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Dear Dr. Mark L. Schiebler: 

 

Thank you for your considerations for our manuscript entitled “Measurement 

Variability in Treatment Response Determination for Non-Small Cell Lung Cancer: 

Improvements using Radiomics” and for giving us a chance to revise the manuscript. 

We tried to do our best in revising the manuscript by accepting your remarkable 

comments thus in enhancing the quality of our study.  

In the revised version of the manuscript, we answered to your queries by assigning a 

number to each query and by answering to each question and thus each number.  

We upload a revised version of the manuscript and corresponding figures to figure 

captions. Our specific responses are as follows: 

 

Memo 1. I do not understand this sentence. Do you mean to say that diameter 

measurement varied by 11% but the volume measurements did not vary at all? 

Please re-write to better highlight what you mean. 

 Done. We have changed the sentence as follows:  

According to a recent review article, although limit of agreement for both manual 

diameter measurements and semi-automated volume measurements lies in the 

same range in terms of absolute percentages, the percentage of lung nodules in 

which an actual inter-reader difference found was with 11% far lower for semi-

automated nodule volume measurements compared to manual diameter 

measurements, where inter-reader variability occurs commonly. 

 

Memo 2. Why wouldn’t this be more information needed to fill a 2D histogram than a 

1D histogram? 

 We have changed the sentence a little bit for clarification. In general, the samples 

in a given bin for a 2D histogram is less than those in an equivalent 1D histogram as 

the voxels need to fill the bins spanning the 2D histogram compared to filling the 1D 

histogram.  

In a hypothetical extreme example, a 5,000 voxel ROI can fill a uniform 10 bin 1D 

histogram with 500 counts in each bin. The same ROI would fill a uniform 10x10 bin 

2D histogram with 50 counts in each bin. 

 

Memo 3. Trim to 80 references. 

 We have reduced 52 references, thus, the total number of 144 references to 92 

references. We have excluded simple references and kept major, repeating 

references. We hope this is acceptable for publication in the journal.  

 

 

Response to Reviewers



Thank you for your attention. We look forward to listening to your favorable review 

results soon. 

 

With best wishes, 

 

The Authors 
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Abstract 

Multimodality imaging measurements of treatment response are critical for clinical 

practice, oncology trials and the evaluation of new treatment modalities. The current 

standard method in the settingfor determining treatment response inof non-small cell 

lung cancer (NSCLC) is based on tumor size using the RECIST criteria. Molecular 

targeted agents and immunotherapies often cause morphological change without 

reduction of tumor size. Therefore, it is difficult to evaluate therapeutic response by 

conventional methods. Radiomics is the study of cancer imaging features that are 

extracted using machine learning and other semantic features.  This method can provide 

comprehensive information on tumor phenotypes and can be used to assess therapeutic 

response in this new age of immunotherapy. Furthermore, although in its early steps, 

Ddelta radiomics, which evaluates the longitudinal changes in radiomics features, 

between interval studies may shows potential in oncology studiesgauging treatment 

response in NSCLC. It is well known that quantitative measurement methods may be 

subject to substantial variability due to differences in technical factors and require 

standardization. In this review, we describe measurement variability in the evaluation of 

non-small cell lung cancer and the emerging role of radiomics. 

 

Key words: Molecular Targeted Therapy; Immunotherapy; Medical oncology; Phenotype; 

Lung cancer response; Image; Radiomics 

  



Abbreviations: 

