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Abstract 1 

Data reduction analyses like principal components and exploratory factor analyses 2 

identify relationships within a set of potentially correlated variables, and cluster correlated 3 

variables into a smaller overall quantity of groupings. Because of their relative objectivity, these 4 

analyses are popular throughout the animal literature to study a wide variety of topics. 5 

Numerous authors have highlighted “best practice” guidelines for component/factor “extraction”, 6 

i.e. determining how many components/factors to extract from a data reduction analysis, 7 

because this can greatly impact the interpretation, comparability, and replicability of one’s 8 

results. Statisticians agree that Kaiser’s criterion, i.e. extracting components/factors with 9 

eigenvectors >1.0, should never be used yet within the animal literature, a considerable number 10 

of authors still use it, including publications as recent as 2018, and across a wide range of taxa 11 

(e.g. insects, birds, fish, mammals) and topics (e.g. personality, cognition, health, morphology, 12 

reproduction). It is therefore clear that further awareness is needed to target the animal 13 

sciences to ensure that results optimise structural stability, and thus, comparability and 14 

reproducibility. In the present commentary, we first clarify the distinction between principal 15 

components and exploratory factor analyses in terms of analysing simple versus complex 16 

structures, and how this relates to component/factor extraction. Second, we highlight empirical 17 

evidence from simulation studies to explain why certain extraction methods are more reliable 18 

than others, including why automated methods are better, and why Kaiser’s criterion is 19 

inappropriate and should therefore never be used. Third, we provide recommendations on what 20 

to do if multiple automated extraction methods “disagree” which can arise when dealing with 21 

complex structures. Finally, we explain how to perform and interpret more robust and automated 22 

extraction tests using R. 23 

 24 

 25 
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 29 

Introduction 30 

Data reduction analyses like principal components analysis (PCA) and exploratory factor 31 

analysis (EFA) identify relationships within a set of potentially correlated variables, and cluster 32 

correlated variables into fewer groupings called “components” (in PCA) or “factors” (in EFA) 33 

(Gorsuch, 1983; Field, 2009). Because they provide researchers with a relatively objective 34 

approach to categorizing different sets of data (e.g. questionnaire ratings, task performances, or 35 

rates of behaviour among individuals), such analyses are commonly used to study a wide 36 

variety of theoretical and applied topics on animals (e.g. genetics, health, sociality, personality, 37 

and cognition). 38 

Numerous authors within the statistical literature have highlighted “best practice” 39 

guidelines for component/factor “extraction”, i.e. determining how many components/factors 40 

should be extracted from a data reduction analysis, because this can greatly impact the 41 

interpretation, comparability, and replicability of structures derived from those analyses (e.g. 42 

Zwick, & Velicer, 1986, Todorov, Fournier, & Gerber, 2018). Most notably, statisticians largely 43 

agree that one extraction method, Kaiser’s criterion, should never be used because it increases 44 

the risk of over-extraction compared to more automated tests, which in turn can lead to 45 

instability in the structures derived from data reduction analyses, and thus affect the overall 46 

interpretation of one’s results. In terms of animal research, for example, Stevens, De Groot, & 47 

Staes (2015) subjected bonobo (Pan paniscus) social relationship data to a data reduction 48 

analysis and compared structures derived using Kaiser’s criterion versus a more robust and 49 

automated method called parallel analysis (discussed below in further detail). These authors 50 
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found that the latter approach lead to a more stable and conservative structure (2 rather than 3 51 

components), thereby changing the interpretation of their results entirely. 52 

There are multiple extraction methods, mostly but not exclusively quantitative, that 53 

researchers can use as more robust alternatives to using Kaiser’s criterion to identify the 54 

quantity of underlying latent variables, i.e. those factors that are not directly observed but can be 55 

inferred from the data. That being said, a considerable number of authors still use Kaiser’s 56 

criterion throughout the animal literature to extract components/factors despite decades of 57 

resolve within the statistical literature, which is likely fuelled by the fact that it remains the 58 

