (Table 1), performed in various geographical regions 

including the UK, Netherlands, Belgium, France, Sweden, China, Japan, USA and Canada.8-

14 The Northern Manhattan study included Hispanic, black,white and other populations,15 but 

no studies presented data by ethnic group. The cohorts included men and women of age >50.. 

They included individuals with previous history of stroke and patients from memory clinics. 

Several studies reported multiple association, e.g., ageing and hypertension vs. PVS.16  

 

On QUADAS-2 criteria, no studies were judged to have a high risk of bias, only 3/23 studies 

had unclear risk, with the rest being low risk; 3/23 studies were judged to have high risk of 

applicability concerns and the rest low risk (Supplementary Table 1). 

 

Most papers used 1.5T MRI, 11/23 used T2 and the rest a mix of T1 and T2 sequences to 

identify PVS. Most studies reported on PVS in the basal ganglia (BG) and centrum semiovale 

(CS) although several papers reported PVS in the hippocampus.12, 13  

 

Several PVS rating scales were used, one of the commonest being the scale of Potter17 which 

classifies PVS by count into four categories from 0 (no PVS) to 4 (>40 PVS). Other papers 

used a categorical scale of Heier18 which classifies PVS by their diameters into three 

categories: grade 1 (<2mm), grade 2 (2-3 mm) and grade 3 (>3mm). Others include the scale 

of Patankar,19 which rates PVS according to brain regions, and the scale of Adams20 which 

rates PVS ≥1mm separately from ≥3mm. Several studies used their own PVS method.10, 21  
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The included studies distinguished PVS from lacunes, according to size, shape and location 

as described in the STRIVE standards.22  

 

Characteristics of 93 studies that could not be meta-analysed 

The 93/116 non-meta-analysable studies (n=23,383) assessed 52 different risk factors, 

clinical or neuroimaging variables for their associations with PVS (Supplementary Table 2) 

as follows (numbers are number of studies):   

Risk factors: ageing (4), hypertension (2), inflammation (2), hypercholesterolaemia (1) and 1 

study each on adiponectin, blood brain barrier, peptide levels, PTEN mutation, and retinal 

microvascular calibre; 

Clinical disorders: vascular disease unspecified (6), cognitive decline or Alzheimer’s disease 

(6), unspecified dementia (4), stroke (4), large artery atheroma (2), Parkinsons disease (2), 

HIV (3), multiple sclerosis (4), depression (3), headache (3), head injury (2), myotonic 

dystrophy (2), systemic lupus erythematosus (SLE)/immunocompromised patients (2), autism 

(3), obsessive compulsive disorder (2), glaucoma (2), and 1 study each on tuberous sclerosis, 

unspecified neurological disorders, CADASIL, Tourette syndrome, adrenoleukodystrophy, 

asthma, hydrocephalus, infection, AGU, sickle cell anaemia, normal pressure hydrocephalus;  

Neuroimaging: WMH (8), cerebral amyloid angiopathy (CAA) (5), microbleeds (1), 

microinfarcts (1), lacunes (1), and atrophy (1).  

 

Meta-Analysis 

The following meta-analyses of PVS associations are summarised in Table 2. There was no 

consistent evidence of publication bias in any of the following meta-analyses (see 

Supplement). 

 

Risk factors 

Ageing. Thirteen studies (n=8395) reported on ageing and PVS in BG, CS or Hippocampus 

(Table 2, Figure 1). PVS increased with age in all areas, most in the BG (OR 1.47, 95%CI 

1.28, 1.69, P<0.00001), then CS (OR=1.26, 95% Cl, 1.07-1.49, P=0.005), then hippocampus 

(OR-1.14, 95% Cl, 1.01, 1.30, P=0.03), difference between the three areas 𝜒2 = 7.10, P=0.03 

and between-study heterogeneity (BG, 𝜒2=218.80, p=0.00001, 𝐼2=96%; CS 𝜒2= 42.82, 

p=0.0001, 𝐼2=86%).  
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Figure 1 Forest plot of associations of PVS in BG, CS and Hippocampus with ageing 

 

Diabetes. Five studies (n=3095) found no association between diabetes and PVS (Table 2, 

Supplementary figure 2). 