ADC : apparent diffusion coefficient  

AIF : arterial input function 

CT : computed tomography 

DCE : dynamic contrast enhanced  

DWI : diffusion-weighted 

EES : extravascular extracellular space 

EGFR : epidermal growth factor receptor  

FDG : fluoro-deoxyglucose 

GGO : ground-glass opacity 

GLCM : gray-level co-occurrence matrix 

GRE : gradient-recalled echo 

ISZM : intensity size zone matrix 

LoG : Laplacian of Gaussian 

MRI : magnetic resonance imaging 

MTT : mean transit time  

MTV : metabolic tumor volume 

NEMA : National Electrical Manufacturers Association 

NSCLC : non-small cell lung cancer 

PBF : pulmonary blood flow  

PBV :pulmonary blood volume  

PET : positron emission tomography  

RECIST : Response Evaluation Criteria In Solid Tumors 

ROI : region of interest 

RQS : radiomics quality score 

SNR : signal-to-noise ratio 

STIR : Short T1 inversion recovery 

SUV : standardized uptake value  

SUVbw : normalization of standardized uptake value for patient body weight  

SUVbsa : normalization of standardized uptake value for body surface area  

SUVlbm : normalization of standardized uptake value for lean body mass 

TLG : total lesion glycolysis  

TSE : turbo spin-echo 



UTE : ultrashort echo time  

VOI : volume of interest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 

Assessment of anti-tumor activity of cancer therapies is generally determined by 

an anatomical measurement of tumor burden. Since its first introduction in 2000 and 

subsequent revision in 2009, Response Evaluation Criteria In Solid Tumors (RECIST) has 

served as the reference standard for measuring tumor burden and confirming tumor 

response.1,21 According to RECIST criteria, measurement is the maximal axial (in-plane) 

unidimensional measurement of a tumor’s diameter. However, this conventional tumor 

size analysis is imperfect due to inter and intra reader measurement variability, 

heterogeneous tumor morphology, and different technical parameters at the time of 

scanning.23 All of  these factors contribute to measurement variability, which can lead to 

an erroneous determination of treatment response/progression and  thereby misinform 

inappropriate treatment decisons.2,34,5  

During the past decade, due to an improved understanding of cancer biology, a 

vast collection of targeted molecular therapies have been developed. This has led to a 

paradigm shift in the local and systemic treatment of non-small cell lung cancer (NSCLC). 

While conventional chemotherapy is focused on destroying rapidly dividing tumor cells, 

molecular targeted therapy aims at transmembraneous receptors and intracellular 

molecules that are responsible for the survival and proliferation of tumor cells. Molecular 

targeted therapy has been shown to be effective in tumors with specific genomic driver 

mutations. This, haswhich opened a new era of tumor response evaluation s where the 

limitations of RECIST-based approaches are increasingly being foundnoted.64 Cancer 

immunotherapy with immune-checkpoint blockade attempts for utilization of thehelps to 

activate the cancer pateints own cellular immune system to killfight against the cancer 

cells.7,8 5 It has become increasingly known Ccancer immunotherapy is associated with 

unconventional response patterns that are not may not be accurately characterized by 

conventional response criteria such as the RECIST criteria.7,9,104,5 In addition, 

morphological changes such as tumor necrosis and cavitation without concurrent tumor 

size reduction are frequently observed in the setting of anti-angiogenic therapy.11-132,4 
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Unfortunately, RECIST criteria do not reflect these changes in the post treatment 

morphology of the target lesion. 

Radiomics is the process of extracting large amounts of advanced quantitative 

information embedded within radiological images. This approach to image analysis aids  

the field of oncology by providing a more quantitative approach for tumor response 

assessment.614 Although state-of-the-art methods have been shown to work well for 

measuring tumor volume, a great deal of variability exists, and radiologists should be 

familiar with the technical variations, benefits, and drawbacks of radiomics regarding 

measurement variability. Furthermore, although computed tomography (CT) continues to 

play an important role, additional imaging modalities such as positron emission 

tomography (PET), magnetic resonance imaging (MRI) dynamic contrast enhanced (DCE) 

perfusion images and MRI diffusion-weighted (DWI) MRI allow for the multiparametric 

assessment of tumor biology (e.g. glucose metabolism, tumor perfusion, and tumor 

hypoxia) of tumor biology.156 Thus, by combining detailed functional and metabolic 

information, these protocols may provide a more comprehensive depiction of the tumor 

microenvironment and may allow for an earlier determination of tumor response. The 

purpose of the review is to focus on the technical issues regarding NSCLC tumor 

measurement variability and how radiomics is emerging for the early assessment of 

tumor response. 

 

2. Technical aspects of measurement 

1) Measuring tumor volume  

A. Segmentation 

Precise NSCLC tumor measurement between interval studies is the current basis 

for tumor response assessment. Although Currently the long axis diameter, a 

unidimensional measurement, remains the standard RECIST criteria for assessment of 
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whether a tumor is growing or shrinking, discordant tumor response between primary 

reviewers and secondary reviewers has been reported.34 In a previous study, according 

tousing RECIST for lung NSCLCcancers, there was a significant difference betweenamong 

readers for unidimensional measurements of tumor size. Probability ofThe 

misclassification rates for progressive disease were 30% and 10% for interobserver and 

intraobserver measurements, respectively.34 The primary reason for this variability is 

related to inter-reader differences in the manual measurements of the primary tumor. 

