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Abstract To adequately model mathematical arguments the analyst must be able to
represent the mathematical objects under discussion and the relationships between
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course unfolds. We introduce a framework with these properties, which has been
used to analyse mathematical dialogues and expository texts. The framework can re-
cover salient elements of discourse at, and within, the sentence level, as well as the
way mathematical content connects to form larger argumentative structures. We show
how the framework might be used to support computational reasoning, and argue that
it provides a more natural way to examine the process of proving theorems than do
Lamport’s structured proofs.
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1 Introduction

The representation of mathematical knowledge and inference in appropriate formal
logical frameworks is well-understood and the subject of much research. Computa-
tional tools to support this through proof checking, automatic theorem proving, and
computer algebra are well-established, though they require formal, computationally
explicit, content as input. However, the existing mathematical literature, particularly
informal mathematical dialogues, and expository texts, is opaque to such systems,
which cannot currently handle the variety of activities typically involved in produc-
ing such knowledge and proofs, such as, for example, exposition and argument that
concerns making conjectures, forming concepts, and discussing examples and coun-
terexamples. Our goal is to bridge this gap through devising an expressive modelling
language that is closely related to the way mathematics is actually done.

Our approach to modelling such content is inspired by the general-purpose argu-
ment modelling formalism Inference Anchoring Theory (IAT), introduced by [Reed
and Budzynskal (2010). As its name suggests, IAT anchors logical inferences in dis-
course. IAT has been applied to mediation (Janier and Reed, 2017), debates (Budzyn-
ska et al, 2014b)), and to paradoxes in ethotic argumentation (Budzynska,|2013)), along
with other real-world dialogues (Budzynska et al, [2013)). The Inference Anchoring
Theory + Content (IATC) framework we introduce is based on IAT, but with sev-
eral significant modifications. Most fundamentally, IATC is designed to bring to the
surface the structural features inherent in mathematical content.

IATC could be overlaid upon formally specified contents, where these are avail-
able. Lamport’s “Temporal Logic of Actions+” (TLA+) (Lamport, |1999, [2014) is
one such formalism that could be used to model content-level expressions. Higher-
level discourse structure would then be exhibited somewhat along the lines of Lam-
port’s own semi-formal “structured proofs” (Lamport, 1995, [2012). However, unlike
structured proof, IATC does not aim to reshape the way people do mathematics, but
to model it more exactly. As such, it constitutes groundwork for a future genera-
tion of computer systems that can collaborate with mathematicians and students in a
way these potential users already understand. Epstein| (2015) highlights the “extent
to which a person believes that her work experience or product has been facilitated
or improved by the collaboration” as a key evaluation metric for assessing collabora-
tive intelligent computer systems. The key metric at this stage is more basic, namely,
we are interested in the degree to which IATC can represent real-world examples of
mathematical practice in a way that can make them accessible to computational rea-
soning. After introducing the modelling approach, we use several examples to show
that IATC is indeed satisfactory in this regard.

— Our first example is a school-level challenge problem that was presented in a pub-
lic lecture by the mathematician Timothy Gowers (Gowers and Ganesalingam,
2012). The lecture aimed to motivate and contextualise a project, then begin-
ning, to develop mathematical software that “operate[s] in a way that closely mir-
rors the way human mathematicians operate” (Ganesalingam and Gowers), 2017,
p. 255). The reasoning needed to solve the challenge problem remains beyond
the scope of the computational method that Ganesalingam and Gowers ultimately



published, but it is both sufficiently simple and sufficiently realistic to introduce
the practical aspects of working with TATC.

— Our second example is a question posed on the online Q&A forum MathOverflow,
together with the ensuing dialogue. MathOverflow is part of the Stack Exchange
network of community question-and-answer websites, which is particularly pop-
ular with software developers. The MathOverflow sub-site is devoted to discus-
sions about research-level questions in mathematics. Such discussions are very
different from the textbook-style proofs treated by (Ganesalingam and Gowers|
2017)), and we discuss the considerations that such discussions would impose on
computational modelling efforts.

— MiniPolymath 1 through 4 were part of a series of experiments in collaborative
online mathematics known as “Polymath projects” (Nielsen et al, 2009-2018)).
While other projects in the series tackled novel research, the problems in the
MiniPolymath subseries were drawn from the Mathematical Olympiad, a premier
competition for pre-college students. Six problems are given, and the examination
takes place over two days with three problems to be solved each day. Whereas in-
dividual Olympiad participants frequently fail to solve three challenge problems
in the four-and-a-half hours allotted for that purpose, all four of the collaborative
MiniPolymath efforts generated a solution. However, it should be noted that some
of these solutions took more than 24 hours to develop. IATC can help us under-
stand how the proof efforts progressed, and can potentially help us understand
why they were (mathematically) successful.

The plan of the work is as follows. §2|reviews previous research on mathematical
argument, presents a brief introduction to Inference Anchoring Theory, and describes
Lamport’s structured proofs as an example of the state of the art for modelling infor-
mal mathematical knowledge. §3|introduces IATC, describes the grammar of IATC
markup, and describes the differences between this language and IAT. §4| presents
our analysis of the examples outlined above, which have been marked-up with IATC
in order to illustrate the relevant modelling concerns. §5[summarises and reviews the
contribution, situates our work in relationship to the broader literature, and outlines
potential directions for further work.

2 Background

In this section we state what we mean by argumentation, and survey previous research
on argumentation in mathematics (§2.1)). We then describe Inference Anchoring The-
ory (§2.2) and structured proof (§2.3), two landmarks that guide our effort.

2.1 Argumentation and mathematical arguments

Our approach to argument builds on Buzynska and Reed’s Inference Anchoring The-
ory (IAT), which we describe in Section The specific conception of argument
that underlies IAT is as follows:
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[A]rguing can be interpreted as an illocutionary act that comes about as the
result of a relation between uttering a premise and uttering a conclusion, thus
mirroring the logical structure of inference[.] (Reed et al, 2017| p. 146)

Reed and Budzynskal (2010) note that in everyday language the term “argument” is
used to describe a particular kind of interaction as well as the shared understanding
extracted from these interactions, as “evidence” or “proof.” The purpose of IAT is to
make the links between discourse and reasoning explicit.

Concerning argumentation in a mathematical context, |Pedemonte| (2007} p. 39)
argues that “analysis of the ‘content’ is not sufficient to analyse all the cognitive
aspects in the relationship between argumentation and proof.” A large part of math-
ematical discussion is in essence meta-discussion about meta-level objects, such as
proof strategies that are suggested on the fly and debates about whether these strate-
gies are likely to work as intended.

Mercier and Sperber| (2011) distinguish arguments from inferences: only in the
case of arguments “the reasons for drawing this conclusion on the basis of the premises
are (at least partially) spelled out” (p. 58). By contrast, formal mathematics is typi-
cally based on the reductive assumption that “mathematical reasoning may be iden-
tified with classical, deductive inference” (Aliseda, [2003} p. 25). However, everyday
mathematical reasoning plainly involves more than just proof steps. Here are two
examples of familiar patterns of reasoning that appear in MiniPolymath 3:

argument from authority “My bachelor thesis supervisor said that one can’t use the
word cardinal if we talk about finite sets. One has to use the words ‘number of
elements’” (Tao et al, 2011} 19 July, 9:46 pm).

argument from analogy “Let me check that I got the example correctly: is this ‘a
point inside a regular polygon’? Isn’t it established in an early comment that the
example of a point inside an equilateral triangle indeed visits all the points? Can
you clarify the difference here?” (Tao et al, 2011} |19 July, 9:19 pm).

The word “argument” has been attached to several distinct kinds of mathematical
artefacts and activities. This term may indicate proofs (Gasteren, |1990), informally-
presented proofs (Tanswell, 2015), proof sketches (Lamport, [1995), aspects of rea-
soning that are not addressed by formal deduction (Aberdein and Dove, 2013) and
elements of persuasive discussion (Zack and Graves| 2001)).

Some theorists have expressly contended that proofs are not arguments: this is
because proofs offer certainty, while arguments cannot (Dufour, 2013). Nevertheless,
communication of reasons and reasoning can be found throughout mathematical prac-
tice. Pedemonte| (2007) highlights the use of inductive and abductive logic as well as
deduction in mathematical processes that move “from conjecturing to the construc-
tion of proof [to] the proof as product,” and in which “content rather than formal
criteria” can guide the proving process. Dufour| (2013) gives examples of argumenta-
tion “not only before and during the proof but also after, at least as long as it can be
criticized” (p. 74). Other scholars have observed features such as these:

— Published mathematical writing tends to be particularly explicit about reasons and
conclusions (Dove, 2009, p. 149).


https://wp.me/pAG2F-41#comment-3418
https://wp.me/pAG2F-41#comment-3378

— Not only the Prover but also the Skeptic “has an important role to play, namely to
ensure that the proof is persuasive, perspicuous, and valid” (Dutilh Novaes, |[2016|
p- 2618).

— On the way to a proof, degrees of confidence about the conclusions to be drawn
may be discussed (Inglis et al| 2007, p. 17).

— Mathematical meanings need to be interpreted, and this tends to be a struggle
(van Oers, 2002, p. 360).

Carrascal| (2015) provides an excellent survey of recent thinking about argument
in mathematics, highlighting its connections with mathematical practice. Carrascal
advises: “in order to learn more about the nature of mathematical practice and how
its products are evaluated, we should be looking at real examples of this practice.” She
points to |Pease and Martin| (2012) as a notable example in this genre. Once we have
developed a suitable apparatus, Section [] will tackle several real-world examples,
including a detailed reexamination of the dataset studied by Pease and Martin.

“Blog maths” (Barany| |2010) and other online discussions, for example, on the
question-and-answer site MathOverflow, can “tell us about mathematicians’ attitudes
to working together in public” as well as the “kinds of activities that go on in develop-
ing a proof” (Martin, [2015). In the process of creating a proof or mathematical theory,
divergent understandings are negotiated using shared concepts, definitions, and stan-
dards for proof, even as the concepts evolve. Along these lines, Pease et all (2017)
used the methods of structured and abstract argumentation to formalise the theory of
informal mathematics developed in Lakatos’s Proofs and Refutations (1976)) as a set
of rules for turn-taking in a dialogue game. This work shows that formally specified
and fully implemented argumentation tools can be brought together and applied to
a specific, demanding, domain of human reasoningF_-] Dauphin and Cramer| (2018)
produced a similar model of natural-deduction style arguments, explanations, and the
“prima facie laws of logic” such as may be debated in work on mathematical founda-
tions. These prior efforts focus on developing rules that give a plausible codification
of mathematical process. Our concern is different, but complementary. We are inter-
ested in a better understanding of what is actually said in mathematical arguments,
and on the reasoning that is conveyed. Accordingly, we will adapt a general-purpose
argument modelling approach, Inference Anchoring Theory, which is described in the
following section.