“default” method in common statistical packages like SPSS (Field, 2009). Studies using Kaiser’s 59 

criterion are still being published as recently as 2018, encompassing an eclectic range of taxa, 60 

such as insects, birds, fish, and mammals, and covering a broad range of topics, including but 61 

not limited to personality (e.g. Martin & Reale, 2008; Menzies, Timonin, McGuire, & Willis, 2013; 62 

Pritchard, Sheeran, Gabriel, Li, & Wagner, 2014; Slipogor, Gunhold-de Oliveira, Tadic, Massen, 63 

& Bugnyar, 2016), cognition (e.g. Keagy, Savard, & Borgia, 2011; Meulman & van Schaik, 64 

2013), morphology (e.g. Yakubu & Okunsebor, 2011; Dunham, Maitner, Razafindratsima, 65 

Simmons, & Roy, 2013; Khargharia, Kadirvel, Humar, Doley, Bharti, & Das, 2015), behavioural 66 

ecology (e.g. Adamo, Kovalko, & Mosher, 2013; Hassrick, Crocker, & Costa, 2013; Nath, 67 

Singha, Deb, Das, & Lahkar, 2015; Willems, Arseneau, Schleuning, & van Schaik, 2015; Klein, 68 

Pasquaretta, Barron, Devaud, & Lihoreau, 2017), sociality (e.g. Schino, & Aureli, 2008; Fraser & 69 

Bugnyar, 2010; McFarland & Majolo, 2011; Rebecchini, Schaffner, & Aureli, 2011; Fraser, 70 

Koski, De Vries, Van de Kraats, & Sterck, 2012; Moreno, Highfill, & Kuczaj, 2017;), welfare (e.g. 71 

Ferreira, Mendl, Guilherme, et al., 2016), health and conservation (e.g. Morton, Todd, Lee, & 72 

Masi, 2013; de Medeiros Filho, de Carvalho-Neto, Garcia, et al., 2018), reproduction (e.g. 73 

Venturini, Savegnago, Nunes, et al., 2013), life history (e.g. Poinapen, Konopka, Umoh, et al., 74 

2017), acoustics and communication (Finger, Bastian, & Jacobs, 2017), and inbreeding (e.g. 75 

Lawrence, Mastromonaco, Goodrowe, et al., 2017). It is therefore clear that further awareness 76 
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is needed to ensure that researchers of animal behaviour are reporting results that optimise 77 

structural stability, and thus, comparability and reproducibility of those results by making careful 78 

decisions about component/factor extraction. 79 

In the present commentary, we first clarify the distinction between principal components 80 

and exploratory factor analyses in terms of analysing simple versus complex structures, and 81 

how this relates to component/factor extraction. Second, we highlight recent empirical evidence 82 

from simulation studies to explain why certain extraction methods are more reliable than others, 83 

including why automated methods are better, and why Kaiser’s criterion is inappropriate and 84 

should never be used. Third, we provide recommendations on what to do if multiple automated 85 

extraction methods “disagree” which can arise when dealing with complex structures. Finally, 86 

we explain how to perform and interpret more robust and automated extraction tests in R. 87 

 88 

Key choices in data extraction: PCA or EFA, Simple or complex structure? 89 

   90 

Deciding which extraction methods are appropriate in a data reduction analysis depends 91 

on whether PCA or EFA is used, and whether the underlying structure of one’s solution is 92 

simple versus complex. PCA and EFA are often applied interchangeably, but the theoretical 93 

foundations of the two methods are different. For instance, PCA attempts to account for the total 94 

variance (Velicer, 1976), but unlike PCA, EFA does not assume that variables have been 95 

measured without error (Brown, 2009). PCA is also a pure data reduction technique, which 96 

generates parsimonious summary variables that are linear combinations of the observed 97 

variables (Velicer, 1976). As there is no theory associated with this approach, there is 98 

technically no “true” number of components that a researcher can extract. On the other hand, 99 