3,74,16 For instance, in the case of a single unidimensional largest diameter measurement 

for RECIST, each reviewer may measure the tumor at different image slices. As a 

solution to this problem, most radiologists now agree that measuring the entire tumor 

volume is more accurate than a single unidimensional RECIST measurement.17-22 8,9 

Many recent publications have shown that volumetric measurements demonstrate better 

reproducibility and repeatability. According to a recent review article, although limit of 

agreement for both manual diameter measurements and semi-automated volume 

measurements lies in the same range in terms of absolute percentages, the percentage 

of lung nodules in which an actual inter-reader difference found was with 11% far lower 

for semi-automated nodule volume measurements compared to manual diameter 

measurements, where inter-reader variability occurs commonly. Due to more common 

inter-reader variability of manual diameter measurements, the reported percentage of 

lung nodules in which an actual inter-reader difference found was 11% far lower for 

semi-automated nodule volume measurements compared to manual diameter 

measurements.1023 Second, volumetric measurement is more sensitive in detecting even 

small changes than is unidimensional measurement.1124 For example, in a 10 mm 

spherical nodule, a 1 mm increase of unidimensional diameter corresponds to a 10% 

increase in cross-sectional diameter and a 33% increase in volume.1225 Finally, as lung 

CT post-processing computer software is becoming widespread, tumor volumetric 

measurements are gaining in popularity. This has now become the standard for 

oncological trials are beginning as their clinical response endpoint1124. We will now 

discuss the factors aeffecting the variability of tumor volume measurement.1124,26,27 
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Segmentation is the process by which humans (manual segmentation) and 

machines delineate tumor boundaries from the surrounding lung. Generally, the whole 

tumor is selected as the volume of interest (VOI), which is usually feasible, but in certain 

cases may be hampered due to indistinct tumor margins.28,29.13 For example, when lung 

cancer is surrounded by a pathological abnormality such as post-obstructive pneumonia 

or radiation-induced lung injury, the tumor boundary is frequently obscured. Tissue 

reorganization and post radiation therapy, scar formation disrupts accurate tumor 

segmentation, leading to variability in tumor measurement. 

Among various methods of segmentation, automatic and semi-automatic 

methods using volumetric software have been shown to be more reproducible than 

manual segmentation.28,30.13 Although the current “gold standard” is considered to be 

manual segmentation drawn by experts, this method has major drawbacks: (1) it is a 

time-consuming, (2) labor-intensive task and (3) has inter and intra-reader variability. In 

a study comparing manual and semi-automatic segmentation, the radiomics features 

derived from the latter demonstrated significantly higher reproducibility (p=0.0009; 

intra-class correlation coefficient values of 0.85 and 0.77 for semi-automatic 

segmentation and manual segmentation, respectively) and were more robust compared 

to those derived from manual contouring.1431 When comparing repeatability (intra-

algorithm comparisons) and reproducibility (inter-algorithm comparisons) of 

segmentation algorithms, repeatability was significantly higher than the reproducibility 

(p<0.007; average Dice score of 0.95 and 0.81 for repeatability and reproducibility, 

respectively), recommending that the same software be used at all time points in 

longitudinal studies.1532 However, in cases of part-solid adenocarcinomas, which have a 

ground-glass opacity (GGO) component, fully automatic segmentation is also be 

problematic due to the reduced contrast between the GGO component and surrounding 

lung parenchyma.1633 Thus, as of today, for part-solid adenocarcinomas, semi-automatic 

segmentation with tumor margin editing based on subjective decision by an experienced 

expert remains the optimal choice for accurate volumetric assessments of NSCLC (Figure 
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1).34,3517 Likewise, advanced NSCLC lung cancer patients with large tumors having irregular 

margins, heterogenousheterogeneous intra-tumoral texture and surrounding atelectasis or 

effusions often    require semi-automated approach with expert radiologist manual 

