

Edinburgh Research Explorer

Computing the Sparsity Pattern of Hessians using Automatic
Differentiation

Citation for published version:
Gower, R & Mello, MP 2013, 'Computing the Sparsity Pattern of Hessians using Automatic Differentiation',
ACM Transactions on Mathematical Software, vol. 40, no. 2, 10. https://doi.org/10.1145/2490254

Digital Object Identifier (DOI):
10.1145/2490254

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Mathematical Software

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Apr. 2024

https://doi.org/10.1145/2490254
https://doi.org/10.1145/2490254
https://www.research.ed.ac.uk/en/publications/aea68f6f-abd8-4db6-8324-3058e713baf0

Computing the Sparsity Pattern of Hessians using Automatic

Differentiation

Robert Mansel Gower∗and Margarida Pinheiro Mello †.

May 3, 2013

Abstract

We compare two methods that calculate the sparsity pattern of Hessian matrices using the

computational framework of automatic differentiation. The first method is a forward-mode al-

gorithm by Andrea Walther in 2008 which has been implemented as the driver called hess pat

in the automatic differentiation package ADOL-C. The second is edge push sp, a new re-

verse mode algorithm descended from the edge pushing algorithm for calculating Hessians by

Gower and Mello in 2012. We present complexity analysis and perform numerical tests for

both algorithms. The results show that the new reverse algorithm is very promising.

1 Introduction

Obtaining the sparsity pattern of the Hessian is a necessary step in a well-known graph-coloring-based

method for calculating sparse Hessians using Automatic Differentiation (AD) or Finite Differences [6, 7].

With the sparsity pattern in hand, one may also use univariate Taylor series or second order scalar methods

to individually calculate each nonzero element in the Hessian [1, 2].

The first suggested strategy for efficiently calculating the sparsity pattern of Hessian matrices was reported

in [5]. This article considers the case of partially separable functions, i.e., functions that are a sum of nonlinear

terms, to suggest that the sparsity pattern of each term be obtained separately and then all patterns should

be appropriately combined. To obtain the pattern of each Hessian, [5] proposes that one should use an

adapted version of the reverse AD tool for calculating Hessian vector products [4].

In 2008 Walther [18] proposed, analyzed and presented numerical results of a new algorithm for obtaining

Hessian sparsity patterns. This algorithm is essentially a forward mode AD procedure and was implemented

in ADOL-C [10]. Complexity bounds and tests of its use in conjunction with ColPack, a graph coloring

package for calculating derivative matrices, were reported in [6]. Recently, a new reverse mode AD Hessian

algorithm edge pushing was developed by Gower and Mello [8], with promising results. Tests comparing

edge pushing to the graph-coloring-based Hessian computation algorithms implemented as drivers in ADOL-

C indicate that the latter could improve considerably given a more efficient sparsity calculation step. This

∗contact: R.M.Gower, Maxwell Institute for Mathematical Sciences, The Unversity of Edinburgh, UK,

gowerrobert@gmail.com. This research was partially supported by FAPESP 2009/04785-7.
†M.P.Mello: State University of Campinas, Brazil, margarid@ime.unicamp.br

1

motivated the derivation of a sparsity algorithm from edge pushing. Both sparsity calculating algorithms

use the framework of automatic differentiation. This framework is best described using the computational

graph point of view of a function evaluation.

We consider n-variable functions that can be represented by a computational graph CG = (G,φ) with

the following characteristics. The directed graph G = (V ∪ Z,E) is acyclic, Z = {1− n, . . . , 0} is the set of

nodes with zero indegree, called independent nodes, and V = {1, . . . , `} is the set of intermediate nodes. We

assume that for each intermediate node i there is a path from some independent node to i in G. Since G is

acyclic we may assume that each arc (i, j) in E satisfies i < j. We denote by S(i) = {j | ∃(i, j) ∈ E} the

set of successors of node i and by P (i) = {j | ∃(j, i) ∈ E} its set of predecessors. To each node i in G we

associate the variable vi. The independent variables are associated with the zero indegree nodes. To simplify

notation, we apply a shift of −n to the indices of the independent variables, so that x = (x1−n, . . . , x0),

and we let vi−n ≡ xi−n, for i = 1, . . . , n. The variable associated with an intermediate node is a function

of its predecessors, specified by the vector φ: vi = φi(vP (i)), for i ∈ V . Of course the ranges and domains

of the φi’s must be properly defined. With this setup, given a set of values for the independent variables

x1−n, . . . , x0, the values of all variables v1−n, . . . , v` may be calculated in a forward sweep of the graph:

vi−n = xi−n, for i = 1, . . . , n

vi = φi(vP (i)), for i = 1, . . . , `.