EFA is premised on having a theoretical model or models, in which latent variables cause the 100 

observed variables. This type of analysis fits a model using the correlation matrix of the 101 

observed data to account for common variance, i.e. the variance in a variable that is shared with 102 
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other variables (Costello & Osbourne, 2005). These are just a handful of many differences 103 

between PCA and EFA, and so for interested readers, we recommend Brown (2009) and Yong 104 

and Pearce (2013) for beginners, and Gorsuch (1983) and Velicer and Jackson (1990) for more 105 

experienced researchers.  106 

Historically, researchers have used PCA and EFA interchangeably for data reduction in 107 

animal behaviour research without issue because the results are very often the same. However, 108 

there is no guarantee of this, and if researchers wish to search for meaningful latent variables, 109 

then EFA should be used, and methods for identifying a meaningful number of factors should 110 

also be used (Fabrigar, Wegener, MacCallum, & Strahan, 1999). In the context of some studies, 111 

like those examining social relationship structure, the goal has been to identify underlying latent 112 

variables, which implies that researchers are theoretically justified in using EFA. As such, PCA 113 

should generally not be used. For this reason, we will refer only to factors throughout this 114 

commentary, although when earlier works have used PCA, we will refer to their results in terms 115 

of components. For a comparable guide to the use of PCA, we recommend Todorov et al. 116 

(2018). 117 

 If a researcher posits a theoretical structure to their data, a question they must also ask 118 

themselves is whether this structural model is simple or complex. A simple model is one in 119 

which variables tend to load strongly on one factor and weakly on all others (Revelle & Rocklin, 120 

1979). Simple structure also implies that the model only has one “level”. More complex models, 121 

i.e. those that contain more than one level, include hierarchical models in which one or more 122 

higher-order factors are loaded on by lower-order factors, or bi-factor models, in which a parallel 123 

factor is loaded on by the variables independently of the main lower-order factors (Murray & 124 

Johnson, 2011). For comparative examples of these models in animal behaviour and cognition, 125 

we recommend Arden and Adams (2016). If a researcher’s theoretical model does not have a 126 

single level structure, EFA should not be used and the researcher should consider using, for 127 
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example, confirmatory factor analysis (CFA) or a structural equation modelling (SEM) 128 

framework; we will return to CFA and SEM in a subsequent section. 129 

 EFA assumes a single level structure, but it does not assume simple structure. If the 130 

researcher wishes to maximize the possibility of simple structure, usually because simple 131 

structure is easier to interpret, they could do this by allowing factors to correlate. This can be 132 

accomplished by specifying what is called an “oblique rotation”. Rotations refer to the 133 

relationships between factors in space; the alternative to an oblique rotation is an orthogonal 134 

rotation. Factors that are orthogonal in space, e.g. x- and y-axes, have zero correlation (Jolliffe, 135 

1986). However, there is rarely a theoretical reason for factors to have zero correlation in animal 136 

behaviour research and these factors are unlikely to have simple structure. Thus, if researchers 137 

are unsure or do not have justification, then an oblique rotation should be used (Browne, 2001). 138 

 139 

Overview of the pros and cons of different methods for determining the number of 140 

factors 141 

As we have mentioned, a critical decision one must make before completing a data 142 

reduction analysis is how many factors to extract. This choice will influence how variables 143 

cluster together, thereby affecting the final solution and, hence, researchers’ interpretation of 144 

those results (Zwick & Velicer, 1986; Ledesma & Valero-Mora, 2007). Under-extraction can 145 

result in the loss of relevant information and distort the overall solution (Zwick & Velicer, 1986). 146 

Over-extraction can result in some factors being unstable, making the overall solution difficult to 147 

interpret and/or replicate (Zwick & Velicer, 1986). 148 

Deciding when to stop extracting factors depends on several competing considerations. 149 