 

Hypertension. Thirteen studies (n=7872) found BG PVS were associated with hypertension 

(OR=1.67, 95% Cl, 1.20-2.31, P=0.002), with significant between-study heterogeneity (𝜒2= 

63.72, p=0.00001, 𝐼2=84%), Figure 2. The direction of effect was similar for CS PVS but did 

not reach significance.   
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Figure 2 Forest plot of associations of PVS in BS and CS with hypertension 

 

Neurological Diseases 

Lacunar versus non-lacunar stroke. Five studies (n=1,173) showed no consistent association 

between BG or CS PVS in clinically-evident lacunar versus non-lacunar stroke subtypes,9, 13, 

21, 23, 24 (Table 2, Supplementary figure 3). However, stroke subtyping and imaging methods 

differed between studies.  

 

Acute stroke. Two studies (n=682)25, 26 found no association between acute stroke of any 

subtype and PVS, but only in CS (OR=3.99, 95% Cl, 0.47-34.17, P=0.21), (Table 2, 

Supplementary Figure 4).  

 

Cognitive impairment. Three studies (n=1,272) did not find an association between cognitive 

impairment and PVS in BG region (OR=1.21, 95% Cl, 0.84-1.73, P=0.31), Table 2, 

Supplementary Figure 5). Only 1 study27 assessed cognition and CS PVS finding a borderline 

significant association (OR=1.06, 95% Cl, 1.00-1.11). Amongst the 93 non-meta-analysable 

studies, only four assessed associations of PVS with dementia but all reported different 

statistics. Of these, three found that PVS were increased significantly in patients with 

dementia vs controls.19, 28, 29 Three other studies examined associations of PVS and cognitive 

impairment, of which two found increased PVS with declining cognition.30, 31  
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Neuroimaging Features:  

White matter hyperintensities. Eight studies (n=4974) examined WMH and PVS in BG and 

CS regions (Figure 3a). Although the direction of effect was for an association with WMH, it 

did not reach significance (OR 1.54, 95%CI 0.71, 3.32, P=0.27). Amongst the 93 non-meta-

analysable studies, eight (n=3,333, range 32-1818) reported on associations of PVS and 

WMH. These used different statistics (adjusted beta, r, rho, chi squared) precluding direct 

comparison. However, most found positive associations between BG PVS and WMH with 

adjusted betas of 0.19 (p<0.001)16 to 0.47 (p<0.0001),2 and only one found a negative 

association.32 

 

Lacunes. Four studies (n=4894) found an association between lacunes and PVS in the BG 

(OR= 3.56, 95% Cl, 1.39-9.14) but not CS region. There was high between-study 

heterogeneity (BG, 𝜒2=27.72, p=0.00001, 𝐼2=89%), Figure 3b. 

 

Microbleeds. Five studies (n=5015) found that cerebral microbleeds were associated with BG 

PVS (OR=2.26, 95% Cl, 1.25-4.00, P=0.04), but with between-study heterogeneity (𝜒2= 

27.35, p=0.00001, 𝐼2=85%), Figure 3c. There were insufficient data to compare PVS and 

microbleeds by lobar or deep location. 

 

Cortical Superficial Sclerosis (cSS). Two studies (n=1642) reporting on cSS and PVS found 

no association between combined BG and CS PVS and cSS (OR=2.28, 95% Cl, 0.75-9.13, 

Supplementary Figure 6).  
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Figure 3 Forest plot of associations of PVS in BG and CS with WMH (a), lacunes (b), and cerebral microbleeds (c) 
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Discussion 

We investigated vascular risk factor, clinical, and imaging lesion associates of PVS by meta-

analysing risk factor-adjusted odds ratios. Although we found 116 potentially relevant papers, 

only 23 studies provided meta-analysable data, representing nearly 13,000 participants from 

various demographic groups, world regions and ethnicities. Surprisingly, we did not find 

conclusive evidence that PVS were associated with some expected clinical or neuroimaging 

features, although we did find most expected risk factor associations. There was no consistent 

association of PVS with lacunar vs non-lacunar stroke and a surprising lack of meta-

analysable data on PVS and cognitive decline or dementia. Most surprisingly, although the 

direction of effect was positive, the association between PVS and WMH was not significant 

in meta-analysis.  