2.2 Inference Anchoring Theory

Inference Anchoring Theory (IAT) is used to model the logical relationships between
the propositional contents of utterances made in dialogues (Budzynska and Reed,
2011). As noted by Reed et al|(2017), the inspiration for developing IAT lies in earlier
work on representing dialogue in the Argumentation Interchange Format.

! The dialogue game defines ordered operations on a shared information state represented in the Argu-
ment Interchange Format (AIF) (Lawrence et al,[2012), which is then interpreted by The Online Argument
Structures Tool (TOAST) (Snaith and Reed} |2012) and passed on to DungOMatic (Snaith et al, 2010)
to calculate the grounded extension, which in this case represents the currently accepted, collaboratively
constructed, proof or theory under discussion.
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IAT is grounded in a notion of dialogical relations that formalise the informal
“conventions and norms that dictate the flow of dialogue” (Snaith and Reed, [2016).
Per Budzynska and Reed (2011)), these dialogical relations are also referred to as
“transitions,” a term that is meant to recall the notion of transitions between operat-
ing states in a finite state machine. Indeed, when the norms have been fully codified
in a dialogue protocol, the transitions are exactly described by a finite state machineE]
Content relationships are typically identified by matching locutions against known ar-
gument schemes, e.g., an ‘Argument from Positive Consequences’ is associated with
two transitions, ‘challenging’ and ‘substantiating’ (Walton et al, [2008). Budzynska
et al| (2014a)) describe Inference Anchoring Theory in terms of three components:

(i) relations between locutions in a dialogue, called transitions;

(i1) relations between sentences (propositional contents of locutions); and

(iii) illocutionary connections that link locutions with their contents.
(Budzynska et al, 2014a), emphasis added

In Figures [T] and [2] below, “TA” stands for a default transition, “RA” stands for
application of rule of inference, and “CA” stands for default conflict. That is to say,
there is no explicit formal dialogue protocol attached to these two examples.

Figure[l]is a typical example of an IAT analysis. Figure[2illustrates a feature that
was not directly mentioned in the list[(DH(iiD] above; specifically, this figure uses an
‘implicit’ speech-act to anchor propositional content on a transition rather than a lo-
cution. Here, when a speaker asserts ‘A’ and their interlocutor says ‘No’, the logical
content ‘—A’ is attached to the transition, rather than to the negating word. The basic
rationale is that the locution ‘No’ cannot be made sense of without the preceding con-
text. There has been some debate about what to do about this. Botting|(2015) says that
the choice to anchor arguments on transitions is a conceptual mistake. However, for
the creators of IAT, the reason illocutionary acts can be rooted on dialogical relations
follows

...directly from pragma-dialectical analysis which views the speech act of
assertion [ . . . ] as occurring at the ‘sentence’ level, and the speech act of
argumentation as occurring at a ‘higher textual level.” (Budzynska and Reed,
2011)

Visser et al (201 1)) describe the theoretical considerations in more detail. The pat-
tern common to both Figure[T]and Figure2]is that allowable inferences are governed
by dialogue norms. In Figure|l| for instance, we would not immediately know that
‘A" is intended to support ‘A’ without Wilma’s intermediate question which explic-
itly requested such support. Given the context, the intended inference is clear. Thus,
both examples serve to illustrate that

the connection between locutions in a dialogue has an inferential component
beyond any that may hold between the contents of those locutions (Reed and
Budzynska, 2010).

2 1In such a setting the formal argumentation-theoretic techniques and tools mentioned in Footnotecan
be applied, though IAT models are not required to be fully formal in this regard.



Fig. 1: IAT diagram for the con- Fig. 2: IAT diagram for the con-
versation ‘A’/‘Why?’[‘A”. versation ‘A’/*No’.

In short, IAT studies “the way in which the rules of dialogue influence the construc-
tion of argument” (Budzynska et al, [2016)).

Although the specific example in Figure [2] is very simple, the following gen-
eral observation on dialogue norms is useful for thinking about how the conversation
might continue from the point it has reached so far:

[T]here is an asymmetry between the production of arguments, which in-
volves an intrinsic bias in favor of the opinions or decisions of the arguer
whether they are sound or not, and the evaluation of arguments, which aims
at distinguishing good arguments from bad ones. (Mercier and Sperber}, 2011,
p-72)

If the conversation were to continue, Wilma would typically have the burden of jus-
tifying her rejection of ‘A’, which might be done with counterarguments that would
dig into the details of ‘A’ looking for flaws (ibid., p. 67); in addition, she might be-
gin to make a case for an alternative position, ‘B’. These considerations point to the
direction we will be taking with IATC.

Our main strategy will be to supplement IAT with an explicit register for content.

Alongside [(1)H(i1i)} above, we introduce:

(iv) a model of non-propositional content, namely of the mathematical objects
under discussion, and the relations between them.

We will describe the implications of this addition in detail in Section [3] along with
some other adaptations to IAT that we have found useful in mathematical settings.
One of the implications is that in the current work we do not need to emphasise
transitions—of either the explicit or implicit variety—since a more explicit treatment
of content gives us another way to manage context relationships.

2.3 Lamport’s structured proofs

Structured proofs, as described by [Lamport| (1995| [2012), inhabit the middle ground
between formal and informal mathematics, and provide a useful point of reference for
our work on IATC. Structured proofs offer a notational strategy that is a “refinement
of [ . .. ] natural deduction” (Lamport, | 1995). While the proofs represented using
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this system are not required to be strictly formal, the language of structured proofs
has evolved together with Lamport’s work on a formal language and corresponding
proof checking system, the “Temporal Logic of Actions+” (TLA™), which is used
to model concurrent systems (Lamport, (1999, 2014)E] Structured proofs are, specifi-
cally, structured as a strict hierarchy of lemmas. An example appears later on in this
paper, in Figure[6] which we will use to illustrate the similarities and differences with
IATC.

For now, we comment that while the use of strict hierarchies is not representative
of the way proofs are usually constructed in day-to-day practice, Lamport has pro-
posed that structured proofs can assist in proof development, e.g., by helping to bring
errors to the surface. However, they do not necessarily make the job of the reader
easier: Lamport (2012, p. 20) quotes a referee who had read one of his structured
proofs:

The proofs [ . . . ] are lengthy, and are presented in a style which I find very
tedious. [ ... ] My feeling is that informal proof sketches [ . . . ] to explain the
crucial ideas in each result would be more appropriate.

Unlike structured proofs, IATC is intended to express the typical processes by which
proofs are generated in standard practice, rather than make the process of proving and
reading proofs easier. It would nevertheless be compatible with our aims to include
formal statements in TLA™ (or some other language) in IATC’s content layer.

3 Inference Anchoring Theory + Content

IATC has many things in common with IAT, but should not be seen as a strict ad-
dition to the earlier theory. Adding explicit models of content and discussions about
content prompts several adaptations. In this section we describe these adaptations,
and introduce the IATC modelling language.

Several important requirements arise from the features of the mathematics do-
main. As we saw above, IAT is concerned with anchoring propositions to utterances
and with mapping the logical relationships that obtain between them. However, var-
ious mathematical objects—Larvor (2012) mentions “diagrams, notational expres-
sions, physical models, mental models and computer models”—are more comfort-
ably thought of as non-propositional in nature. Discussions about proofs have been
theorised formally using the notion of proof plans, which are constructed and trans-
formed using explicit heuristics and tactics (Bundy, |1988)). However, [Fiedler and Ho-
racek| (2007, pp. 63-64) have suggested that existing work with proof plans cannot
be straightforwardly adapted from machine-oriented to human-oriented contexts, be-
cause proof plans are, from a potential human reader’s perspective, overly detailed,
with insufficient structural abstraction. By contrast, a language like IATC is charged

3 Only a few of the keywords available in the latest version of TLA™ appear in the structured proof
notation. Per [Lamport| (2015), the full list of TLA' keywords is as follows. Those which are also used
in structured proofs are decorated with underlining: assume ... prove ..., boolean, by, case, choose,
constant (synonymously, constants), corollary, def, define, domain, else, except, extends,
have, hide, if, instance, lambda, lemma, let ... in ..., new, omitted, pick, proposition,
recursive, subset, suffices, take, theorem, unchanged, union, use, variable, witness.
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with expressing “strategic arguments that are meaningful to humans” (Fiedler and
Horacek, [2007, p. 68). Nevertheless, as important as strategic reasoning is, low-level
mathematical content seems to be even more fundamental.

We see the first-class role that content plays in mathematical discourse when new
terms are introduced and referred to, for example. Thus, the editor’s introduction to
Karttunen|(1976) notes the following:

...informal notational practise [sic] of mathematicians, who will write an ex-
istentially quantified formula (say, (Je)(Vx)(xe = ex = x), as one of a set of
postulates for group theory) and thenceforth use the variable bound by the
existential quantifier as if it were a constant as when they will write the next
postulate (Vx)(Ix~!)(xx~! =x~!x = ¢). [punctuation modified]

Karttunen’s concept of “discourse referents,” illustrated in the quote above, under-
lies Discourse Representation Theory (Kamp and Reyle, [1993) and its extensions.
While the developers of IAT acknowledge the generality of Structured Discourse
Representation Theory (SDRT), in particular, they criticise it for making “assump-
tions of context-independent semantics” (Budzynska et al,2016). Nevertheless, DRT
has been successfully applied to model some aspects of mathematical discourse, and
we will discuss that work further in Section [5} and contrast it with our orientation
here.

For now, we emphasise that IATC differs from IAT in its approach to context.
Specifically, IATC sets the notion of dialogical relations to one side, and instead con-
nects locutions to each other directly in the content and intermediate (meta-discussion)
layers.

Before we describe the language in detail, we present a simple example, Figure
which reanalyses and extends the ‘A’/‘No’ dialogue from Figure [2| The first two
dialogue moves in these two examples are identical.

Here, rather than connecting ‘No’

‘\( to ‘A’ with a transition, we connect
Challen e}—( Wilma: No. . . .
(8) : ma; o it directly to the previously modelled
A8 -Assert
ot

g content, A, via a ‘Challenge’ illocu-
tion. From there, we continue to use
(w) (@) (Bab: Maybe A7) the content and intermediate layers to
explicitly model interconnections. For
example, ‘B’ does not simply conflict
with A, but rather presents a warrant
for “not A”, modelled here using the
two-parameter ‘implies’ relation.