Given a node i in G, let P (i) be the set of nodes j of G such that there is a path from j to i. This

set may be thought of as a type of precedence closure. Another interpretation is possible if we recall that

paths naturally give rise to a partial order � amongst nodes of an acyclic directed graph by letting j � i

if there is a path from j to i in the graph. Then P (i) is the set of nodes comparable and less than or

equal to node i in this partial order. Of course the value of vi depends ultimately on the values associated

with independent nodes in Zi = P (i) ∩ Z, called i’s index domain in [12], i.e., there is a function ui

such that vi = ui(xZi
). Sometimes it is also convenient to consider ui as a function of the whole vector

x. The computational subgraph constituted by Gi, the subgraph of G induced by nodes in P (i) and the

accompanying set of functions may be thought of as the computational graph of ui. Notice that node i is, by

construction, the maximum, with respect to �, of the nodes in Gi, henceforth called node i’s apex-induced

subgraph. Thus a computational graph CG = (G,φ) is actually a computational graph of many functions,

one for each intermediate node, but usually it is constructed from a program for the evaluation of a single

function f : D ⊂ Rn → Rm. In this case, without loss of generality, G has precisely m zero outdegree nodes

i1 < · · · < im = ` and f(x) = (ui1(x), . . . , uim(x)), so that CG = (G,φ) is called a computational graph

of f . As with many other formal definitions, it is common to relax the formality when working with the

defined objects. In this case, this means identifying the computational graph with its “graph” part, failing

to make explicit mention of the functions and independent variables. We will adhere to this lax use when

no ambiguity derives therefrom.

Figure 1 depicts a computational graph of the function f(x) = 5x−2(x−1 +x0). The functions associated

with the nodes are listed on the right of the figure. The apex-induced subgraphs of nodes 1 and 2 have node

sets {−2, 1} and {−1, 0, 2}, respectively.

2

−2 −1 0

1 2

3 v−2 = x−2

v−1 = x−1

v0 = x0

v1 = 5v−2

v2 = v−1 + v0

v3 = v2v1

Figure 1: A computational graph of f(x) = 5x−2(x−1 + x0).

In practice, each φi is taken from a group of elemental functions which, together with their derivatives, are

already coded. These elemental functions typically include unary functions such as exp(·), sin(·) and log(·),
and binary functions such as multiplication and addition. Since we are restricting ourselves to functions that

may be represented by computational graphs, they are in turn compositions of elemental functions.

Once a computational graph of a function has been built, its evaluation is accomplished by doing a

forward sweep of the graph, and the time spent in doing so is proportional to the number ` of intermediate

nodes, assuming that the complexity of evaluating any elemental function is bounded above. Thus the

construction of an efficient computational graph, in the sense of a small number of intermediate nodes, is

of great interest. But our focus here is on the efficient computation of the sparsity pattern of the Hessian

matrix of a real function f , given a (fixed) computational graph thereof. From here on we assume that f is

a real valued function.

The sparsity structure that we are interested in is a structure that indicates the positions of the entries

in the Hessian matrix that are not identically zero. We refer to this sparsity structure as the global sparsity

pattern. Thus we distinguish between a local sparsity pattern, that is, the set of locations of the nonzero

entries in f ′′(x), for fixed x, and the global sparsity pattern, which is the set of locations (j, k) of entries in

f ′′ such that
∂2f

∂xj∂xk
6≡ 0.

If f is twice continuously differentiable, the global sparsity structure of f ′′ is symmetric, so we refer to the

global sparsity pattern of f ′′ as a set of unordered pairs.

An important concept for the computation of the global sparsity pattern is that of nonlinear interactions.

Node j has a nonlinear interaction with k if there exist i, r and t such that ∂2φi/∂vr∂vt 6≡ 0 and j (resp.,

k) belongs to r’s (resp., t’s) apex-induced subgraph. Thus, for instance, nodes 1 and 2 of the graph in

Figure 1 have a nonlinear interaction since ∂2φ3/∂v1∂v2 ≡ 1. This means the pairs {0, 1}, {−1, 1}, {−2, 2},
{−2,−1} and {−2, 0} also have nonlinear interactions, which were, we may say, inherited from the nonlinear

interaction between nodes 1 and 2. These nonlinear interactions are indicated by dashed lines in Figure 2.

The relevance of nonlinear interactions is spelled out in the next proposition. Roughly speaking, the

nonlinear interactions will determine the global sparsity pattern.

Proposition 1.1 If there does not exist a nonlinear interaction between nodes j and k, then ∂2ui(x)/∂xj∂xk ≡
0, for all i ∈ {1, . . . , `}.

3

−2 −1 0

1 2

3 v−2 = x−2

v−1 = x−1

v0 = x0

v1 = 5v−2

v2 = v−1 + v0

v3 = v2v1

Figure 2: Dashed lines represent the nonlinear interactions between nodes of graph in Figure 1.

Proof: The proof is by induction on i. It is trivially true for u1(x) since the only predecessors of node 1 are

independent nodes, and given that there is no nonlinear interaction between j and k, then ∂2u1(x)/∂xj∂xk ≡
∂2φ1/∂vj∂vk ≡ 0. Suppose the induction hypothesis is true for indices smaller than i. By the chain-rule we

have

∂2ui
∂xj∂xk

=
∂

∂xj

 ∑
r∈P (i)

∂φi
∂vr

∂ur
∂xk

=

∑
r∈P (i)

(
∂ur
∂xk

∂

∂xj

(
∂φi
∂vr

)
+
∂φi
∂vr

∂2ur
∂xj∂xk

)
.

By remembering that the partial derivative ∂φi/∂vr is evaluated at vP (i) = uP (i)(x), we may apply the

chain-rule once again to obtain

∂2ui
∂xj∂xk

=
∑

r,t∈P (i)

∂ur
∂xk

∂2φi
∂vt∂vr

∂ut
∂xj

+
∑

r∈P (i)

∂φi
∂vr

∂2ur
∂xj∂xk

. (1)

The node numbering scheme assumed implies r < i, thus the induction hypothesis is true for node r, and

the rightmost term in (1) is zero. The leftmost term on the right-hand side of (1) is also zero, for, if it were

not, there would exist a nonlinear interaction between node j and k.