As we have briefly touched on, and describe more fully below, there is a suite of quantitative 150 

and qualitative tools available to assist researchers in making this decision. However, 151 

researchers must also consider theory in EFA and look to the interpretability of the factors they 152 

extract. Even if all quantitative indicators suggest that a certain number of factors would yield 153 
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the best model, the pattern of loadings between the latent and observed variables must be 154 

interpretable and the model should be theoretically viable. In other words, if variables 155 

representing distinct constructs load on a single factor, and/or variables representing the same 156 

construct load across many different factors, then the model will be theoretically uninterpretable 157 

and of little use (Fabrigar et al., 1999). 158 

 159 

Kaiser’s criterion 160 

Various cut-offs have been developed to help researchers choose their factors, which 161 

typically involve taking into consideration the amount of variation that is explained by each factor 162 

(called “eigenvalues”). As previously discussed, one problematic method that is still commonly 163 

used throughout the animal literature is Kaiser’s criterion, which retains components with 164 

eigenvalues >1.0; that is, components/factors that account for more variance than what is 165 

accounted for by one of the original variables (Kaiser, 1960). Compared to other extraction 166 

methods, Kaiser’s criterion is only appropriate to use with components, not factors, though 167 

researchers are not always aware of this nuance and have used Kaiser’s criterion with EFAs 168 

(Costello & Osbourne, 2005). Moreover, unlike other techniques, Kaiser’s criterion is largely 169 

arbitrary: there is little empirical reason why a component with an eigenvalue slightly greater 170 

than 1 ought to be retained while a component with an eigenvalue just below 1 should not 171 

(Courtney, 2013). A component with an eigenvalue less than 1 accounts for less variance than 172 

the average observed variable, which is a reasonable criterion for exclusion, but it is too crude. 173 

Kaiser’s criterion has shown tendencies toward over-extraction and, to a lesser-degree, under-174 

extraction (Zwick & Velicer, 1986). These biases are in part due to the observation that the 175 

number of components retained by the criterion reflects the number of variables included in the 176 

analysis more strongly than any attributes of underlying latent variables (Gorsuch, 1983). 177 

Ruscio & Roche (2012) simulated data from abstract theoretical models with varying numbers of 178 

factors, and for each simulation, tested several methods to determine how often each method 179 
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selected the “correct” number of factors as defined by the theoretical models. In these 180 

simulations, Kaiser’s criterion lead to a success rate of 8.77% and failed to extract the correct 181 

number of factors in more than 90% of cases (Ruscio & Roche, 2012). 182 

Structures with high loadings (i.e. |0.7|) and/or those with components/factors containing 183 

four or more loadings greater than |0.4| are typically considered robust and reproducible (e.g. 184 

Guadagnoli & Velicer, 1988), yet studies relying on Kaiser’s criterion do not always find this, 185 

which may be due to over-extraction. Thus, simply put, no study should be using Kaiser’ 186 

criterion to analyse their data. 187 

 188 

Cattell’s scree test 189 

Another commonly used extraction method is Cattell’s scree test, which is a graphical 190 

technique that plots eigenvalues in a simple line plot. The number of factors to extract is visually 191 

estimated from the scree plot by finding the point where the line drops and begins to level off; all 192 

components to the right of this point are considered random “noise” and should therefore be 193 

excluded (Cattell, 1966). Within the animal literature, scree tests are often used alongside 194 

Kaiser’s criterion because, like Kaiser’s criterion, they are the “default” method in common 195 

statistical packages like SPSS (Field, 2009). 196 

Although scree tests are relatively simple to implement (perhaps contributing to their 197 

common usage by researchers), they are fundamentally subjective, and as such, can lead to 198 

spurious solutions. When factors are simple, observed variables load highly on one factor and 199 

there are few cross-loadings. Therefore, scree plots work quite well in such cases as shown in 200 

Figure 1a because the solution is clearly discernible. On the other hand, when factors become 201 

more complex, scree plots open researchers to the risk of under- or over-extraction due to their 202 

subjectivity, particularly as the line of the plot begins to asymptote as shown in Figure 1b (Zwick 203 