With these changes in place, dialogue relations could in principle be reintroduced.
For example, ‘Because B’ could be seen to ‘substantiate’ the previous utterance, ‘No’,
as a communicated reason for rejecting A. Nevertheless, in the current work we con-
tinue to leave these links out, on the basis that we do not yet have a detailed theory
of the norms of mathematical dialogue. The Lakatosian model developed by Pease
et al| (2017), for example, only covers a limited subset of the rules and norms in-
volved, specifically, those dealing with conjectures, lemmas, and the production and
evaluation of counterexamples. By interconnecting contents in the content layer and

Fig. 3: Simple IATC diagram exhibiting
an assertion, a refutation, a counterexam-
ple, and a reformation.
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through intermediate relations, we are able to make an explicit model of the logical
structure of mathematical arguments. Such models could potentially inform a subse-
quent analysis of the associated dialogue structures.

For example, the long-range reform connection from A to A’ in our content anal-
ysis would suggest a corresponding long-range transition from Bob’s first to his last
statement in the dialogue. However, that would still neglect Bob’s so-far implicit
reasoning to the effect that A’ is (potentially) not vulnerable to objection B. If the
dialogue continued from this point, detailed relationships between the constituent
contents of ‘A” and ‘B’ may need to be discussed, and an IATC analysis would be
able to unpack these and account for the details.

In line with these design decisions, and inspired by the specific features of math-
ematical dialogue and exposition, IATC introduces a range of extra machinery to the
IAT framework to model the relationships between mathematical objects and propo-
sitions, along with an array of dialogue moves related to the strategic aspects of proof.
Unlike IAT, we make no attempt to cover argumentation in law, natural science, or
interpersonal mediation, fields in which the norms that govern inference can be vastly
different. (Precedent, for example, may be acceptable in a legal argument but not in
one about ethics.) In mathematical argumentation, many of the conventions are em-
bodied in the objects under discussion and the things that can sensibly be said about
them. Details of our notational apparatus are given in Tables [T] and 2] Appendix [A]
collects reference examples of short texts marked up with these codes.

Performatives (perf[...])

Assert (s[,al) Assert belief that statement s is true, optionally be-
cause of a.

Agree(s[,al) Agree with a previous statement s, optionally be-
cause of a.

Challenge (s[,al]) Assert belief that statement s is false, optionally be-
cause of a.

Retract (s[,a]) Retract a previous statement s, optionally because
of a.

Define (o, p) Define object o via property p.

Suggest (s) Suggest a strategy s.

Judge (s, v) Apply a heuristic value judgement v to some state-
ment s.

Query (s) Ask for the truth value of statement s.

QueryE ({pi(X)}) Ask for the class of objects X for which all the prop-
erties {p;} hold.

Table 1: Inference Anchoring Theory + Content, part 1: Performatives



Our method for producing this set of tags was as follows. Two of us (with first de-
grees respectively in Mathematics and Information Systems, both with more than 10
years experience studying argumentation and social machines) performed close con-
tent analysis (Klaus| [2004) together on the first 100 comments in MiniPolymath 1.
Our analyses resulted in an initial tag set, including both typical illocutionary perfor-
matives and mathematics specific performatives, like Define and QueryE, as needed
(see Appendix [A| for examples). Several of the typical illocutionary connections
(Assert, Question, Challenge, Agree) could be carried over from the schemes
commonly applied in IAT. Our initial tag set was discussed and iteratively developed
over the same 100 comments by all co-authors, with any recurring differences dis-
cussed, allowing us to align our results. A third co-author (with a first degree and
PhD in Mathematics) then further developed and refined the tag set by performing
close content analysis on the entire MiniPolymath 3 conversation and on sections
of MiniPolymath 1. Again, this was conducted alongside discussion with the other
co-authors throughout the process. A fourth co-author (with a first degree in Mathe-
matics) later extended the tag set with additional informal logical relationships, such
as analogy, and specific content-focused relationships, such as sums, which played
a role in the further examples we treated in Section 4} These extensions were again
reviewed by all co-authors.

Our discussions concerned issues such as whether to label a statement such as
‘it would be good to approach the problem in this way...  as simply a suggested
strategy or, additionally, as a value[...] judgement about the strategy. Shortly,
in Figure[d we will show an example tagging in which the multiple layers of interpre-
tation are included. However, perfect agreement about how to treat such cases is not
intended; the IATC framework is designed to account for flexibility in interpretations.
The additional tags in Table [2] were not at first divided into the present categories, but
repeated analysis quickly revealed structural content relations, as well as inferential
structure, as natural categories, intuitively corresponding to the mathematical and
logical contents of the MiniPolymath discussions we examined. By far the most diffi-
cult categorisation to make was between value judgements and reasoning tactics. For
example, the difference between deeming a statement useful and suggesting it as
a goal could depend completely on how polite or how bold the person making the
utterance wished to be!
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Inferential Structure (rell...])

implies (s, 1)
equivalent (s, f)

not (s)

conjunction (s, t,...)
has_property (o, p)
instance_of (o0, m)
indep_of (o, d)
case_split (s, {s;})

wlog (s, 1)

Statement s implies statement 7.

Statement s implies statement 7 and vice versa.
Negation of s.

Conjunction of statements s, ¢, ...

Object o has property p.

Object o is an instance of the broader class m.
Object o does not depend on the choice of object d.
Statement s is equivalent to the conjunction of the
S,”S.

Statement ¢ is equivalent to statement s but easier to
prove.

Heuristic Value Judgments (valuel[...])

easy (s [, 7])

plausible (s)
beautiful (s)
useful (s)

Statement s is easy to prove; optionally, easier than
statement 7.

Statement s is plausible.

Statement s is beautiful (or mathematically elegant).
Statement s can be used in an eventual proof.

Reasoning Tactics (metal...])

goal (s)
strategy (m, s)
auxiliary (s, a)
analogy (s, t)

implements (s, m)

generalise (m, n)

Used with Suggest to guide other agents to work
to prove the statement s.

Indicate that method m might be used to prove s.
Statement s requires an auxiliary lemma a.
Statement s and statement ¢ should be seen as anal-
ogous in some way.

Statement s implements the method m from a previ-
ously suggested strategy.

Method m generalises method .

Content-Focused Structural Relations (struct[...])

used_in (o, 5)
reform (s, t)
instantiates (s, 1)
expands (x, y)

sums (x, y)
cont_summand (x, y)

Object o is used in statement (or object) s.
Statement s can be reformed into statement 7.
Statement s schematically instantiates statement .
Expression x expands to expression y.

Expression x sums to expression y.

Expression x contains y as a summand.

Table 2: Inference Anchoring Theory + Content, part 2: Inferential Structure, Heuris-
tics and Value Judgments, Reasoning Tactics, and content-focused relations



Our performatives have slots, which are filled by statements or objects. State-
ments may be represented in various ways: in unparsed natural language, as symbolic
tokens that serve as shorthand for such statements, or in some representation lan-
guage. The other relations are clustered into segments treating Inferential Structure,
Heuristics and Value Judgments, Reasoning Tactics, and Content-Focused Structural
Relations. The associated grammatical categories are given the following abbrevi-
ations in our linear notation: ‘rel’, ‘value’, ‘meta’, and struct’. For example,
the expression ‘perf [Assert](rel [has_propertyl(o, p))’ denotes the assertion
of the statement “object o has property p.” IATC allows direct, explicit, statements
about objects, propositions, and statements. For example, ‘perf [Assert](used_in
(0, 5))’ denotes the assertion of the statement “object o appears in statement s.”

We have two notational strategies that call attention to features of discourse or
content that are taken as understood, but not explicitly stated. Performatives may be
marked as “unspoken” when the contents are only broadly implied. Several examples
of this notational strategy appear in Section[d.1] Similarly, content-focused structural
relations are sometimes introduced without an attached performative, whenever they
have been noticed by the analyst. Figure ] includes examples of this latter usage.
This figure represents the analysis of a short excerpt from a real mathematical dia-
logue, showing its diagrammatic and textual representations in IATC. The discussion
(“MiniPolymath 1) concerned Problem 6 from the 2009 International Mathematical
Olympiad. The text analysed in Figure []is a portion of the fourth comment made in
the discussion (Tao et al, [2009, 20 July, 6:50 am). An expanded excerpt is discussed
in Section along with more details of our IATC analysis of MiniPolymath data.
Here, colour coding highlights the correspondence between the graphical and textual
grammar elements. One statement has been analysed into three performatives:

— The speaker Asserts that the problem has an equivalent reformulation. “The
following reformulation of the problem may be useful: Show that for any per-
mutation s in S,, the sum a;(1) 4+ a5(2) ... +ay(j) is not in M for any j <n.”

— The speaker Judges the reformulation to be (potentially) useful. “The following
reformulation of the problem may be useful: [...]”

— The speaker Suggests that the reformulation describes a goal that could be worth
pursuing: “[...] Show that [...]”

In addition, mathematical objects (several symbols, a;) are analysed as component
pieces of tagged content (‘problem’ and ‘perm_view’). Note that bold lines at left
in the figure are a shorthand for the ‘used_in’ relation. Subsequent statements in the
dialogue will be able to link back to these objects: the analysis of an expanded extract
appears in Figure[T2]

The relations given in Tables [[|and [2| have been sufficient to describe the reason-
ing in a range of examples, however we do not claim that this list of relationships
would treat all mathematical texts. Nor do these relationships describe mathematical
texts at the level of formality found in proof checking systems, or the level of de-
tail found in some other theorisations of discourse. Thus, in the future IATC should
not be limited to the set of tags presented here. For example, we have found uses
for the value judgments ‘easy’, ‘beautiful’, and ‘useful’, but it is quite plausible
that future work would find use for values such as ‘efficient’, ‘generative’, or
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H: The following
reformulation of
the problem may
be useful: Show that
for any permutation
s in Sn the sum
a_s(1)+a_s(2)...+a_s(j)
is not in M for any j=n

@ Suggest

)

perf[ ] (rellequivalent] (problem, perm_view))
perf[ ] (value[useful] (perm_view))
perf[ ] (metalgoal] (perm_view))

struct [used_in] (ai, problem)
struct [used_in] (ai, perm_view)

Fig. 4: IATC markup of the statement “The following reformulation of the problem
may be useful: Show that for any permutation s in Sy, the sum a;(1) +a;(2) ... +as(j)
is not in M for any j < n.” A larger portion of the dialogue is analysed in graphical
and textual form in Figure[12]and Table

something else. Similarly, useful additions may be found in the other grammatical
categories. The evidence from our examples in Section [4|is that these major gram-
matical categories—performatives, inferential relations, meta-level reasoning, value
judgments, and content relations—are themselves stable.