Applying the proposition to u`(x) = f(x), we conclude that, if ∂2f/∂xj∂xk 6≡ 0, then there exists a

nonlinear interaction between nodes j and k. Therefore, one can build an overestimate of the global sparsity

pattern by including all nonlinear interaction pairs. This may be an overestimate due to degeneracy. For

example consider the function f defined by the following sequence of statements

v0 = x0, v1 = 1/v0, v2 = v1v0.

It easily follows that v2 ≡ 1, hence f ′′ ≡ 0 and its global sparsity pattern should be empty, but the

overestimate would include the pair {0, 0}. Nevertheless, for most computational graphs, this overestimated

global sparsity pattern coincides with the global sparsity pattern. From here on we drop the “overestimated”

adjective for brevity.

4

2 Forward mode algorithm: hess pat

Roughly speaking, the hess pat algorithm sweeps forward through a function’s computational graph and,

upon encountering a nonlinear elemental function φi, checks to see how φi contributes to the global sparsity

pattern of the Hessian. To do this, it calculates and stores all index domains. The description below is

adapted from [18], taking into account that here all variable indices have been shifted by −n. By initially

setting Zi = {i}, for i = 1−n, . . . , 0, the remaining index domains are computed using the forward recurrence:

Zi ←
⋃

t∈P (i)

Zt, for i = 1, . . . , `.

To keep track of the accumulating global sparsity pattern, Walther [18] defines the nonlinear interaction

domains Nj , for j = 1− n, . . . , 0, as follows:

Nj := {k ≤ 0 : j has a nonlinear interaction with k} .

The pseudo code of hess pat is in Algorithm 2.1. The algorithm performs a forward sweep of the

intermediate nodes from 1 to `. As node i is being swept, Zi is calculated by merging the index domains of

i’s predecessors. Then, if φi is a nonlinear function, for each ordered pair (k, t) such that ∂2φi/∂vk∂vt 6≡ 0,

one knows that every node in k’s apex-induced subgraph, including the independent variables indexed in Zk,

has a nonlinear interaction with each node in t’s apex-induced subgraph, which includes the independent

variables indexed in Zt. Thus the nonlinear interaction domain Np, for each p in Zk, is updated by merging

Zt into Np. If k is not equal to t, then the pair (t, k) will also be examined, and Np, for each p ∈ Zt, will

also be updated accordingly. At the end, the nonlinear interaction domains Nj , for j = 1−n, . . . , 0, contain

the global sparsity information.

Algorithm 2.1: Forward mode: hess pat

Input: A computational graph G = (V ∪ Z,E) of f(x).

Initialization: Zi = {i}, Ni = ∅, for i = 1− n, . . . , 0

for i = 1, . . . ` do

Zi ←
⋃

t∈P (i) Zt

if φi is nonlinear then

foreach (k, t) ∈ P (i)× P (i) such that
∂2φi

∂vk∂vt
6≡ 0 do

foreach p ∈ Zk do

Np ← Np ∪ Zt

Output: The nonlinear interaction domains Nj , for j = 1− n, . . . , 0.

3 A new reverse mode algorithm: edge push sp

In Algorithm 3.1, edge push sp, we suggest a novel and, in many practical instances, more efficient way of

obtaining the global sparsity pattern, that accumulates the nonlinear interactions in a reverse sweep of the

5

computational graph. In edge push sp, a dynamic undirected graph1 H = (V ∪Z,W), with the same node

set as the computational graph, is used to store the nonlinear interactions between nodes. For each node

i, let Ni be the set of i’s neighbors in H. Thus t ∈ Ni if and only if {t, i} ∈ W . Also, given that H is an

undirected graph, t ∈ Ni if and only if i ∈ Nt.

A nonlinear interaction between two variables is represented by an undirected edge linking their respective

nodes in H. At the beginning W is empty (thus the neighborhood sets are empty). A nonlinear interaction

between nodes r and t may stem from the nonlinearity of the elemental function associated with a common

successor of r and t, or be inherited. Accordingly, in the Creating step, when node i is being swept, we

will add edges between predecessors r and t of node i whenever ∂2φi/∂vr∂vt is not identically zero. (Notice

that we may have r = t.) Then, during the Pushing step, the nonlinear interactions of the node being swept

are “pushed down” to its predecessors. In this way, the nonlinear information is propagated backwards with

respect to the node order, until, at the end of the algorithm we have the nonlinear interactions between

nodes in Z, and thus know the global sparsity pattern of f ′′.