& Velicer, 1986). 204 
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In simulations, scree tests are correct in only 41.7% of cases (Zwick & Velicer, 1986). 205 

Thus, researchers should avoid using scree tests by themselves or alongside Kaiser’s criterion, 206 

and only use them alongside more automated methods as a “tie-breaker” if the plot reveals a 207 

distinct and unambiguous drop in eigenvalues past a certain component/factor (discussed in 208 

further detail below). 209 

 210 

Automated extraction methods 211 

Many alternative extraction methods have been developed that are more robust and 212 

automatic than Kaiser’s and scree tests, and we strongly urge that animal researchers use them 213 

for data reduction analyses. Popular ones include the Empirical Bayesian Information Factor or 214 

empirical BIC (Schwarz, 1978), Standardized Root Mean Square Residuals or SRMR (Hu & 215 

Bentler, 1999), Revelle & Rocklin’s (1979) Very Simple Structure (VSS), and Horn’s (1965) 216 

parallel analysis (PA). 217 

Empirical BIC is an information theoretical assessment of fit that evaluates the 218 

parsimony of any model (Schwarz, 1978). A solution with more components/factors will very 219 

often have a better absolute fit, but the BIC applies a penalty based on the number of 220 

parameters. Therefore, models with the lowest BIC are preferred. Because solutions with more 221 

components/factors have more parameters, BIC measures are an effective statistic for 222 

comparing many models. BIC is widely used in model building across different fields and is a 223 

superior statistic among information theory measures (Posada, Buckley, & Thorne, 2004). In 224 

simulations, BIC identifies the correct number of factors more than 60% of the time (Ruscio & 225 

Roche, 2012). 226 

SRMR is the square root of the difference between a sample’s covariance matrix and the 227 

proposed model’s covariance matrix (Hooper, Coughlan, & Mullen, 2008). SRMR is 228 

representative of measures typically used in confirmatory factor analysis and is biased towards 229 

over-extraction; however, the greater the number of parameters in the model and the larger the 230 
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sample size, the lower SRMR tends to be (Hu & Bentler, 1999). Lower values are better; any 231 

value above 0.1 is considered unacceptable. To the best of our knowledge, SRMR has not been 232 

compared to alternative modern methods in simulation studies (Courtney, 2013). 233 

VSS examines how well the individual components/factors fit within many solutions, 234 

where each progressive solution has one more factor than the last (Revelle & Rocklin, 1979). 235 

VSS can be used in an entirely objective fashion, by finding maxima, but it can be viewed 236 

subjectively as well, like a scree plot. However, VSS is best at identifying simple structures (i.e. 237 

those with a single-level of factors) and therefore it is probably not appropriate if the “true” 238 

structure of the data includes more than two factors (Revelle, 2015). To the best of our 239 

knowledge, VSS has not been compared to alternative modern methods in simulation studies 240 

(Courtney, 2013). 241 

PA is based on generating random eigenvalues that “parallel” the observed data in terms 242 

of sample size and the number of variables (Zwick & Velicer, 1986). A component/factor is 243 

retained if its eigenvalue is greater than the 95th percentile of the distribution of eigenvalues 244 

generated from the random data (Horn, 1965). This technique improves upon most other 245 

methods, both subjective (e.g. scree test) and objective (e.g. empirical BIC, Complexity), by 246 

taking into account sampling error, which is not partitioned from total variance in other methods 247 

(Horn, 1965). PA is not arbitrary: the “parallel” data it generates can be resampled from the 248 

empirical data themselves, and the technique is robust. Both resampled and simulated parallel 249 

data do not yield substantively different results (Revelle, 2015). Moreover, PA is flexible, having 250 

been modified and improved upon since its conception, and is capable of assessing factor and 251 

component structures, as well as both ratio and ordinal data (Garrido, Abad, & Ponsoda, 2013). 252 