We have described, and illustrated with simple examples, the way content and
strategic relationships can be used to mediate contextual relationships, but context is
also representable in IATC in another more explicit way. Although IATC does not
require proofs to be structured in a tree-like hierarchy, nested structure is introduced
as follows. In general, language elements in Table [2] that have a statement slot can
also have that slot filled by a (possibly disconnected) subgraph. In this way, structure
corresponding to a “lemma” can be indicated. A lemma, in this sense, is understood to
be the reasoning that ‘implements’ a ‘strategy’, or, alternatively, a specific section
of reasoning that ‘implies’ some conclusion. This representation strategy is similar
to the “partitioned networks” introduced by |Hendrix| (1975} ({1979). An example will
appear in Section .1}

To summarise, IATC resembles IAT in many ways, but with changes that are
required when content, and discussions about content, are explicitly modelled. These
features are necessary to express details of mathematical reasoning. For example, one
proposition that can be extracted from the statement in Figure [ has the schematic
form “The reformulation P is equivalent to the original question Q.” IAT would have
no way to extract P and Q from the assertion, but IATC can do so: they are represented
as ‘problem’ and ‘perm_view’ in the figure. Later moves can then connect to these
pieces of content, and we already see such structure forming in our analysis of the
above short excerpt.

IATC retains and extends IAT’s approach to modelling contents and inferences,
by adding non-propositional contents and more complex logical and heuristic rela-
tions. Illocutionary connections are also retained, with some mathematics-specific
additions. However, IATC sets aside the notion of transitions, not because we view



16

dialogue norms as unimportant, but because they are difficult to model at this stage.
In IAT, relations between propositional contents roughly mirror the norms involved.
The corresponding notion for IATC would be heuristics that account for the pro-
duction of new expressions, and which take preceding expressions and background
knowledge into account. We will have more to say about such heuristics in Section 4}
nevertheless, many considerations must be deferred to future work.

4 Examples

In this section, we use three examples to showcase what IATC has to offer as a tool
for analysis. We illustrate

— how IATC expresses the reasoning structures that arise in proof construction,
— how it might be used to support computational models of mathematical reasoning,
— and how it helps to uncover the salient elements of mathematical discourse.

To illustrate the points above, we have selected and analysed three examples that
exhibit informal, expository, and discursive features of mathematical reasoning. The
presentation here is a novel and self-contained synthesis and expansion of remarks
made in previous papers (Corneli et al, 2017ab; |Pease and Martin, [2012). The three
examples collectively show the richness of mathematical argument, and were selected
to match the three aims indicated above:

— Section[d. T} A carefully spelled out informal solution to a tricky but non-technical
mathematical problem serves to illustrate the thought processes involved in suc-
cessful mathematical problem solving. The example shows how IATC captures
this sort of thinking.

— Section A discussion of the relationships between, and merits of, different
mathematical questions exhibits a level of abstraction above that needed in an
individual proof. We explore the ramifications for explicit representations of the
reasoning involved.

— Section A multi-participant dialogue that develops a challenging but not
highly technical proof casts light on processes of mathematical collaboration and
mathematical reasoning. An analysis of this material using IATC allows us to
explore the process of proof-construction in detail.

In each of the following subsections, we give more details of the context of each
example, before presenting our analysis and comments.

4.1 Making the reasoning explicit in the solution to a challenge problem

In this section we aim to show that IATC is a natural modelling tool for informal
mathematics. Whereas Robinson| (1965 p. 23) had sought to

reduce complex inferences, which are beyond the capacity of the human mind
to grasp as single steps, to chains of simpler inferences, each of which is
within the capacity of the human mind to grasp as a single transaction,
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What is the 500" digit of (v/2 4 /3)2012?

Even this, eventually, a computer will be able to solve.

For now, notice that total stuckness can make you do desperate things. Further-
more, knowing the origin of the problem suggests good things to try. The fact
that it is set as a problem is a huge clue.

Can we do this for (x+y)? For e? Rationals with small denominator?

And how about small perturbations of these? Maybe it is close to a rational?
m'" digit of (v/2++/3)"?

(V2++/3)%?

(24+2v2V3+3)

(V24+V3)*+(V3-v2)*=10

(V2++/3)%12 1 (/3 —1/2)%12 s an integer!

And (v/3 —v/2)?°12 is a very small number. Maybe the final answer is “9?

We need to check whether it’s small enough. (v/3 —1/2)%12 < (%)2012 =

503
(") = (1) <19 50 we're in uck.

The answer is indeed 9.

Fig. 5: A “magic leap” challenge problem and its solution, presented by Timothy
Gowers as part of a public lecture at the University of Edinburgh, November 2, 2012.
(Reproduced from notes taken at the lecture.)

an alternative path of enquiry seeks to describe the heuristic process of proving the-
orems in more cognitively plausible terms. In particular, one relevant question to ask
is how (human) mathematicians avoid large searches (Gowers, [2017). IATC can con-
tribute to the further development of this effort, by giving a uniform but expressive
way to outline the process of developing proofs. Researchers working on mathemat-
ical software meant to exhibit human-style reasoning may find this expressiveness
useful.

Our chosen example is a “magic leap” problem presented in a public lecture by
Timothy Gowers, describing joint work with Mohan Ganesalingam (2012)). The rea-
soning was communicated by a combination of speech and marks on a chalkboard,
and is reproduced in Figure 5] This example has been modelled in IATC by [Corneli
et al| (2017b)). The problem initially appears difficult to solve without a computer al-
gebra system, but a simple algebraic solution is available once the correct strategy is
found. As such, an important part of the reasoning involved in solving the problem
is to find the correct strategy. The steps involved in this part of the reasoning process
are heuristic rather than deductive. We redescribe the analysis here.

For comparison with the IATC analysis, Figure [6] reproduces the proof in Lam-
port’s style. Figures[7] [8] [0]and[T0|present portions of the IATC tagging of the solution
that was presented in Gowers’s lecture. Figure [/|illustrates an initial exploration of
the question, and Figure|[§]establishes a ‘strategy’ based on that exploration (“The
trick might be: it is close to something we can compute”). Figure [9opens the door to
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applying the strategy. The central part of the proof that ‘implements’ the strategy is
highlighted in Figure

The introduction to the proof, expanded in Figure[7—and condensed into a “PROOF
SKETCH” in Figure[f}—contains interesting examples of heuristic reasoning. This part
of the solution centres on the probing question “Can we do this for X?”, where X
ranges over several examples: x +y, e, and small rationals, and where ‘this’ denotes
“find the 500th digit of X2°!2” In the IATC representation, each tentative proposal to
“do this. .. ” stands in analogy with the original problem statement. Although Figure
[7|contains only Assert performatives, a more complete representation would also in-
clude Query performatives, since the analogies are not only proposed: their validity
is also queried, much as we saw in the example treated in the previous section.

Step 1 in the structured proof works out one of the ideas from the proof sketch at
a level of detail that was not present in the lecture, which instead progressed directly
on to the material treated in Step 2. As [Fiedler and Horacek (2007, p. 69) noted,
“The analysis of human proof explanations shows that certain logical inferences are
only conveyed implicitly, drawing on the discourse context and default expectations.”
There is no hard and fast rule that can tell us how much of the implicit material we
need to explicate, but one rule of thumb that naturally arises from our representa-
tion strategy is that coherently related discussions should correspond to connected
graphs in the expansion. Thus, for example, Figure[7]includes an implicit “unspoken”
Assertion; the proof is made fully explicit in Step 1 of the Lamport-style proof, but
never appeared in the original lecture. Again, in a standard IAT representation, un-
spoken assertions would typically be represented as ‘implicit’ speech acts rooted on
transitions, whereas in IATC, we see how these unspoken assertions play a role in the
argument via their expansion and subsequent interconnections in the content layer.

Indeed, nowhere in the explicitly communicated reasoning is the key strategy
fully and explicitly stated. The basic strategy of the proof is that the quantity of inter-
est may be sufficiently close to something we can compute. In the IATC representation
(Figure[§), this is understood to be Suggested by the following statements from the
proof sketch, “And how about small perturbations of these? Maybe it is close to a
rational?” Step 1 of the structured proof shows that rationals do, in fact, match the
strategy’s preconditions. The IATC representation is less explicit on this point, since
it sticks more closely to the reasoning expressed in the lecture. This example shows
that even relatively explicit statements may need further interpretation to be repre-
sented meaningfully in IATC. Specifically, the way the proof progresses only makes
sense if we recognise the ‘strategy’ implied by what might otherwise appear to be
a throwaway comment early on.

Step 2 in the structured proof concerns another analogy. This time, a special one
which, the IATC analysis notes, symbolically generalises the initial question (Fig-
ure . That is, rather than considering (v/2 4 v/3)?°!2 we now consider (v/241/3)™.
(NB. an edge connecting the ‘generalise’ node to the problem statement has been
omitted.) However, the concept of generalisation remains implicit in the correspond-
ing portion of the structured proof. Indeed, Step 2 is not a good match for the re-
quirements of structured proof at all, since it is not a real lemma, and its “proof” fails
(indicated by “*”). Including failed proof steps is not a problem for IATC. In Figure
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PROOF SKETCH: What is the 500th digit of (/2 ++/3)212? Even this, even-
tually, a computer will be able to solve. The fact that this has been set as a
problem is a huge clue. Can we do this for x + y? For e? Small rationals?
And how about small perturbations of these? Maybe it is close to a rational?
(1)1. For n large enough and m small enough in comparison, the mth digit 1

of a sufficiently small rational r to the nth power is equal to 0.
PROOF:
CASE: r<1/10
(2)1. (1/10)" = .1" has 0 in n — 1 places in its decimal expansion. 1.1
(2)2. r < 1/10 implies " has zeros in at least n — 1 places in its 1.2
decimal expansion, so we simply need to select m < n. 0
(1)2. Can we compute the mth digit of (v/2++/3)"? 2
PROOF:
CASE: n=2
(2)1. (V2432 =24+2V2V3+3 % 21
(1)3. Step 2.1 fails to give us an answer by direct computation, but if we 3
eliminate cross-terms, we can see that (\@—&- \/5)2 is “close to” an
integer.
PROOF:
2)1. (V2432 +(V2—-+3)2 =10 31
(2)2. (V2++/3)2=10—(vV2—+/3)? 32
(2)3. (v/2—+/3)? is small 33
PROOF:
(3)1. (vV2—+/3)*~ (14 —11)2 by continued fraction approx- 3.3.1
imation. ‘
@2 (11112 =3 -22=1/36[1 332
(1)4. Generalising Step 3.1, (V2 +/3)%12 + (/2 —1/3)?912 is an integer! 4
PROOF:
(2)1. Terms with odd exponents cancel by the binomial theorem. [] 4.1
(1)5. And (v/2 —/3)?12 is a very small number. Maybe the final answer 5
will be “9”? We need to check whether it’s small enough.
PROOF:
(2)1. (V2—+/3)?12 < (1/2)%012 by Step 3.3.1 5.1
(2)2. (1/2)212 = ((1/2)4)%3 52
(2)3. ((1/2)%)°3 = (1/16)>% 5.3
(2)4. (V2 —+/3)212 < (1/16)° < .15, and so has at least 502 5.4
zeros in its decimal expansion by Step 1
(2)5. The answer is indeed 9. [] 5.5