Pushing is accomplished in three steps. The first considers the existence of a loop edge incident to node

i, i.e., i ∈ Ni. In this case, each predecessor t ∈ P (i) has a nonlinear interaction with each predecessor

k ∈ P (i). Notice that, since we do not assume any special behavior for the neighbor list data structure, to

add to H an undirected edge between k and t we first insert t in Nk, when the ordered pair (k, t) is examined,

and then add k to Nt, when the ordered pair (t, k) shows up in the foreach loop. 2 This includes the case

that k = t, so whenever there is a loop incident to a node, all its predecessors will have loops as well. The

loop incident to node i, if existent, is deleted at the end of this first step. The second step in Pushing, which

is a loop in t, merges Ni into Nt, for each t ∈ P (i), which effectively pushes down i’s remaining nonlinear

interactions to its predecessors. The third step and loop then adds the mirror images of the edges created

in the previous step, to maintain the undirected characteristic of the edges. We also remove the edge {j, i}
for each j ∈ Ni in this loop and at the end of the Pushing operation, we empty Ni, for, ultimately, we are

not interested in nonlinear interactions between intermediate nodes.

At the end of the algorithm, Nj coincides with the nonlinear interaction domain Nj , for j = 1−n, . . . , 0,

and thus the set of edges of H contains the global sparsity pattern.

This sparsity calculating algorithm is descended from edge pushing, a reverse Hessian AD algorithm [8].

The added suffix “ sp” stands for sparsity pattern. Contrary to what’s done in hess pat, the contribution of

a nonlinear function φi to the global sparsity pattern is not immediately calculated. Instead, the occurrence

of a nonlinear function initiates a trickle of edges down the computational graph. Only when these edges

reach the independent nodes is their contribution to the sparsity pattern known. It should be noted that,

unlike edge pushing, which calculates the actual entries of the Hessian, edge push sp does not require a

forward sweep of the computational graph.

The workings of the algorithm are illustrated in Figure 3, which graphically shows the iterations of

1Strictly speaking, H is a multigraph, given that loops are permitted. Since the allowance of loops will be clear throughout

the article, we adopt the shorter term.
2This is done to assist in the complexity analysis, for in a real implementation, ones front end to a data structure would

omit this symmetric operation.

6

Algorithm 3.1: Reverse mode: edge push sp.

Input: A computational graph G = (V ∪ Z,E) of f(x).

Initialization: Undirected graph H, with node set V ∪Z and neighborhood sets Nj = ∅, for j = 1− n, . . . , `.

for i = ` : 1 do

Creating:

if φi is nonlinear then

foreach (k, t) ∈ P (i)× P (i) such that
∂2φi

∂vk∂vt
6≡ 0 do

Nk ← Nk ∪ {t}
Pushing:

if i ∈ Ni then

foreach k ∈ P (i) do

Nk ← Nk ∪ P (i)

Ni ← Ni \ {i}

foreach t ∈ P (i) do

Nt ← Nt ∪Ni

foreach j ∈ Ni do

Nj ← Nj \ {i}

Nj ← Nj ∪ P (i)

Empty(Ni)

Output: The sparsity pattern of f ’s Hessian, represented by the sets Nj , for j = 1− n, . . . , 0.

edge push sp on a computational graph of the function f(x) = 3x−2 exp(x−1 + x0). The thick arrows

indicate the sequence of four iterations. Nodes about to be swept are highlighted. As we proceed to the

graph on the right of the arrow, nonlinear arcs are created and pushed. Starting with the sweeping of node

4, the nonlinear arc {3, 2}, represented by a undirected dashed edge, is created for ∂2φ4/∂v3∂v2 6≡ 0. In the

subsequent iteration, this nonlinear arc is pushed to node 3’s only predecessor, node −2. As node 2 is swept,

the edge {1, 1} is created, for ∂2φ2/∂v
2
1 6≡ 0. After this, the edge {2,−2} is pushed, resulting in the new edge

{1,−2}. In the final iteration, the loop {1, 1} is pushed and consequently the edges {−1,−1}, {−1, 0} and

{0, 0} are produced. Finally, edge {1,−2} is pushed, producing edges {−1,−2} and {0,−2}. The output

indicates that the global sparsity structure contains all pairs of independent nodes, with the exception of the

loop incident on node −2. The corresponding changes effected on the neighbor lists are shown in Table 1.

4 hess pat Bounds for Special Partially Separable Functions

As defined in [15], a function f : Rn → R is partially separable if

f(x) =

m∑
r=1

fr(xIr), (2)

where Ir ⊂ {1, . . . , n}, ∪mr=1Ir = {1, . . . , n}, and there exists p ∈ N such that: |Ir| ≤ p < n, for r = 1, . . . ,m.

Additionally, we assume that we have a computational graph for this partially separable function and that

7

Neighbors after sweeping node

4 3 2 1

N−2 2 1 −1, 0

N−1 −2, −1, 0

N0 −2, −1, 0

N1 −2, 1

N2 3 −2

N3 2

N4

Table 1: Evolution of neighbor lists when edge pushing is applied to a computational graph of f(x) =

3x−2 exp(x−1 + x0).

4

23

1

−1 0−2

v4 = v2v3

v3 = 3v−2 v2 = exp(v1)

v1 = v0 + v−1

v−2 = x0

v−1 = x1

v0 = x2

4

23

1

−1 0−2

sweeping

node 4

4

23

1

−1 0−2

sweeping

node 3 4

23

1

−1 0−2

sweeping

node 2 4

23

1

−1 0−2

sweeping

node 1

Figure 3: edge pushing applied to a computational graph of f(x) = 3x−2 exp(x−1 + x0).

8

the number of intermediate variables used to calculate fr(xIr) is bounded above by a fixed integer q, for

r = 1, . . . ,m. When p � n, this representation can be exploited in a number of contexts such as nonlinear

optimization [15] and efficient calculation of derivatives [9].