 

We used risk-factor adjusted ORs, suggesting that some previously described PVS-WMH 

associations may reflect shared co-associations or differences in population characteristics. 

However, most of the eight non-meta-analysable papers on WMH (Supplementary Table 2) 

did account for key co-variates and did show WMH to be associated with PVS. Thus, the 

overall direction of effect suggests that PVS are associated with WMH. For microbleeds, 

there were fewer studies but a larger sample size (Table 2) than WMH for meta-analysis, 

perhaps reflecting the more recent description of microbleeds with more consistent methods 

thus facilitating meta-analysis. Although we confirmed a PVS association with microbleeds, 

the high heterogeneity indicates that more data are required.  

 

Data were very limited for testing associations of PVS with stroke, cognitive impairment, 

dementia or sleep disorders. This was disappointing, since brain fluid drainage via PVS is 

thought to be important for maintaining brain health, and indicates the need for more 

research.  

 

We meta-analysed the BG and CS PVS separately, since regional PVS associations may 

differ, there are known vessel wall anatomical differences between the BG and CS, hence 

meta-analysing the regions separately was biologically plausible.19 Some variation in PVS 

associations between BG and CS may reflect a lack of data for one region indicating that 

+future studies should assess both regions. Alternatively, PVS may vary between brain 

regions, although the association of PVS and ageing, for which we had the most data, did not 

differ by brain region (Figure 2).  
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Overall, the studies had low risk of bias or applicability concerns (Supplementary Table 1), 

but there was high between-study heterogeneity for many associations, indicating the need 

for more data. Inconsistencies between studies included use of different PVS and lesion 

rating methods, disease diagnosis, scanner strength and sequences, although lack of data 

precluded further sensitivity testing. Alternatively, PVS differences may reflect unquantified 

demographic, genetic or environmental differences. The epidemiological origin of the cohorts 

may also influence results, however it was not possible to test effects of country or ethnic 

origin since the data were not provided. Although we did not find objective evidence of 

publication bias, it is likely to be present.33 We were not able to include non-English 

language publications, but found many papers and the meta-analysed studies included nearly 

13,000 subjects.   

 

Computational methods to assess PVS are now emerging,34-36 show promise for future large 

studies, may help reduce variability, and can provide PVS volume, orientation, location in the 

brain in addition to count or frequency which may increase sensitivity for detecting subtle 

associations.  Future research should maximise sample size, report imaging methods in detail, 

adjust analyses to account for important co-variates especially vascular risk factors and age, 

and assess a much wider range of subject groups to investigate more fully the characteristics 

of PVS in different clinical situations.  

 

Conclusion 

Ageing, hypertension, cerebral microbleeds and lacunes were associated with PVS in risk-

factor adjusted meta-analysis, with most data available for BG PVS. More studies are 

required to further validate the use of PVS as a risk marker for these diseases and to 

understand pathophysiological pathways for stroke, dementia and other common neurological 

disorders. Future studies should use consistent methods to determine PVS appearances, 

standard definitions and reporting of parameters for rating PVS.   
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Table 1: Characteristics of studies included in the meta-analysis. WMH: white matter hyperintensities, MB: microbleeds, CMB: cerebral 

microbleeds, ICH: intracranial haemorrhage. 

No. Reference  Number 

of 

Subjects 

Age 

(mean) 

Subject 

Characteristics 

Disorder Associated Association test 

result,  

OR (95% Cl) 

Brain 

Region 

Geographic 

Region 

Rating 

Scale 

Type of scanner  

  

MRI sequence 

1 Arba et al 201623 430 64.7 Ischemic stroke 

and transient 

icshemic attack 

 

 

 

 

 

 

 

 

Ischemic Stroke 

and Transient 

Ischemic Attack 

Lacunar stroke 

 

 

Lacunar stroke 

 

 

Hypertension 

 

 

Hypertension 

 

Cognitive 

impairment 

 

WMH 

 

 

WMH 

 

0.91 (0.50-1.67 

 

1.18 (0.67-2.08) 

 

1.56 (0.08-3.04) 

 

2 (1.10-3.63) 

 

 

 

 

1.59 (1.07-2.39) 