Fig. 6: The solution to the challenge problem as a Lamport-style structured proof.
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compute 500th What is the 500th digit of
digit of (V2+v3)~2012 @ <———4 (V2+v3)~20127 }

Even this, eventually, a
strategy 4—{computer will be able to solve.}

Can we do this for (x+y)? For e? }

A/J[Rationals with small denominator?

has property (unspoken)

strategy X

has property analogy

compute 500th
digit of (x+y)~2012
pute 500th
digit of (e)~2012

compute 500th

digit of (r1+r2)~2012,
where rl, r2 small rationals

We can reall
compute this

e.g. 500th digit of
(1/10)~2012

»

is 0

The trick might be: it

Fig. 7: IATC tagging for the first portion of the challenge problem
is close to something

H?whabm?;t smaél p.erlturlbations
-Suggest of these? Maybe it is close to
we can compute a rational?

'th digit of (\/2+\/3)An7
general form of the problem ugges -
{ m'th digit of (¢2+¢3) n? ge”era“se

(V2+v3)~2?
*

msta ntl ates

(\/2+\/3)’\2?

Assert
(unspoken)

has property

2+2V2V3+3

We can really
compute this

expands

Fig. 8: IATC tagging for the second portion of the challenge problem
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m gt (V2+v3)"2+(y3~2)~2=10]
Assert
(unspoken)

(V2+v3)~2+(v3-v2)~2]

expands

generalises

(2+2v2v3+3 + 2 -2v2v3 +3)

(V2+v3)"2012+(V3-v2)~2012
is an integer!

Suggest

Fig. 9: IATC tagging for the third portion of the challenge problem

[9the process of solving the problem proceeds apace, without pausing to remark on a
failed lemma, now that something more interesting has been discovered.

Meanwhile, Step 3 in the structured proof implements the main strategy for re-
solving a special case of our generalised problem, namely showing that (v/2 +/3)?
is close to an integer, establishing a pattern that leads to the conclusion. Again, Step
3.3 offers considerably more detail than was present in the original lecture.

Step 4 subsequently generalises the method that was used in Step 3, and applies it
to the expression we were originally interested in. Figure[I0]diagrams out the reason-
ing that underlies this step. The long-range dashed edge in this figure connects with
the node “The trick might be: it is close to something we can compute” pictured in
Figure[8] The collection of nodes highlighted in red implement that strategy. Notice,
though, that the computation is not done explicitly: it’s unimportant which integer
the number of interest is close to. Collectively, the fact that (v/2 4 v/3)212 4- (1/3 —
v/2)?912 sums to “some integer” and the fact that (v/3 — 1/2)?°12 is sufficiently small
implies the result. Step 5 shows the details of the final computational check.

Several objections could be raised about the structured proof presented in Figure
[6l most notably to the inclusion of a failed lemma in Step 2. However, as a source
of information about the intuition behind the proof, this failure is valuable. While
objections to the IATC treatment are also possible, it is clear that this method helps to
make explicit features of the proof process that remain implicit in the structured proof.
In particular, analogies, strategies, and relationships between methods are made ex-
plicit. While the structured proof augments the lecture with more technical details,
IATC provides a more faithful model of the reasoning expressed in the lecture itself.



22

((V2+v3)r2012+(V3-v2)~2012

And (V3-v2)”~2012 is a very small number.
Maybe the final answer is "9"?

contains as
summand

(V3-v2)~2012

numbers
that are very
close to
integers
have "9" in
many places of
their decimal
expansion

Fig. 10: Nested structure (in red) implements the strategy suggested earlier: “The
trick might be: it is close to something we can compute.” The intermediate conclusion
reached in this phase of reasoning (highlighted in blue), when taken together with a
further computational check, subsequently implies that the answer is “9”.

4.2 Towards computable models of mathematical reasoning via IATC: A Q&A
example

Contributors to discussions about mathematics on MathOverflow do more than just
talk about proofs.

The presentation is often speculative and informal, a style which would have
no place in a research paper, reinforced by conversational devices that are
accepting of error and invite challenge. (Martin and Pease}, |2013))

IATC allows the argumentation aspects of mathematical dialogues to be represented
as explicit graphical structures, which gives a plausible basis from which to develop
an explicit computational model of the reasoning steps that are implied in mathemat-
ical argumentation. |Corneli et al| (2017al) showed how IATC could be used to create
graphical models of the discussion that develops around a question posted on Math-
Overflow. Here we will remark further on implications for computational modelling.
The question, which was given the title “Group cannot be the union of conjugates”
(Chandrasekhar et al, 2010), is as follows:

“I have seen this problem, that if G is a finite group and H is a proper subgroup of

G with finite index then G # \J gHg™'. Does this remain true for the infinite case
g€G

also?”

In the most straightforward reading, two superficially similar group-theoretic propo-

sitions seem to be at stake:

(P1) “If G is a finite group, H is a subgroup of G and the index [G: H| is finite, then
G is not equal to the union of gHg™'”; and,
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(P2) “If G is an infinite group, H is a subgroup of G and the index [G: H) is finite,
then G is not equal to the union of gHg™'”

The question thus implicitly outlines an argument by analogy:

- [(PD)]is true
— [P2Yis similar to[(PT)]

— Therefore, |(P2)|is (potentially) true as well

The essence of the question is to ask whether the mathematical facts align with this
schematic argument. As it turns out, this question is answered in the affirmative.
Shortly after the question was asked, one discussant make the terse comment “the
case of infinite G readily reduces to the case of finite G”’; months later, another dis-
cussant supplies an explicit proof of

In the mean time, other discussants had proposed and addressed several alterna-
tive formulations of the question. An important distinction hinges on the interpreta-
tion of the phrase “infinite case.” An alternative proposition that incorporates some
of the suggested revisions is as follows:

(P2") “If G is an infinite group, H is a proper finite index subset of G and the index
[G: H] is infinite, then G is not equal to the union of gHg '

In this case an argument by analogy would not match the facts: a counterexample is
supplied to show that proposition is false.

The dialogue is an interesting example of mathematical reasoning in which proof
certainly plays a role, but is nevertheless of secondary interest compared with ask-
ing interesting questions, and thinking about how different questions relate to each
other. What would be necessary to represent this sort of dialogue computationally?
Expressing propositions like in IATC is straightforward, though, as we noted,
the content layer is not directly modelled in this representation language. The follow-
ing expression represents this proposition in IATC, introducing additional invented
pseudocode representations (in italics) in the content layer.

perf [Assert] (
rel[implies] (
rel[conjunction] (finite_group (G),
subgroup (H,G),
rel[has_property] (index (H,G),is_finite))
rel[not] (equal (G,
union_over (conjugates (H,g) ,elements (g,G))))))

Processing such expressions to build a model of a dialogue will require adding
numerous stanzas like this one, each rooted on an IATC performative, into one graph
database that records the relationships between the statements and their constituent
parts. Individual expressions like the implies relationship would need to be ad-
dressable, in order for an analogy between two implications to be proposed. Defini-
tions for predicates like finite_group and special constructions like union_over
could be supplied in an accompanying knowledge base. In further rounds of computa-

tional processing, the analogies between [(P/) and|(P2)} and between |(P/){and [(P2")}

could be checked using graph-processing methods described by Sowa and Majumdar
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(2003)). New heuristics would be needed if the aim was to demonstrate the truth or
falsity of the various propositions, not just to recreate the surface analogies. More-
over, as we’ve seen, mathematical dialogues are not just concerned with verifying
statements, but may also consider the qualities that make a particular question inter-
esting in a given context. Heuristics that can be used to select interesting problems
are not prevalent in current mathematical software.

As a limited proof of concept showing the plausibility of adding a computational
deduction and verification layer on top of IATC representations, Corneli et al| (2017b))
give a detailed expansion of one step of a mathematical proof using simple rules for
transforming the underlying graph structures. It is worth emphasising that the rep-
resentations of reasoning afforded by language elements in Tables [T and [2] do not
themselves encode the meta-level reasoning associated with such graph transforma-
tions.

4.3 MiniPolymath Revisited

The data that underlie this section were generated in a series of online experiments in
collaborative problem solving convened by mathematician Terence Tao (2009;2011)).
We use TATC to expand on a previous analysis of this data presented by [Pease and
Martin|(2012)), showing how IATC can advance the theory of mathematical argument
through the detailed analysis of real world examples, as per Carrascal (2015)).

In their 2012 paper, Pease and Martin analysed the third MiniPolymath project in
broad strokes, with each blog comment comprising a single unit to be tagged. They
developed a typology of five intuitive comment types, based on the mathematical
content of each comment: examples, conjectures, concepts, proofs, and other.

In order to assign comments to these categories, both authors performed close
content analysis on all comments posted between the time Tao posted the problem
to his blog (8pm, UTC on July 19th, 2011) and the time he announced that a solu-
tion had appeared (9.50pm, UTC on July 19th, 2011). The discussion comprised 147
comments over 27 threads. Ten comments were assigned to more than one category.

Our present IATC analysis of the same data is designed to give a more com-
plete picture of the linguistic, dialectical, and inferential structure of the comments
that fall within the five intuitive categories mentioned. There are three main differ-
ences between the two analyses. First, in comparison with the earlier broad-stroke
analysis, the IATC analysis is richly detailed, with a unit defined as any quantum of
commentary with taggable content. Secondly, our focus in the earlier analysis was
purely on mathematical content, and on the type of mathematical content in particu-
lar. This contrasts with our present analysis, in which we provide a more fine-grained
representation of mathematical content in the taggable units, and furthermore take
into account linguistic, dialectical, and inferential structure. Third, the IATC anal-
ysis takes into consideration the entire MiniPolymath 3 conversation, including the
comments that came after Tao had announced that a proof had been found.