Typically, when a coded routine of a partially separable function uses a single internal variable, say SUM,

to accumulate the partial sums (3), the computational graph associated usually turns out to be a PASETAG

(PArtially SEparable TAll Graph). This has certainly been the case when the graph is generated by the

operator-overloading-based routines of ADOL-C. Each node fr in Figure 4 is the apex of a subgraph that

calculates the nonlinear function fr(xIr). These apex-induced subgraphs are not shown in the picture to

keep it simple, but one must bear in mind that they might intersect. The sj nodes are the partial sums:

sj =

j+1∑
r=1

fr(xIr), j = 1, . . . ,m− 1. (3)

f1 f2

s1

s2

f3

sm−1

fm

Figure 4: Partially separable tall graph.

For the bounds developed in this section, we adopt the usual assumption that each node has at most

two predecessors. Furthermore, we use the same merging algorithm for sets as in [18], where the number of

operations required to merge two sparse array structures is two times the cardinality of the first set plus the

cardinality of the second set. Given a suitable choice of data structure, and allowing repetitions of elements

in the data set, it is possible to merge sets in O(1) [17]. Notice however that allowing repetitions may lead

to appreciable increases in allocated memory.

The notation f(x) = Ω(g(x)) means that f(x) is asymptotically bounded below by the function g(x)

times a fixed constant. We denote by OPS(A← A ∪B) the number of operations needed to merge the set

B into A. Thus, by our assumption in the previous paragraph, OPS(A← A ∪B) = 2|A|+ |B|.

Proposition 4.1 The number of operations needed in the version of hess pat, Algorithm 2.1 above, imple-

mented in ADOL-C-2.3.0, to merge all index domains of a PASETAG is Ω(n2/p+m).

Proof: Let Zsj be the index domain of the partial sum node sj , j = 1, . . . ,m−1. Let Zr be the index domain

of node fr, r = 1, . . . ,m. We will obtain a lower bound for calculating the index domains by bounding the

9

complexity of computing each Zsj , j = 1, . . . ,m− 1. The set Zs1 is built by merging Z1 and Z2, while Zsj

is built by merging the sets Zsj−1
and Zj+1, for j = 2, . . . ,m− 1. Necessarily |Zsm−1

| = n ≤ |Zsm−2
|+ |Zm|,

hence OPS(Zsm−1
← Zsm−2

∪ Zm) ≥ n, for two times |Zsm−2
| plus |Zsm | is at least n.

Given there are at most p independent variables in the apex-induced subgraph of fm, we have that

|Zsm−2 | ≥ n− p which in turn implies that OPS(Zsm−2 ← Zsm−3 ∪ Zm−1) ≥ (n− p). By induction we have

that OPS(Zsm−j ← Zsm−j−1 ∪ Zm−j+1) ≥ max{1, n− (j − 1)p}.
Thus, the number of operation in calculating all Zsm−j

sets, for j = 1, . . . ,m− 1, is

m−1∑
j=1

OPS(Zsm−j
← Zsm−j−1

∪ Zm−j+1) ≥ n+ (n− p) + · · ·+
(
n−

⌊
n

p

⌋
p

)
+ 1 + · · ·+ 1︸ ︷︷ ︸

m−2−bn/pc

=
1

2

(
2n−

⌊
n

p

⌋
p

)(⌊
n

p

⌋
+ 1

)
+

(
m− 2−

⌊
n

p

⌋)
≥ n

2

(⌊
n

p

⌋
+ 1

)
+

(
m− 2−

⌊
n

p

⌋)
=

n− 2

2

(⌊
n

p

⌋
+ 1

)
+ (m− 1).

On the last inequality we used n−
⌊
n
p

⌋
p ≥ 0. Hence the operation count for calculating the index domains

in hess pat is bounded below by a constant times n2/p+m, commonly abbreviated as Ω(n2/p+m).

Notice that the computation of the index domains accounts for only part of the computational effort.

Thus, if p remains unchanged as n grows, hess pat’s runtime will grow at least quadratically in n. Indeed,

this is the behavior observed in the computational experiments reported in Section 6.

5 Bounds for edge push sp

To analyze the number of operations required by Algorithm 3.1 edge push sp, let us assume that the data

structure used to represent the graph H is an array of adjacency lists, so each node corresponds to an

element of the array and its neighboring set is a linked list. The number of operations in sweeping through

a list of neighbors, to insert a new node and to delete a list of neighbors, is bounded by the size of this

list. Furthermore, edge push sp uses the same merging procedure as hess pat, thus has an operation count

equal to two times the cardinality of the set that “receives” the merger plus the cardinality of the second

set.

For this bound we extend the definition of nonlinear interaction domain to every node t ∈ V ∪ Z,

Nt = {j ∈ V ∪ Z | j has a nonlinear interaction with t} .

Let n̂ = maxt{|Nt|}.

Proposition 5.1 The number of operations required by edge push sp on a given computational graph is

O
(
`+ n̂

∑`
i=1 |Ni|

)
.