Finally, PA is noteworthy when contrasted with other, modern factor number tests because 253 

unlike even the best alternatives, e.g. Comparison Data (Ruscio & Roche, 2012), it is 254 

completely unbiased (cf. Courtney, 2013). Based on simulations, PA identifies the correct 255 
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number of factors in more than 76% of cases (Ruscio & Roche, 2012). For this reason, it 256 

remains one of the best tests available for component/factor extraction. 257 

All methods of course have their drawbacks (Ruscio & Roche, 2012); there is no “one 258 

size fits” all approach. Even if some methods are demonstrably more accurate than others, e.g. 259 

PA vs. Kaiser’s criterion, few datasets will produce an immediate and clear solution. Therefore, 260 

it is paramount that no single automated extraction test be used as the sole method to 261 

determine how many components/factors to extract from a data reduction analysis. Instead, 262 

multiple automated tests should be implemented and compared. If multiple tests agree on the 263 

same number of components/factors to extract, then researchers can be confident with their 264 

decisions about extraction (Gorsuch, 1983). 265 

 266 

What if multiple automated methods disagree? 267 

It is not uncommon for multiple automated methods to disagree on the number of 268 

components to extract. As previously noted, in such cases a scree test may be used as a quick 269 

and easy “tie-breaker” if the plot reveals a clear and distinct drop in the eigenvalues past a 270 

certain component/factor. Such instances, however, are becoming increasingly rare as 271 

automated methods are improved upon. Where appropriate, researchers should use PA as a 272 

tie-breaker because it is a robust technique, but we again caution readers to consider as many 273 

options as possible before settling on a particular selection of factors. For example, other 274 

sophisticated analyses like Everett’s tests may be required to determine which model to use for 275 

subsequent analyses after extracting multiple solutions with differing numbers of factors 276 

(Everett, 1988). 277 

Researchers should always keep in mind the theory they wish to test, and where theory 278 

is well-established, it can be used to guide choices in how many factors to extract. If the 279 

analysis is wholly exploratory, or theories are at odds, there is nothing wrong with extracting 280 

multiple factor structures and comparing them when multiple extraction methods disagree on 281 
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how many to extract. Factor interpretability can be assessed post-extraction, and depending on 282 

what variables are of interest, investigating additional associations may indicate which structure 283 

is the most useful (Altschul, Terrace, & Weiss, 2016). As with any model, however, researchers 284 

must beware of post-hoc modification since greater degrees of freedom can hinder the 285 

generalizability of an analysis. Ideally, researchers should always keep their theory in mind 286 

throughout the analytic process, and factor solutions that are extracted should be interpretable 287 

in light of theory. 288 

Finally, basic EFA or PCA may not be the best method for all situations. More complex 289 

and potentially hierarchical data may require a more advance modelling approach. For example, 290 

EFA is itself a specific implementation of a more general SEM framework, which allows users to 291 

specify latent variables and all paths between latent and measured variables. If one suspects 292 

that a one-level factor model is not sufficient to explain the data, e.g. there are unambiguous 293 

sources of non-independence like correlated error structure, then SEM should be considered 294 

because it is better-suited for handling complex structures (Reise, Schneines, Widaman, & 295 

Haviland, 2013). 296 

Ultimately, researchers need to be aware of what EFA and PCA are creating: reduced 297 

data that are only the result of what one has fed into one’s analysis. Variable reduction may 298 

make data more manageable and possibly more interpretable, but the results are derived from 299 

non-inferential matrices of correlations between variables, and there is no guarantee that these 300 

techniques will produce quantitatively superior data. The results of data reduction are contingent 301 

on the input; some data will be appropriate for data reduction, some simply will not. Moreover, 302 

similar but distinct data will yield different results. Comparing different datasets in the same or 303 

similar models is fundamentally qualitative, and researchers must bear this in mind when 304 

considering what to conclude from their analyses. 305 

 306 

Instructions on how to perform and interpret automated extraction tests in R 307 
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 The following instructions are specific to the R programming language because of its 308 

wide use and robust, well-maintained feature set. All commands are available from base R, or 309 

the “psych” package (Revelle, 2015). The code for running these analyses can be found in 310 