 

2.24 (1.29-3.89) 

 

1.39 (0.80-2.42) 

BG 

 

 

CS 

 

 

BG 

 

 

CS 

 

BG 

 

BG 

 

CS 

Australia 

 

 

 

 

 

 

 

 

 

 

UK 

5 point NA,  

T1, T2 and 

FLAIR 

2 Bae et al 201625 481 

 
68.2 

 

Acute Stroke Arterial stiffness 1.7 (1.0-2.7) 

 

BG China 

 

4 points NA  

T2 

3 Charidimou et al 

20139 

121 
NA 

 ICH Deep MB 

 

 

Lacunar Infarcts 

 

Lobar MB 

3.27 (1.27-8.45) 

 

1 (1-1.01) 

 

0.43 (0.16-1.20) 

 

BG 

 

 

BG 

 

BG 

UK& 

Belgium 

4 points 1.5T,  

T1, T2, FLAIR 
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Deep MB 

 

 

Lacunar Infarcts 

 

Lobar MB 

 

 

Ageing 

 

 

Ageing 

0.91 (0.35-2.38) 

 

1 (0.99-1) 

 

1.92 (0.74-4.96) 

 

1.43 (1.01-2.02) 

 

1.5 (1.08-2.10 

 

 

CS 

 

 

CS 

 

CS 

 

 

BG 

 

 

CS 

 

4 Charidimou et al 

201437 

138 
71.8 

Cerebral amyloid 

angiopathy  

Cortical Superficial 

Siderosis 

 

Ageing 

 

 

Hypertension 

4.78 (1.64–13.87) 

 

1.02 (0.97–1.06) 

 

0.27 (0.10–0.74) 

CS 

 

 

CS 

 

 

CS 

UK and 

Belgium 

4 points 1.5T,  

T2&FLAIR 

 

5 Doubal et al 

201038 

235 
NA 

Acute ischemic 

lacunar or cortical 

stroke 

Lacunar stroke 

 

 

Ageing 

 

 

Diabetes 

 

 

 

WMH 

 

 

Hypertension 

3.16 (1.49–6.70) 

 

1.03 (0.99–1.08) 

 

0.65 (0.24–1.74) 

 

2.03 (1.10–3.74) 

 

1.33 (0.63–2.81) 

BG 

 

 

BG 

 

 

BG 

 

 

 

BG 

 

 

BG 

UK 4 points NA  

T2 
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6 Gutierrez et al 

201539 

 

1290 
64 

Stroke-free Hypertension 1.14 (1.03-1.26) Overall US NA 1.5T,  

T1& FLAIR 

 

7 Hurford et al 

201440 

246 
62 

Stroke Lacunes 

 

Lobar CMB 

 

Deep CMB 

 

Lacunes 

 

Lobar CMB 

 

Ageing 

 

Ageing 

 

WMH 

 

WMH 

 

Hypertension 

 

 

Hypertension 

2.93 (1.10-7.84) 

 

0.82 (0.42-1.60) 

 

1.77 (0.59-5.33) 

 

1.58 (0.45-5.57) 

 

1.34 (0.60-2.95) 

 

1.18 (0.98-1.43 

 

1.19 (1.04-1.37) 

 

1.27 (1.14-1.43) 

 

0.99 (0.89-1.10) 

 

4.89 (1.39-17.21) 

 

3.71 (1.42-9.59) 

BG 

 

BG 

 

BG 

 

CS 

 

CS 

 

BG 

 

CS 

 

BG 

 

CS 

 

BG 

 

 

CS 

UK 4 points NA  

T2 

8 Klarenbeek et al 

201341 

122 
64.6 

First ever lacunar 

stroke 

Hypertension 1.32 (1.05–1.65) BG Nether-

lands 

3 points 1.5T or 3T  

T2 

9 Loos et al 201542 118 
63 

First ever lacunar 

stroke 

WMH 4.29 (1.28–14.32 BG Nether-

lands 

None, 

mild to 

moder-

ate and 

extens-

ive 

1.5T  

T2 
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10 Martinez-Ramirez 

et al 201343 

89 
72.7 

Massachusetts 

Alzheimer's 

Disease Research 

Centre 

Higher lobar MB 

 