Proof:

10

Statement Upper bound on # operations

for i = ` : 1 do

Creating:

if φi is nonlinear then

foreach (k, t) ∈ P (i)× P (i) such that
∂2φi
∂vk∂vt

6≡ 0 do

Nk ← Nk ∪ {t}
∑

k∈P (i)

(2|N i
k|+ 1)

(Note: at this point, the number elements in k’s neighbor list is at most |N i
k|+ 2, for k ∈ P (i).)

Pushing:

if i ∈ Ni then

foreach k ∈ P (i) do

Nk ← Nk ∪ P (i)
∑

k∈P (i)

(2(|N i
k|+ 2) + 2)

Ni ← Ni \ {i} |N i
i |

foreach k ∈ P (i) do

Nk ← Nk ∪Ni

∑
k∈P (i)

(2(|N i
k|+ 2) + |N i

i |)

foreach j ∈ Ni do

Nj ← Nj \ {i}
∑
j∈Ni

i

(|N i
j |+ 2)

Nj ← Nj ∪ P (i)
∑
j∈Ni

i

(2(|N i
j |+ 2) + 2)

Empty(Ni) |N i
i |

Figure 5: Upper bounds on the number of operations required by the statements of Algorithm 3.1

The number of operations of edge push sp is intimately related to the number of neighbors of each node

in H. Therein lies the difficulty in calculating a bound, for H is a dynamic graph, something easy to overlook

since the notation does not explicitly account for this temporal dependency. Although the node set of H is

fixed, the arc set may vary from one iteration to the next. To emphasize this evolution, we let N i
t be node

t’s linked list of neighbors at the beginning of the iteration where node i is swept.

Let us analyze the number of operations in each iteration of edge push sp. Consider the effort of sweeping

a node i. To help understand the development, we summarize in Figure 5 the upper bounds on the number

of operations needed in the various calculations of edge push sp on a generic computational graph. On the

left we have the several loops and statements and on the right the upper bound on the (total) number of

operations needed for executing a command (inside a given loop).

The Creating step may add, at most, P (i) elements in N i
k, for each k ∈ P (i). Thus at most two elements

are included in N i
k. The number of operations in the first inclusion is |N i

k| and in the second one is |N i
k|+ 1.

Therefore the loop in the Creating step uses up at most
∑

k∈P (i)(2|N i
k|+ 1) operations.

The possibly larger value of the cardinality of the neighbor’s lists of each of the predecessors of i is taken

into account when estimating the number of operations needed in the mergers in the three loops in the

11

Pushing step. This overestimate is also used in the third loop, since node j ∈ Ni may also be a predecessor

of node i. The elimination of i from N i
i uses at most |N i

i | operations.

Summing up the upper bounds on the number of operations needed when sweeping node i we have

#operations when sweeping node i ≤
∑

k∈P (i)

(6|N i
k|+ 11 + |N i

i |) +
∑
j∈Ni

i

(3|N i
j |+ 8) + |N i

i |. (4)

To arrive at our final result, it remains to show that, for fixed i, t ∈ V ∪ Z, we have that N i
t ⊂ Ntİf an

edge {j, t} is allocated in the creating step, then there exists k such that ∂2φk/∂vt∂vj 6≡ 0, and there is a

nonlinear interaction between them. Otherwise, this edge was allocated in the pushing step. Let S(j) be the

set of nodes i in the computational graph G such that there is a path from j to i. Thus S(j) is the transitive

closure of the successor relation. Then, through simple induction, there exists s ∈ S(j) and r ∈ S(t) such

that the edge {s, r} was allocated in the creating step, fulfilling the definition of nonlinear interaction. Thus

N i
t ⊂ Nt and, consequentially,|N i

t | ≤ |Nt| ≤ n̂. Using this combined with (4), we see that the number of

operations needed when sweeping node i is bounded by∑
k∈P (i)

(6|N i
k|+ 11 + |N i

i |) +
∑
j∈Ni

i

(3|N i
j |+ 8) + |N i

i | ≤
∑

k∈P (i)

(6n̂+ 11 + |Ni|) +
∑
j∈Ni

i

(3n̂+ 8) + |Ni|

≤ 2(6n̂+ 11 + |Ni|) + |Ni|(3n̂+ 8) + |Ni|

≤ O (n̂|Ni|+ 1) .

Finally, the total effort of sweeping all ` nodes in the graph is O
(
`+

∑`
i=1 n̂|Ni|

)
.

Though this is a rather coarse bound, it tells us that edge push sp ultimately only depends on nonlinear

aspects of the computational graph. For instance, a linear function will have a computational graph that

has no nonlinear elemental functions, thus there are no nonlinear interactions, and the number of operations

carried out by edge push sp will be O(`). This is different for hess pat whose runtime is dominated by

calculations involving linear interactions.

We now move on to compare the two algorithms, edge push sp and hess pat, through computational

tests where the focus is time taken in execution.

In terms of memory usage and complexity, most reverse AD algorithms must store the intermediate

values vi, for i = 1− n, . . . , ` in the forward sweep, so that the elemental functions can be evaluated in the

reverse sweep. This can be debilitating for functions with extremely large computational graphs, for it may

be impossible to simultaneously store all intermediate variables, even in terms of sequential access memory.

A proposed solution to this problem is creating checkpointing schedules, in which memory requirements

are reduced in exchange for execution time [11]. The algorithm edge push sp is free of such problems, for

the elemental functions are not evaluated. Instead, the global sparsity pattern is constructed by simply

inspecting whether the elemental function associated with each node is linear or nonlinear.