The new analysis, accordingly, adds depth to our earlier analysis. Crucially, the
new perspective will be more relevant to argumentation theorists, and supports a de-
tailed understanding of what went on in the process of constructing the collaborative
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proof. The earlier typology provided an initial way to sort the content, whereas the
IATC tag set developed along with our analysis via the iterative, discursive method
discribed in Section 3] Though they cover the same data and show some correlations,
as described below, the latter categorisation was not derived from the earlier one.

Figure [IT] presents an excerpt from the MiniPolymath 1 dialogue (MPM1) as it
originally appeared on Tao’s blog. Figure 12| and Table |3| give the IATC analysis of
this excerpt in diagrammatic and textual form. The first portion of Figure [12]repeats
the contents of Figure @] The longer excerpt shown here illustrates complex contex-
tual interconnections forming in the content layer.

Our main example in this section is MiniPolymath 3 (MPM3), which we tagged
into IATC in its entirety. (This work was carried out by one co-author with a first
degree and PhD in Mathematics, in consultation with others as described in Sec-
tion [3]) As an indicative sample, the first three comments and their tags are shown
in Figure [13] Figure [14] shows how tags from IATC’s five grammatical categories
were distributed over time. Thus, for example, we see ‘value’ tags used early in the
discussion as strategies are being considered, and again later in the discussion when
solutions are being vetted. Figure|15|gives another view of the timeline, showing how
the comments were categorised into the 5-part typology from Pease and Martin. In
the initial categorisation developed for that paper, comments were allowed to be in
multiple categories at once. Here, to facilitate a clean mapping to IATC, we redid
the categorisation with the requirement that each comment should fit into exactly one
main category. We arrived at a nearly equal division of comments among the five cat-
egories: example (20.3%) conjecture (21.2%), concept (19.5%), proof (19.5%), and
other (19.5%). (This replication work was carried out independently by one of the
coauthors with a first degree in Mathematics.)

Figure [16] illustrates the correspondence between IATC tags with the earlier ty-
pology. Aligning the bulkier 5-part categorisation with the IATC tagging shows that
these five intuitive labels are mapped in very different ways to the more detailed IATC
tag set.
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20 July, 2009 at 6:51 am 25, The following reformulation of the
Haim problem may be useful:

Show that for any permutation s in Sn,
the sum a_s(1)+a_s(2)..+a_s(j) is not in M for any j=<n.

Now, we may use the fact that Sn is "quite large" and prove the existence of
such permutation with some kind of a pigeonhole-ish principle

2 ¥7 1 O Rate This

20 July, 2009 at 7:01 am 110, DY
Dave ':(:Z“‘
Addressing Haim(2 5):

That’s pretty strong; all you need is that there exists a permutation where
that is true. And it doesn’t worlk; there are numbers $a_1,a_2\ldots,a_n$ and
sets §M$ of $n-1% points such that, for instance, $a_1 \in M$. Then any
permutation starting with $a_1$ would not satisfy your conjecture for $j=1%.

But, just looking for *one* permutation that satisfies $a_s(1)+a_s(2)..+a_s(j)
\not\in M§ for any §j \leq n$ (which is basically the statement of the theorem),
could lend itself well to induction. In other words, use the fact that for every
subset $M’\subset M$ of size $j$ not containing $a_s(1)+a_s(2)..+a_s(i)$,
there is @ way to permute those $j$ numbers to avoid $M'$,

07 0 © Rate This
20 July, 2009 at 7:10 am 12, Addressing Dave:

Haim
Sorry, indeed I meant: “Show that for

*one* permutation...”

0570 © Rate This

Fig. 11: Screenshot of a portion of the MiniPolymath 1 dialogue

H: The following ... j=n

H: Now we may
use the fact that Sn
is quite large ...
and prove the existence...
pigeonhole-ish principle

D: And it doesn't work...
j=1

D: But just... induction
D: In other... avoid M.
H: Addressing ... permutation

Fig. 12: TIATC analysis of MPM1 excerpt (graphical form)
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(Haim) The following reformulation of the problem may be useful: “Show that
for any permutation s in Sy, the sum ay() +ay) + ... +ay;) is not in M for any
‘]S n.n

(1) perf [ J(rellequivalent] (problem, perm_view)),
(2) perfl ] (value[useful] (perm_view)),
(3) perf [ ] (metalgoall (perm_view)),

(4) struct [used_in] (ai, problem),
(5) struct[used_in] (ai, perm_view)

(—) Now, we may use the fact that S, is “quite large” and prove the existence of
such permutation

(6) perf[ ] (rell[has_property] (Sn, large)),

(7) struct [used_in] (Sn, perm_view),

(8) struct [used_in] (Sn, problem)

(—) with some kind of a pigeonhole-ish principle.

(9) perf[ 1 (metalauxiliary] (metalstrategy] (
perm_view,pigeonhole), rel[has_property] (Sn, large)))

(Dave) Addressing Haim(2 5): That’s pretty strong. And it doesn’t work; there are
numbers aj,a,...,a, and sets M of n— 1 points such that, for instance, a; € M.
Then any permutation starting with a; would not satisfy your conjecture for j = 1.
(10) perf [ ] (perm_view, al_ex),

(11) perf [ J(rellinstance_of](al, al_in_M)),

(12) struct[used_in] (al_ex, al_in_M)

(—) But, just looking for one permutation that satisfies ag(j) +ayo) +... +ay;) €
M for any j < n (which is basically the statement of the theorem), could lend
itself well to induction.

(13) perf [ 1 (meta[goal] (perm_view_mod)),
(14) struct [reform] (perm_view, perm_view_mod),
(15) struct[used_in] (Sn, perm_view_mod),
(16) struct[used_in] (al, perm_view_mod)

(—) In other words, use the fact that for every subset M’ C M of size j not con-
taining a1 +as2) +. .. +ayj), there is a way to permute those j numbers to avoid
M.

(17) perf [ ] (meta[strategy] (perm_view_mod, strong_ind_n)),
(18) struct[used_in] (n, strong_ind_n),

(19) struct[used_in] (n, Sn)

(Haim) Addressing Dave: Sorry, indeed I meant: “Show that for one permuta-
tion...”

(20) perf[ 1 (perm_view),

(21) perf [ ] (metalgoal] (perm_view_mod))

Table 3: IATC analysis of MPM1 excerpt (text form)
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We observe certain regularities: for example, Assert is present in all five types
of comments, but is used most frequently within proof-related comments. Annota-
tions from the ‘struct’ grammatical category are most prevalently associated with
conjecture-related comments. (NB. In this tagging exercise we only considered the
‘used_in’ facet of the ‘struct’ category, so ‘structural’ is here a synonym
for ‘used_in’.) It is not surprising that the performative Challenge is used most
frequently in examples, since, intuitively, an example is likely to be put forward
as a counter-example. The most prevalent use of Agree is in comments that are
categorised as “other”. Retract is frequently used in this category as well, as is
stronger (here, a synonym for ‘implies’). These usages reflect social values as
well as mathematical semantics. E.g., one can express support for an idea by under-
scoring one’s belief in an implication, as in the comment “Yes, it seems to be a correct
solution!” (Tao et al, 2011} July 19, 9:35 pm).

One might suspect that Suggest should be used only within conjectures, but in
the current categorisation it is used somewhat more frequently along with concepts.
This is partly explained by the fact that Suggest can be used to introduce either a
goal or a strategy. Sometimes goals represent conceptual tidying, as in “I guess
there is an odd / even number of point distinction to do” (Tao et al, 2011, July 19,
9:31 pm).

Furthermore, despite our self-imposed constraint to map each comment only to
the most salient of the five categories, in practice a comment may simultaneously
introduce a concept along with a conjecture that applies that concept. For example the
straightforward concept of “restriction[s] on how the next pivot is chosen” appears
along with the more speculative conjecture “Can we start with a complete graph and
all cycles on that graph and just discard the ones that don’t follow the restrictions
to converge on the ones that do?” (Tao et al, 2011} July 19, 8:56 pm). The need to
introduce concepts also applies in the case of more outlandish conjectures, such as “It
might be fun to use projective duality” (Tao et al, 2011} July 19, 8:23 pm). However, a
concept may suggest a vague method without raising a conjecture as such, e.g., “I’'m
thinking spirograph rather than convex hull” (Tao et al, 2011} July 19, 8:44 pm).

In sum, the IATC analysis of MiniPolymath 3 shows in detail how individual
contributions to the dialogue are comprised. In aggregate, this analysis exposes the
structural anatomy of a successful collaborative proof. It should be noted that not all
the contributions to MPM3 were equally relevant to the final solution. By entering
the structures in an explicit graphical model in the manner described in Section [4.2]
graph theoretic analysis could establish, e.g., the centrality of the various concepts
used in the content layer, and who introduced them into the conversation.


https://wp.me/pAG2F-41#comment-3402
https://wp.me/pAG2F-41#comment-3398
https://wp.me/pAG2F-41#comment-3398
https://wp.me/pAG2F-41#comment-3368
https://wp.me/pAG2F-41#comment-3324
https://wp.me/pAG2F-41#comment-3349
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“Let S be a finite set of at least two points in the plane. Assume that no three
points of S are collinear. A windmill is a process that starts with a line { going
through a single point P € S. The line rotates clockwise about the pivot P until
the first time that the line meets some other point Q belonging to S. This point
Q takes over as the new pivot, and the line now rotates clockwise about Q,
until it next meets a point of S. This process continues indefinitely. Show that we
can choose a point P in S and a line ¢ going through P such that the resulting
windmill uses each point of S as a pivot infinitely many times.”

rel [structural] (problem, S)
rel[structural] (problem, P)

rel [structural] (problem, 1)

rel [structural] (problem, windmill)
rel[structural] (problem, pivot)
rel [structural] (P, pivot)

rel [structural] (P, windmill)
rel[structural] (1, windmill)

1. Could you start off with a random point in the plane and prove it doesn’t
work, if you can’t prove that then the opposite holds.

perf [query] (random_test_false)
perf [assert] (rel[stronger] (rel[not] (prove_rtf),

rel[not] (random_test_false)))
rel[structural] (random_test_false, prove_rtf)

2. Connecting the dots: At the point where the pivot changes we create a line
that passes through the previous pivot and a new pivot — like a side of a polygon.

perf [define] (pivot_seq, ps_def)
rel[structural] (pivot_seq, pivot)

2.1. Nice. We need only to consider the times when to points are connected — this
gives us a path, and after some time this path will come back to some already
visited point. So there is a cycle. If only we could find a cycle which spans all
the points, the question is solved. .. That may be some useful simplification.

perf [assert] (rel[has_property] (pivot_seq, has_cycle))
perf [suggest] (metal[goall (cycle_spans_S))

perf [judgel] (value [useful] (pivot_seq))

rel[structural] (S, cycle_spans_S)

Fig. 13: IATC tags for the problem and first three comments in MiniPolymath 3.
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Totals

8:05 8:10 8:15 8:20 8:25 8:30 8:35 8:40 8:45 8:50 8:55 9:00 9:05 9:10 9:15 9:20 9:25 9:30 9:35 9:40 9:45 9:50

Fig. 14: Timeline of the MiniPolymath 3 dialogue showing the IATC grammar cat-
egories used in the tagging. Comments are binned into 5 minute intervals. The first
interval is 8:05-8:09 and the last is 9:50-9:59, inclusive.