 

Strictly lobar MB 

 

 

Hypertension 

1.53 (1.06–2.21) 

  

 1.78 (0.97–3.27) 

 

9.38 (1.03–85.17) 

WM 

 

 

WM 

 

 

BG 

US 4 points 3T,  

T1 and T2 

11 Ohba et al 20128 

 

1632 
NA 

The secondary 

Prevention of 

Small Subcortical 

Stroke trial  

Multipe infarcts 

 

Aging  

 

Hypertension 

1.7 (1.2-2.3) 

 

1.9 (1.7-2.1) 

 

2.4 (1.7-3.4) 

 

BG 

 

BG 

 

BG 

Canada 3 points NA,  

T2 

12 Potter et al 201513 298 
68 

Stroke  Lacunar stroke 

 

Old infarcts 

 

Lacunar stroke 

 

Old Infarcts 

 

Ageing 

 

Ageing 

 

Diabetes 

 

Diabetes 

 

WMH 

 

WMH 

 

Hypertension 

 

Hypertension 

2·08 (1·04–4·17) 

 

0·76 (0·40–1·45 

 

0·69 (0·37–1·29) 

  

1·22 (0·66–2·23) 

 

1.06 (1·02–1·09) 

 

1.0 (0·98–1·03) 

 

1·58 (0·56–4·46) 

 

0·68 (0·24–1·98) 

 

1·43 (0·81–2·54) 

 

0·75 (0·44–1·29) 

 

0·94 (0·50–1·76) 

 

1·13 (0·63–2·01) 

BG 

 

BG 

 

CS 

 

CS 

 

BG 

 

CS 

 

CS 

 

BG 

 

BG 

 

CS 

 

BG 

 

CS 

UK 4 points 1.5T,  

T1, T2 and 

FLAIR 
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13 Riba-Llena et al 

201644 

733 
62.8 

Hypertensive  Mild cognitive 

impairment 

Ageing 

 

Ageing 

 

Diabetes 

 

Diabetes 

 

Hypertension 

 

Hypertension 

1.59 (0.84-3.01) 

 

1.68 (1.37-2.06) 

 

1.38 (1.18-1.63) 

 

0.94 (0.75-1.17) 

 

0.93 (0.78-1.13) 

 

0.92 (0.64-1.34) 

 

1.24 (0.90-1.71) 

BG 

 

BG 

 

CS 

 

BG 

 

CS 

 

BG 

 

CS 

Spain 4 points 1.5T,  

T1&T2 

 

14 Rouhl et al 200816 

 

165 
NA 

Patients with first 

lacunar stroke 

Silet ischemic lesion 10.58 (3.40–32.92) BG Nether-

lands 

3 points 1.5T  

T2 

15 Shams et al 

201614 

1504 
63 

Dementia patients 

with small vessel 

disease and 

cognition 

Cortical Superficial 

Siderosis  

1.73 (1.16-2.61) 

 

1.16 (0.70-1.92) 

BG 

 

 

CS 

Sweden 4 points 1.5T,  

T1, T2&FLAIR 

 

16 Uiterwijk et al 

201427 

109 
6.1 

Hypertensive Overal Cognition 0.99 (0.91–1.07 

 

1.06 (1.00–1.11) 

BG 

 

CS 

Nether-

lands 

3 points 1.5T,  

T2 and FLAIR 

17 Wu et al 201526 

 

201 
Median:

70.97 

ICH  spontaneous 

supratentorial ICH 

 

Acute brain infarct 

12.56 (4.40-35.85) 

2.77 (0.93-8.24) 

 

12.56 (4.4-35.85) 

CS 

BG 

 

CS 

Israel 

 

 

China 

4 points 

 

 

 

 

 

 

 

1.5T  

T2 
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18 Yakushiji et al 

201411 

 

1740 
57.1 

The Kashima Scan 

Study-age related 

brain changes 

Deep of 

infratentorial CMB 

Lobar CMB 

 

Lacunes 

 

Ageing 

 

Diabetes 

 

WMH 

 

Hypertension 

2.77 (1.62-4.74) 

 

1.54 (0.73-3.28) 

 

3.35 (1.92-5.86) 

 

1.11 (0.90-1.37) 