Appendix 1 of this paper. 311 

First, data should be organized in a “data.frame” format, which is native to R. We will call 312 

our example data.frame: “df”. The first column of the data.frame should contain the names of 313 

individuals and/or dyads. Many functions require only numeric input, and the first column can be 314 

subset out of the data.frame with the command “df[,-1]”. For example, to examine the correlation 315 

matrix of the data for suitability, the entire command “cor(df[,-1])” will display the numeric 316 

correlation matrix. We also suggest using “corPlot” in exactly the same way, to view the 317 

correlation matrix graphically. Two specific tests for factorability, Barlett’s test and the Kaiser-318 

Meyer-Olkin measure, can be found in psych and accessed using “cortest.bartlett(df[-1])” and 319 

“KMO(df[-1])”. 320 

 Executing the command “nfactors(df[,-1])” will display graphical representations of VSS, 321 

eBIC, and SRMR (e.g. Figure 2). It will also generate a myriad of other fit statistics, which may 322 

be useful to the advanced user. Executing fa.parallel(df[,-1])” will display a plot, like in Figure 3, 323 

as well as give a specific recommendation for how many components to retain for extraction.  324 

As previously mentioned, EFA and PCA often produce very similar solutions in practice, 325 

but the underlying matrix algebra differs such that when each procedure is repeated, the results 326 

can differ considerably. Thus, while the other five extraction methods that we previously 327 

discussed need not distinguish between factors and components, PA must be adjusted to 328 

support EFA (Revelle, 2015). 329 

In Figure 2, the VSS test suggests that a three-factor model has a better fit than a one- 330 

or two-factor solution; meaning, the three-factor model shows an improvement in fit over the 331 

one- and two-factor models, which is evident because the number three in the plot is above the 332 

line associated with the other two models. The Empirical BIC test suggests two factors should 333 
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be extracted since that model shows the lowest BIC compared to the others. The SRMR test 334 

indicates that models with two or more factors is acceptable. 335 

In Figure 3, based on Kaiser’s criterion these artificial data cluster onto a single factor. 336 

By contrast, the scree plot suggests two factors, since the line appears to asymptote after the 337 

second eigenvalue. Similarly, the parallel analysis suggests extracting two factors, which is 338 

evident because the line representing the “FA actual data” crosses the line representing the “FA 339 

resampled data” after the 2-point mark along the x-axis, i.e. those factors that are greater than 340 

the 95th percentile of the distribution of eigenvalues generated from the resampled data.  341 

 Collectively, based on this example, extracting two factors appears to be the most 342 

reasonable decision to make for a data reduction analysis since 1) half the automated tests, 343 

including parallel analysis (i.e. the most robust method), point towards a two-factor solution, 2) 344 

the SRMR test indicates that this decision is acceptable, and 3) the scree plot (i.e. our “tie-345 

breaker”) corroborates this decision. 346 

 347 

Summary and Future Directions 348 

Data reduction analyses provide a unique and objective means through which 349 

researchers can interpret animal data, and the work that has already been done in this area has 350 

taken a very important step in that direction. With the increasing number of studies using this 351 

approach, researchers must take into careful consideration both the data reduction technique 352 

(PCA or FA) and the extraction method(s) used to reduce the number of components/factors 353 

within their dataset. Failure to do this can have consequences in terms of comparability, 354 

replicability, and interpretation of those results. In light of the well-known deficiencies associated 355 

with Kaiser’s criterion, we emphasize that animal researchers must refrain from using this 356 

technique in future work and instead use more robust and automated extraction techniques (e.g. 357 