Concept

134 == Conjecture
Proof
124 = Examples
Other
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Fig. 15: Timeline of the MiniPolymath 3 dialogue showing comments categorised
into five categories: Concept, Conjecture, Proof, Examples, and Other.
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Agree
Assert
Challenge
Define
Judge
Query
Retract

Suggest
not

Conjecture

wlog
stronger
equivalent
has_property
case_split
instance_of
beautiful
easy
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plausible
useful
auxiliary
goal
strategy
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structural

Example

Fig. 16: Pie charts showing the relative proportion of IATC tags
used to code MPM3, across five intuitive kinds of comments.
E.g., Comment 1 has been categorised as a Conjecture. The IATC
stanza perf [assert] (rel[stronger] (rel[not] (prove_rtf),
rel[not] (random_test_false))) associated with this comment (see Fig-
ure [I3) therefore adds these values to the usage counts within the Conjecture pie
chart: ‘Assert’ +1, ‘stronger’ +1, and ‘not’ +2.
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5 Conclusion

We have sought to advance the study of mathematical practice from an argumentation-
theoretic perspective. We introduced Inference Anchoring Theory + Content, offered
a brief comparison with IAT, which it builds upon, and used three examples to show-
case IATC’s capabilities. We showed that:

— TATC offers a more faithful representation of everyday mathematical practice than
does, e.g., Lamport-style structured proof.

— IATC has the potential to support computational reasoning about mathematics by
bringing structural relationships between pieces of mathematical content to the
surface.

— TATC can recover salient elements of discourse within comments, as well as the
way these contents connect across comments.

Some limitations to the approach should be considered when applying the frame-
work. We emphasise that these are limitations and not necessarily flaws in the overall
design. In general, the limitations could be addressed with extensions to the language.

— IATC does not yet handle everything that is said in mathematical dialogues. We
saw above that IATC nevertheless helps disambiguate the “other” category brack-
eted by |Pease and Martin| (2012).

— There are places where IATC representations remain bulky, pushing much of the
actual reasoning into whatever representation system handles the content layer.

— One related limitation is that implications and assumptions that mathematicians

consider “obvious” are typically elided from their discourse, often for valid ex-

pository reasons, and that, therefore, unpacking the contextual relationships be-
tween statements typically requires a mathematically trained annotator.

We introduced a graphical way to segment dialogues, but IATC does not currently

have the ability to express context shifts — although it can compare contexts with

‘analogy’.

Corneli et al| (2018)) survey other relevant frameworks that might form extensions for
a future version of IATC. More general-purpose formalisms like the W3C’s “PROV”
(Groth and Moreau, |2013) would allow us to say something about the provenance and
evolution of concepts, but would have nothing to say about the mathematics-specific
features that interest us.

In Section [3] we mentioned that Discourse Representation Theory (DRT) has
informed several earlier efforts to model mathematical discourse. We are aware of
three PhD theses—by Clauss Zinn (2004), Mohan Ganesalingam (2013)), and Mar-
cos Cramer (2013)—which have made use of somewhat similar mathematics-specific
interpretations of DRT. Zinn and Cramer focused on proof checking, while Gane-
salingam looked at mathematical communication from a linguist’s perspective. How-
ever, he opted to focus exclusively on mathematics in the “formal mode,” leaving
informal communication about matters such as “interestingness” to one side, because
they bring with them a host of additional complications (Ganesalingam, |2013|, pp. 7—
8). From a linguistic point of view, DRT is useful in a mathematical setting, in the first
instance, because of its core ability to express “legitimate antecedents for anaphor”
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(Ganesalingam, 2013} p. 50). In Ganesalingam’s work, this basic feature is extended
to allow sidelong references to definite descriptions (such as ‘the set of natural num-
bers’) by “introducing generalised anaphors which can have presuppositional mate-
rial attached to them” (Ganesalingam), 2013| pp. 25, 237). Specifically, this allows
one to infer from statements such as “x is prime” that x is in fact a member of the set
of natural numbers (p. 25).

The associated requirement of combining semantics and pragmatics (van der
Sandt, [1992] p. 336) is reminiscent of our treatment of unspoken assertions and un-
stated features of content in our IATC-based analyses. To continue the comparison,
Ganesalingam’s adaptations of DRT overcame limitations, having to do with quan-
tifier scoping, that constrained earlier type-theoretic analyses (Ganesalingam, [2013}
pp. 81-82). This is broadly similar to our use of nested structure in Section [4.1]
Indeed, [Sowa (2000) shows that several different approaches to nested structure (in-
cluding DRT) are all mutually equivalent from a logical point of view. As indicated by
van der Sandt|(1992)), pragmatics is relevant for DRT-based models because it can in-
form the context-specific resolution of Discourse Representation Schemes. This is re-
lated to the question we highlighted in Section[4.2} how to model with the transitions
between discourse moves in mathematics? IAT accounts for similar issues by making
reference to dialogue norms, but we have seen that for mathematical dialogues, de-
tailed content- and context-specific issues need to be taken into consideration at each
stage. The models of content evolution used by (Ganesalingam and Gowers| (2017)
to keep track of proof generation were structurally similar to the DRT-based models
developed by |Ganesalingam| (2013)): in this case, the evolution was governed by a
limited set of reasoning tactics. Our work with IATC highlights features of mathe-
matical reasoning, like analogy, that more general heuristics will need to account
for.

There are other resources available which could further expand IATC’s offer-
ings in this regard. For example, a recent special issue of Argument & Computa-
tion (Harris and Marco, 2017) includes papers detailing the usefulness of rhetorical
structures for argument mining. Mitrovi¢ et al| (2017), in that volume, indicate the
SALT Rhetorical Ontology (Grozal|2012) as relevant prior work. SALT contains three
categories—coherence relations, argument scheme relations, and rhetorical blocks—
each of which unfolds with considerable further detail. These three categories can be
seen as somewhat analogous to IATC’s grammatical categories. Mitrovic et al| (2017)
and [Lawrence et all (2017) point to foundational work of [Fahnestock| (1999, 2004
on the argumentative function of rhetorical figures, particularly in science writing.
IATC might be profitably connected to such analyses. Furthermore, the integration
of rhetoric into argument mining highlights the relevance of structures that are rather
different from the IAT-style transitions that have been used in work summarised by
Budzynska et al|(2015). White’s (1978, p. 6) pithy assertion that “logic itself is merely
a formalization of tropical strategies” can serve as an additional provocation to de-
velop structural analyses of this sort.

Nevertheless, whether mathematical content is modelled using ideas from logic,
rhetoric, or other sources, considerable further work will be required to effectively
describe the processes that are employed in forming and responding to mathemat-
ical arguments. A small case study included as an appendix to |Pease et al| (2017)
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(and, incidentally, based on MiniPolymath 3) illustrates the plausibility of Lakatos’s
model—however that model is clearly far from complete as a theory of mathemat-
ical production. Pease et al were concerned with mathematical content only insofar
as it fills slots for some 20 dialogue moves that are based on Lakatos’s strategy for
arguing about lemmas and counterexamples. For example, MonsterBar(m,c,r) gives
a reason r, contradicting the justification m for the counter-conjecture not-c. At no
point does this theory touch the supposed mathematical ground of axioms and rules
of inference. That the reason r, for example, may have been formed inductively, or
deductively, or in some other way, goes undiscussed. IATC would allow us to expand
the structure that appears within statements like . Whereas Pease et al’s formali-
sation of Lakatosian reasoning as a dialogue game offers a computational model of
certain dynamical patterns in mathematics, our current work has focused on kine-
matics. The efforts can be seen as complementary: [Bundy| (2013) has argued that the
right representation can considerably simplify reasoning.

One promising approach to modelling process combines argumentation and multi-
agent systems (Modgil and McGinnis, 2007;|[Maghraby et al,[2012;|Robertson| 2012]).
However, most approaches to modelling specifically mathematical agents have had
significant limitations. Thus, for example, |Fiedler and Horacek! (2007) have described
the difficulty of squaring argumentation-theoretic work with the methods of formal
proof. Ganesalingam and Gowers’s (2017) project aimed at simulating a solitary
individual rather than a population. However, [Furse| (1990) had already called into
question the robustness of approaches to modelling mathematical creativity that only
model a solitary creative individual. |Pease et al (2009) describe an implementation
effort that made use of a multi-agent approach, drawing on argumentation theory con-
cepts and a Lakatosian model of dialogue. However, the mathematical applications
of that system were limited to straightforward computational aspects of number the-
ory and group theory, which suggests a “knowledge bottleneck” (Saint-Dizier, |2016;
Moens, 2018)

As indicated in a report of the National Research Council (2014} p. 90), “knowl-
edge extraction and structuring in the context of mathematics” is in demand on an in-
creasingly industrial scale. IATC allows methods of argumentation to interface with
those of knowledge representation; both aspects are relevant to knowledge extraction.
Formalisation of IATC would assist in its applicability: “IKL Conceptual Graphs”
defined by |Sowal (2008)) would provide a natural foundation. IKL, the IKRIS Knowl-
edge Language (Hayes|, 2006} Sowal [2008), deals elegantly with context and has been
used as a representational formalism in a project with aims comparable to our own:
the Slate project (Bringsjord et al, |2008), which centred on an argumentation tool
that could support a mixture of deductive and informal reasoningﬂ Previous work
on mathematical usage can also inform future efforts in knowledge modelling with
IATC (Trzeciak, |2012; Wells, 2003} |Wolskal, 2015} |Ginev,, [2011)).