 

0.8 (0.48-1.33) 

 

2.17 (1.42-3.31) 

 

2.03 (1.46-2.82) 

BG 

 

BG 

 

BG 

 

BG 

 

BG 

 

BG 

 

BG 

Japan 4 points 1.5T  

T2 

19 Yang et al 201633 16 
NA 

Stroke Lacunar infarct 1.204 (0.872-1.662) 

 

BG China 3 points 1.5,  

T1 and 3T, T2 

20 Yao et al 201412 344 

 
50.8 

Mutation in the 

Notch3 gene  

Ageing 

 

Ageing 

2.23 (1.67-2.98) 

 

1.6 (1.2-2.14) 

BG  

 

CS 

France and 

Germany 

4 points 1.5T,  

T1, T2 and 

FLAIR 

21 Zhang et al 201421 1090 
NA 

Ischemic stroke or 

transition 

ischemic attack 

Lacunes 

 

Ageing 

 

Hypertension 

 

Hypertension 

 

1.36 (1.05-1.78 

 

2.79 (2.13-3.67) 

 

1.13 (0.86-1.47) 

 

2.01 (1.54-2.63) 

BG 

 

BG 

 

BG 

 

CS 

China Their 

own 

3.0T,  

T2, 

FLAIR&DWI 

 

22 Zhang et al 201645 89 
72.93 

Lacunar stroke 

 

Deep WMH 

 

Brain Atrophy 

 

Diabetes 

 

WMH 

 

Hypertension 

 

0.78 (0.4-1.50) 

 

1.40 (1.13-1.73) 

 

0.94 (0.45-1.97) 

 

1.88 (1.24-2.83) 

 

1.67 (0.83-3.38) 

 

BG 

 

BG 

 

BG 

 

BG 

 

BG 

China 4 points 3T,  

T1, T2 and 

FLAIR 
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Hypertension 

 

23 Zhu et al 201028 1818 
NA 

The Three-City 

cohort 

Lacunar Stroke 

 

Ageing 

 

Ageing 

 

WMH 

 

WMH 

16.6 (6.0–45.9) 

 

2.1 (1.4-3.2) 

 

1.5 (1.2-1.9) 

 

3.2 (2.5–4.1) 

 

1.2 (1.0–1.4) 

BG 

 

BG 

 

CS 

 

BG 

 

CS 

France 4 points 1.5T,  

T1 and T2 
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Table 2. Summary of Odds Ratios and 95%CI for PVS associations from meta-analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Indicates total sample for the association of interest.  

Association of interest Location of PVS Number 

of 

studies 

N of 

subjects1 

OR 95% CI P I² 

Risk factors        

Age BG 10 8395 1.47 1.28-1.69 0.00001 96% 
 

CS 7 
 

1.26 1.07-1.49 0.005 86% 
 

hippocampus 2 
 

1.14 1.01-1.30 0.03 0% 

Hypertension BG 11 7872 1.67 1.20-2.31 0.002 84% 
 

CS 6 
 

1.42 0.92-2.20 0.12 77% 

Diabetes BG 5 3095 0.9 0.74-1.08 0.26 0% 
 

CS 2 
 

0.95 0.78-1.15 0.58 0% 

Neurological disorder        

Acute Stroke CS 2 682 3.99 0.47-34.17 0.21 93% 

Lacunar v non-lacunar stroke BG 5 1173 1.26 0.83-1.93 0.28 69% 
 

CS 2 
 

0.92 0.54-1.55 0.75 36% 

Cognitive impairment BG 3 1272 1.21 0.84-1.73 0.31 51% 

Neuroimaging feature        

White matter hyperintensities BG 8 4974 1.54 0.71-3.32 0.27 0% 
 

CS 4 
 

1.07 0.90-1.27 0.21 0% 

lacunes BG 4 4894 3.56 1.39-9.14 0.008 89% 
 

CS 2 
 

0.87 0.67-1.13 0.31 0% 

microbleeds BG 5 5015 2.26 1.04-4.90 0.04 85% 
 

CS 2 
 

1.15 0.62-2.12 0.66 0% 

Cortical superficial siderosis BG/CS combined 2 1642 2.28 0.57-9.13 0.24 75% 