6 Computational Experiments

All tests were run on the 64-bit operating system Fedora Scientific, processor Intel Pentium 4 CPU 3.20GHz,

and 3 GB of RAM. All algorithms were coded in C and C++. Both edge push sp and hess pat algorithms

12

name Pattern hess pat edge push sp

binary sparse B 1 60 78

cosine B 1 3420 164

bc4 B 1 3467 314

cragglevy B 1 15103 321

chainwoo B 2 25131 314

pspdoc B 2 3220 187

scon1dls B 2 3212 365

morebv B 2 4365 391

augmlagn 5× 5 diagonal blocks 5666 404

lminsurf B 5 3766 363

brybnd B 5 3977 1120

bdexp B 5 3769 251

chainros trigexp B 3 + D 6 3478 366

toiqmerg B 7 3308 470

arwhead arrow 22359 304

nondquar arrow + B 1 7440 142

sinquad frame + diagonal 17756 290

bdqrtic arrow + B 3 31032 582

noncvxu2 irregular 26671 334

ncvxbqp1 irregular 5964 185

ncvxqp3 irregular 5446 141

Table 2: Description of problem set, Hessian sparsity pattern and execution times in milliseconds of hess pat

and edge push sp, for n=50’000

have been implemented as drivers of ADOL-C, and use the same taped evaluation procedure, which represents

a computational graph, produced by ADOL-C [10]. For these tests, we used version ADOL-C-2.3.0, the most

recent available 3

We have hand-picked fifteen problems from the CUTE collection [3], augmlagn from [13], binary from

[16], toiqmerg (Toint Quadratic Merging problem) and chainros trigexp (Chained Rosenbrook function with

Trigonometric and exponential constraints) from [14] for the experiments. Our tests consist of calculating

the global sparsity structure of the Hessians of the Lagrangian functions of each problem with constraints

and Hessians of the objective function otherwise. The selection was based on the following criteria: Hessian’s

sparsity pattern, dimension scalability and sparsity. We wanted to cover a variety of patterns; to be able

to easily change the dimension of the function, so as to appraise the performance of the algorithms as it

grows; and we wanted to work with sparse matrices. See Table 2. The ‘Pattern’ column indicates the type

of sparsity pattern: bandwidth4 of value x (B x), arrow, frame, number of diagonals (D x), or irregular

pattern. The runtimes of hess pat and edge push sp for n = 50 000 (dimension) are in Table 2, where one

can see that the edge push sp algorithm had a substantially faster runtime in all cases. Both algorithms

produced precisely the same global sparsity structures.

To get a feeling for the asymptotic behavior of both algorithms, we have tabulated their runtimes on

3As checked on January 23, 2013.
4The bandwidth of matrix M = (mij) is the maximum value of |i− j| such that mij 6= 0.

13

morebv sinquad brybnd chainros trigexp ncvxbqp1

n hess p e p sp hess p e p sp hess p e p sp hess p e p sp hess p e p sp

1000 3 6 9 4 8 22 5 6 3 3

11000 158 72 786 53 216 240 175 121 212 35

21000 538 135 3059 103 674 484 565 310 718 63

31000 1173 211 7897 200 1587 859 1207 731 1540 101

41000 2214 276 13450 196 2227 1364 2226 975 3228 170

51000 3037 392 20070 296 3406 1567 3157 1616 4261 165

61000 4475 408 25519 346 4781 2152 4407 1794 6442 206

71000 5964 489 38707 371 6592 2250 5892 2594 8038 299

81000 7823 663 47174 404 8434 2190 9058 3734 10579 273

91000 9795 685 56132 548 10858 2128 10017 4104 13080 319

Table 3: Runtime results in millisecond for edge push sp (abbreviated to e p sp) and hess pat (abbreviated

to hess p) over varying dimensions.

morebv, sinquad, brybnd, chainros trigexp and ncvxbqp1, with varying dimension n, in Table 3. Each of

these five functions is a representative of a type of sparsity pattern that was tested. Using the notation of

Section 4, all test cases are partially separable, where the number of nonlinear terms m is a linear function

of n, whereas p and q are independent of n, for large n.5 Upon inspection of the computational graphs

generated by ADOL-C of the coded instances of these functions, we found that many were PASETAGs, thus

motivating our definition. An example that does not fit the definition of PASETAG, was the computational

graph of scon1dls, which is two PASETAGs connected at the root. The reason for this was that two variables

were used to store the accumulating sum of nonlinear terms.

In these circumstances, according to Proposition 4.1, hess pat’s runtime should grow, at least, quadrat-

ically. The numerical results in Table 3 corroborate this prediction. To further reveal this asymptotic

behavior we have plotted the runtimes of the algorithms on brybnd, as a function of dimension, in Figure 6.

All test functions exhibit similar plots, thus we have shown only the one.

For partially separable functions, accumulating linear dependencies between intermediate variables and

independent variables, such as the computation of the index domains in hess pat, becomes costly as the

dimension of the problem grows. This situation can be improved if a previous step is implemented that

“balances”6 the computational graph in terms of its height. With a perfectly “balanced” graph, the lower

bound on hess pat can be reduced. Another solution, recently proposed by Walther [17], is to use a special

data structure for merging the index domains that allows repetition of elements, but merges with a time

complexity of O(1). With such a data structure, the complexity results of Proposition 4.1 are no longer

valid. In a test suit of five problems [17], this has produced a significant speed-up.