PA, empirical BIC, VSS, Comparison Data). If these automated tests recommend the same 358 

number of components/factors, then researchers can be confident about their decisions to 359 
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extract. If they disagree, then as we discussed, there are multiple avenues to take to aid 360 

decision-making on extraction and modelling frameworks. Avoiding Kaiser’s criterion and 361 

supplementing scree tests with more robust and automated tests will greatly improve the utility 362 

and reliability of data reduction techniques, particularly for comparisons across studies. Of the 363 

methods we have discussed, we recommend PA and BIC in particular because of their strong 364 

performance under simulation (Ruscio & Roche, 2012), but novel methods are being developed 365 

with surprising frequency, and we encourage readers to explore the literature for newly verified 366 

methods. 367 
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 532 

 533 

Appendix 1. Code for performing automated extraction tests in R (Revelle 2015). 534 

 535 

library(psych) ## Main package used in this annex. 536 

require(GPArotation) ## Supplementary package - useful for rotations. 537 

 538 

## Users should import their dataset here, saving as 'df'. 539 

 540 

### Inspecting the correlations between variables before testing. 541 

cor(df[,-1] 542 
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    , use = 'pairwise.complete.obs' ## Default is 'everything' - can produce many NAs. 543 

) 544 

 545 

corPlot(df[,-1]) ## Graphical plot of the correlation matrix. 546 

 547 

### Testing the suitable of the data for factoring. 548 

cortest.bartlett(df[,-1]) ## Bartlett's test that the correlation matrix is the ID matrix. 549 

## The p-value should be low, indicating that correlations are not all 1, and multiple  550 

## factors could be extracted. 551 

 552 

KMO(df[,-1]) ## Kaier, Meyer, Olkin measure of sampling adequacy. 553 

## Less than 0.5 for an item has been labeled unacceptable, 554 

## but higher values (e.g. > 0.8) are generally preferred. 555 

 556 

### Determining the number of factors to extract. 557 

nfactors(df[,-1] ## Replicates the style of Figure 2. 558 

         , n = 10 ## Sets the maximum number of factors to search for - default is 20. 559 

         , rotate = 'oblimin' ## Default is 'varimax' - an orthogonal rotation. 560 

) 561 

## Output plot shows VSS, eBIC, SRMR, and Complexity (a general diagnostic statistic). 562 

## Full output is displayed in the console, and additional statistics can be explored 563 

## and plotted, e.g.: 564 

plot(nfactors(df[,-1], n=10, rotate='oblimin')$map, type = 'b') 565 

## Velicer's Mimimum Average Partial (MAP), which indicates the optimal number of factor 566 

## where it reaches a minomum. 567 

 568 
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## To fully take advantage of the many nfactors statistics, we strongly recommend 569 

## that users consult the help file: 570 

?nfactors 571 

 572 

## Parallel analysis of factors solutions. 573 

fa.parallel(df[,-1] 574 

            , sim = FALSE ## Default is TRUE - FALSE replicates style of Figure 3. 575 

            , SMC = FALSE  ## Ensures that PA is adjusted for factors. 576 

            , fa = 'fa' ## Plots only the factor analyses. 577 

) 578 

## This plots a scree plot with adjusted eigenvalues and the data for comparison, 579 

## which are random and/or resampled. Where the adjusted eigenvalue for a given factor  580 

## is above the line of eigenvalues from random/resampled data, parallel analysis 581 

## indicates that that factor ought to be retained. 582 

 583 

 584 

 585 

Figure Captions 586 

Figure 1. Example of scree tests on a) clearly and b) ambiguously factorable datasets. 587 

 588 

Figure 2. Example of plotted results using the R psych package “nfactors” function, including a) 589 

Very Simple Structure, b) Complexity, c) Empirical BIC, and d) Root Mean Residual. For the 590 

empirical BIC output, the number of variables (10) limits the calculation of empirical BIC to 591 

solutions of at most 5 components/factors. 592 

 593 
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Figure 3. Example of results of parallel analysis, on a scree plot. Triangles represent 594 

eigenvalues generated from the actual data. Dashed lines represent random simulated 595 

eigenvalues. The horizontal black line at 1 represents Kaiser’s criterion. 596 
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