Mathematical Knowledge Management, particularly in the “flexiformal” under-
standing developed by [Kohlhase| (2012) and | Kohlhase et al| (2017)), presents another
paradigm that could eventually be integrated with IATC. Flexiformality combines
strict formalisations of those parts of mathematics for which that makes sense with

4 http://www.jfsowa.com/ikl/IKLslate.pdf
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opaque representations of constants, objects, and informal theories. [ancu|(2017)) built
on Kohlhase’s work, and focused on ‘“co-representing both the narration and content
aspects of mathematical knowledge in a structure preserving way” (pp. 3-4). How-
ever, modelling narrative in lancu’s sense is more relevant to the “frontstage” presen-
tation of mathematics in a single authorial voice than to the “backstage” production
of mathematics (cf. |Hersh (1991)). Section illustrated one such example from
backstage: mathematicians need to be able to choose between different mathematical
problems.

IATC offers a step forward for research into both the communication and produc-
tion of mathematics, and can play a role in future work on knowledge extraction and
simulation. Potential applications include, among others, the development of a new
generation of mathematics tutoring software and digital assistants that engage their
users in thought-provoking dialogues.
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A Reference coding samples

This appendix collects sample texts and IATC codings to supplement Tables [T]and 2] in Section [3] which
introduced the available codes. Texts are sourced from the examples discussed in Section[d] In general, one
utterance may expand to multiple statements in IATC; accordingly, texts may appear here multiple times.
Bold face is used to illustrate the portion of the text, at right, that justifies the tag that appears, at left.
Numbering refers to the tree-ordering of MiniPolymath 3 comments, unless another source is indicated.

Performatives

perflassert](rel[implies](rel[not](prove_rtf),
rel[not](random_test_false)))

1. Could you start off with a random point in
the plane and prove it doesn’t work, if you can’t
prove that then the opposite holds.

perf[agree](cycle_partition)

2.2.1.1. I believe this is true. It proves that it’s
enough to find a cycle that visits each vertex at
least once.

perf[challenge](problem, equi_tri_stuck)

3.1.1. Say there are four points: an equilateral
triangle, and then one point in the center of the
triangle. No three points are collinear. It seems
to me that the windmill can not use the center
point more than once! As soon as it hits one
of the corner points, it will cycle indefinitely
through the corners and never return to the
center point. I must be missing something here.

perflretract](perf[challenge](problem,
tri_stuck))

equi_-

3.1.1.2.1. Ohhh...I misunderstood the prob-
lem. I saw it as a half-line extending out from
the last point, in which case you would get
stuck on the convex hull. But apparently it
means a full line, so that the next point can be
“behind” the previous point. Got it.

perfldefine](pivot_seq, ps_def)

2. Connecting the dots: At the point where the
pivot changes we create a line that passes
through the previous pivot and a new pivot
— like a side of a polygon.

perf[suggest](meta[goal](cycle_spans_S))

2.1. Nice. We need only to consider the times
when two points are connected — this gives us
a path, and after some time this path will come
back to some already visited point. So there is
a cycle. If only we could find a cycle which
spans all the points, the question is solved.
That may be some useful simplification.

perf[judge](value[useful](pivot_seq))

2.1. Nice. We need only to consider the times
when two points are connected — this gives us
a path, and after some time this path will come
back to some already visited point. So there is a
cycle. If only we could find a cycle which spans
all the points, the question is solved. That may
be some useful simplification.

perf[query](random_test_false)

1. Could you start off with a random point
in the plane and prove it doesn’t work, if you
can’t prove that then the opposite holds.

perf[queryE](additional condition_on cy-
cles(X))

2.1.1.1. For example, the restriction on how the
next pivot is chosen (geometrically: comment
9). Are there any other restrictions? Can we
start with a complete graph and all cycles on
that graph and just discard the ones that don’t
follow the restrictions to converge on the ones
that do?
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perflassert](rel[implies](rel[not](prove._rtf),
rel[not](random_test_false)))

1. Could you start off with a random point in
the plane and prove it doesn’t work, if you can’t
prove that then the opposite holds.

perflassert](rel[equivalent](problem, forall_ex-
ists_problem), cycle_partition)

2.2.1.1. I believe this is true. It proves that it’s
enough to find a cycle that visits each vertex
at least once. There are no “rho” processes with
an initial segment that doesn’t repeat.

perflassert](rel[implies](rel[not](prove_rtf),
rel[not](random_test_false)))

1. Could you start off with a random point in the
plane and prove it doesn’t work, if you can’t
prove that then the opposite holds.

perf[question](rel[implies](rel[conjunction](G_-
infinite_group, H_subgroup_of_G, H-finite_in-
dex_in_G), G_not_equal_to_union_of_cosets))

(Section Question) I have seen this prob-
lem, that if G is a finite group and H is a
proper subgroup of G with finite index then
G+# Ugechg’l. Does this remain true for the
infinite case also?

perf[assert](rel[has_property](pivot_seq, has_-
cycle))

2.1. Nice. We need only to consider the times
when two points are connected — this gives us a
path, and after some time this path will come
back to some already visited point. So there
is a cycle. If only we could find a cycle which
spans all the points, the question is solved. That
may be some useful simplification.

rel[instance_of](S, convex_plus_point)

3.1. Yes. Can we do it if there is a single point
not on the convex hull of the points?

perflassert]( rel[indep_of]( disj_path, M ))

(MPM1, 31.) Quick thought following on David
Speyer’s first comment: The problem asks us
to prove that no set of size (n— 1) can discon-
nect two diagonally opposing vertices in the n-
cube. By Menger’s theorem, this is equivalent
to proving that there are n internally vertex-
disjoint paths between these two vertices. So,
now we are faced with a constructive problem,
independent of the set M: Construct n vertex-
disjoint paths from 0" to 1" in the n-cube.

perflassert](rel[case_split](IS, IS_A, IS_B))

2.1.1.1.1. The line must sweep out a full rota-
tion (and only one full rotation) of 27 during
the traversal of S. I feel like this is intimately
related to proving that there is a starting an-
gle for any point P in S such that all of § is
then traversed. I’m trying to show this by induc-
tion. Base case (|S| = 2) is obvious. Let |S| = n,
take S’ = SU{Q}, and start with some wind-
mill traversal of S. Case A: Q is unreachable.
Therefore we just traverse S, taking 27 to do so
by induction. Case B: Q is reachable at some
angle. [...]

perflassert](rel[wlog](problem,
one_turn)

zero_angle),

11.2.3.1. Only the starting point matters. By the
problem statement, it appears that the initial an-
gle is irrelevant to the existence of a pivot point
P* from which all of S is traversed. Every point
in S is a pivot point, but only with a specific
range of starting angle (e.g. those consistent
with the cycle generating S). The union of these
intervals must necessarily be [0,27), and thus
we can assume WLOG that the starting an-
gle is 0 (and thus we single out a specific point
— or points in the case of |S| = 2).
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Heuristic Value Judgments

perf[judge](value[easy](S_is_conv))

3. If the points form a convex polygon, it is
easy.

perf[judge](rel[not](value[plausible](equi_tri_-
stuck)))

3.1.1. Say there are four points: an equilateral
triangle, and then one point in the center of the
triangle. No three points are collinear. It seems
to me that the windmill can not use the center
point more than once! As soon as it hits one
of the corner points, it will cycle indefinitely
through the corners and never return to the cen-
ter point. I must be missing something here.

perf[judge](value[beautiful](proof_sugg))

14.2.1. Very nice! Don’t we run into problems
with a convex hull though? Take a square with a
point in the middle (M) and pass the diagonal of
the square (not through M) — it seems to me M
is never visited (though I may be wrong here).
I think we should be more specific in our initial
choice of line, maybe?

perf[judge](value[useful](pivot_seq))

2.1. Nice. We need only to consider the times
when two points are connected — this gives us
a path, and after some time this path will come
back to some already visited point. So there is
a cycle. If only we could find a cycle which
spans all the points, the question is solved.
That may be some useful simplification.

Reasoning Tactics

perf[suggest](meta[goal](cycle_spans_S))

2.1. Nice. We need only to consider the times
when two points are connected — this gives us
a path, and after some time this path will come
back to some already visited point. So there is
a cycle. If only we could find a cycle which
spans all the points, the question is solved.
That may be some useful simplification.

perf[suggest](meta[strategy](cycle_spans_S,
process_of_elim))

2.1.1.1. For example, the restriction on how the
next pivot is chosen (geometrically: comment
9). Are there any other restrictions? Can we
start with a complete graph and all cycles
on that graph and just discard the ones that
don’t follow the restrictions to converge on
the ones that do?

perf[suggest](meta[auxiliary](problem,
forall_split))

OKk. I think the solution might involve this obser-
vation, with the observation that every point
participates in a “splitting” line (one with /2
points on one side).

perflassert](meta[analogy](compute 500th
digit of (sqrt(2)+sqrt(3))"2012, compute 500th
digit of (x+y)"2012))

(Section}4.1) Can we do this for x+y? For e?
Rationals with small denominator?

perflassert](rel[implements](#SUBGRAPH,
the trick might be))

(Section (V2+/3)2012 1 (/3-/2)2012js
an integer! And (\/§ — ﬁ)zolz is a very small
number. Maybe the final answer is “9”?

rel[generalise](binomial eliminate

Cross terms)

theorem,

(Section 1) (V2 + V32 1 (v2 — V/3)12

is an integer!




46

Content-Focused Structural Relations

rel[used_in](pivot_seq, pivot)

2. Connecting the dots: At the point where
the pivot changes we create a line that passes
through the previous pivot and a new pivot —
like a side of a polygon.

rel[reform](H_finite_index_in_G , H_infinite_in-
dex_in_G)

(Section Second comment on question)
Yes, the statement is out of focus: gHg~! is in-
tended (and “infinite index case”). The natural
starting point is to ask whether the proof for fi-
nite index breaks down.

rel[instantiates]((sqrt(2) + sqrt(3))"2,general
form of the problem)

(Section (vV2++/3)?

perflassert](rel[expands](2 + 2sqrt2sqrt3 + 3,
(sqrt(2)+sqrt(3))°2))

(Sectionft. 1) 2+2v2V/3+3

perflassert](rel[sums](2 + 2sqrt(2)sqrt(3) + 2 +
2 - 2sqrt(2)sqrt(3)+3,10))

(Section[t.1) (V2+3)2 + (V2 —/3)? = 10

perflassert](rel[cont_summand]( (sqrt(2) +
sqrt(3))"2012 + (sqrt(2)-sqrt(3))"2012,(sqrt(3)-
sqrt(2))"2012)

(Section And (\/57 ﬁ)zmz is a very small

number. Maybe the final answer is “9”?
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