In contrast, when accumulating nonlinear dependencies in a reverse sweep, we need not carry these linear

dependencies. Instead, only known contributions to the sparsity pattern are dealt with. Gebremedhin et

al. [6] point out that the computational cost of using hess pat to calculate Hessians became a bottleneck

as the dimension n increased, in their four step graph coloring algorithms for calculating Hessians, where

5In a few cases, p and q grow linearly for small n, but would reach an upper bound for n = 14 and grow no more.
6Quotation marks are necessary for such a term is only defined for trees.

14

Figure 6: Runtime in seconds of both algorithms, over varying dimensions, on problem brybnd.

15

obtaining the sparsity pattern was the first step. This was also evidenced in [8], where tests comparing

graph coloring-based approaches to edge pushing revealed that the graph-coloring-based algorithms were

not as competitive due to the comparatively large amount of time spent in the first two steps, comprised

of calculating the sparsity pattern using hess pat and graph coloring. This indicates that the efficiency of

graph-coloring-based algorithms for calculating Hessians could be improved by employing edge push sp to

obtain the sparsity pattern.

16

References

[1] Jason Abate et al. “Algorithms and design for a second-order automatic differentiation module”. In:

Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI).

New York: ACM, 1997, 149–155 (electronic).

[2] C. Bischof, G. Corliss, and A. Griewank. “Structured second-and higher-order derivatives through

univariate Taylor series”. In: Optimization Methods and Software 2.3 (1993), pp. 211–232. issn: 1055-

6788.

[3] I. Bongartz et al. “CUTE: constrained and unconstrained testing environment”. In: ACM Trans. Math.

Softw. 21.1 (1995), pp. 123–160. issn: 0098-3500.

[4] Bruce Christianson. “Automatic Hessians by reverse accumulation”. In: IMA J. Numer. Anal. 12.2

(1992), pp. 135–150. issn: 0272-4979.

[5] D.M. Gay. “More AD of Nonlinear AMPL Models: Computing Hessian Information and Exploiting

Partial Separability”. In: Computational Differentiation: Applications, Techniques, and Tools (1996),

pp. 173–184.

[6] Assefaw H. Gebremedhin et al. “Efficient computation of sparse Hessians using coloring and automatic

differentiation”. In: INFORMS J. Comput. 21.2 (2009), pp. 209–223. issn: 1091-9856.

[7] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. “What color is your Jacobian? Graph

coloring for computing derivatives”. In: SIAM Rev. 47.4 (2005), 629–705 (electronic). issn: 0036-1445.

[8] R. M. Gower and M. P. Mello. “A new framework for the computation of Hessians”. In: Optimization

Methods and Software 27.2 (2012), pp. 251–273. eprint: http://www.tandfonline.com/doi/pdf/10.

1080/10556788.2011.580098.

[9] Andreas Griewank. “Some bounds on the complexity of gradients, Jacobians, and Hessians”. In: Com-

plexity in numerical optimization. World Sci. Publ., River Edge, NJ, 1993, pp. 128–162.

[10] Andreas Griewank, David Juedes, and Jean Utke. “Algorithm 755: ADOL-C: a package for the au-

tomatic differentiation of algorithms written in C/C++”. In: ACM Trans. Math. Softw. 22 (2 1996),

pp. 131–167. issn: 0098-3500.

[11] Andreas Griewank and Andrea Walther. “Algorithm 799: revolve: an implementation of checkpointing

for the reverse or adjoint mode of computational differentiation”. In: ACM Trans. Math. Softw. 26.1

(2000), pp. 19–45.

[12] Andreas Griewank and Andrea Walther. Evaluating derivatives. Second Edition. Principles and tech-

niques of algorithmic differentiation. Philadelphia, PA: Society for Industrial and Applied Mathematics

(SIAM), 2008, pp. xxii+438. isbn: 978-0-898716-59-7.

[13] W. Hock and K. Schittkowski. “Test examples for nonlinear programming codes”. In: Journal of Op-

timization Theory and Applications 30.1 (1980), pp. 127–129.

[14] Ladislav Luksan, Jan Vlcek. Test Problems for Unconstrained Optimization san Test Problems for

Unconstrained Optimization. Tech. rep. 897. Academy of Sciences of the Czech Republic, 2003.

17

[15] Ph.L. Toint and A. Griewank. “On the unconstrained optimization of partially separable objective

functions”. In: ed. by M.J.D. Powell. Academic Press, London, 1982. Chap. Nonlinear Optimization

1981, pp. 301–312.

[16] E. Varnik. “Exploitation of structural sparsity in algorithmic differentiation”. PhD thesis. RWTH

Aachen, 2011.

[17] A. Walther. “On the Efficient Computation of Sparsity Patterns for Hessians”. In: Proceedings of AD

2012: Recent Advances in Algorithmic Differentiation, Lecture Notes in Computational Science and

Engineering, 87. 2012, pp. 139–149.

[18] Andrea Walther. “Computing sparse Hessians with automatic differentiation”. In: ACM Trans. Math.

Software 34.1 (2008), Art. 3, 15. issn: 0098-3500.

18