editing of the segmentation.921 In the setting of molecular targeted therapy for NSCLC, 

tumor volumes obtained by a semi-automated approach have been shown to be a 

prognostic marker for improved survival ,survival, solidifying its value in this era of precision 

medicine.8,1820,36  

In terms of rapid and accurate tumor segmentation, fully automatic 

segmentation methods based on deep learning may be the solution. Several 

investigators have trained convolutional neural networks and demonstrated that deep 

learning is capable of performing accurate localization and segmentation of tumors in 

multiple organs.37-4019,20 Although most of these articles were based on MRI scans, such 

as brain, prostate, and rectum, deep learning technologies have shown potential to 

improve accuracy and robustness of tumor segmentation. 

Another point that needs to be highlighted is the usage of different vendor 

volumetric software platforms. Studies comparing multiple volumetric software packages 

found considerable variation in nodule volume. This shows that that the results of 

software packages should not be used interchangeably.41-4421,22 Next we discuss the 

impact of technical factors at the time of CT acquisition and CT reconstruction such as 

radiation dose, iterative reconstruction, inspiration, and slice thickness on the variability 

in volumetric measurement. 

 

2) Technical issues according to particular imaging modality 

A. CT  

Chest CT is the modality of choice in routine lung cancer imaging, and iterative 
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reconstruction techniques have allowed for a significant reduction of radiation dose with 

overall similar image quality (Figure 2).2345 Quantitative analysis of CT data can provide 

accurate anatomical information about NSCLC and the surrounding lung. In principle, 

lung nodule volumetric measurement and comparison across interval CT scans is 

relatively easy and reproducible on the same scanner hardware. However, imagers and 

oncologists should keep in mind that there is variability in these “objective” CT metrics 

that are introduced by individual reviewer RECIST measurements, manual segmentation 

of tumor volume, and technical factors (e.g.  choice of reconstruction kernel, slice-

thickness, and inter-scanner differences)...46-4824 Any combination of these,  factors may 

cause considerable measurement variability of the tumor burden, making the task more 

challenging for radiologists. We next carefully discuss the various technical factors that 

may impact tumor measurement accuracy. 

 

a. CT Reconstruction algorithms and radiation dose 

Previous studies have investigated the influence of the reconstruction kernel  

and radiation dose on lung nodule volume using chest phantoms.49-5225,26 The vast 

majority of those studies demonstrated that various iterative reconstructions (e.g. 

adaptive statistical iterative reconstruction, iDose, and model based iterative 

reconstruction) showed no significant variability in nodule diameter or volume 

measurement when compared to filtered back projection.49-5225,26 In fact, some studies 

reported that iterative reconstructions demonstrated better measurement accuracy at a 

reduced radiation dose. They suggested that reduced noise or increased image quality 

from iterative reconstruction helped reduce measurement errors.25,2649,51,53,54 In a study 

comparing lung cancer screening individuals who underwent low dose CT and ultra-low 

dose CT with iterative reconstruction, there was no significant difference in nodule size 

and volume measurement between the two protocols.2755 In a recent study comparing 

subsolid nodules between model-based iterative reconstruction and filtered back 
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projection, Cohen et al. demonstrated that semi-automatic measurements of diameter, 

volume, and solid components of the subsolid nodules were within the range of 

measurement variability.2856 Thus, lung nodule volumetric measurements acquired from 

scans with different reconstruction techniques can be reliably compared. 

 

b. Slice thickness and reconstruction kernel 

Prior studies have investigated the impact of slice thickness on tumor 

measurement for cancer screening or tumor response evaluation.57-6129,30 Significant 

differences in volume according to CT slice thickness variation were noted for smaller 

lung nodules, where thicker slices introduced greater measurement variability.57,58,6129,30 

The reason for this is related to partial volume effects. Given that a thicker CT slice 

contains larger partial volume artifacts than a thinner image, the margin of the tumor is 

blurred on thicker images. The lack of isotropic voxels for Lung CT influences NSCLC 

nodule segmentation and any extracted radiomics features.3162 In cases of subcentimeter 

nodules, which have very small VOI, partial volume artifacts substantially influences the 

volume measurement.1225  

Similarly, when employing radiomics, recent studies have shown that thin-slice 

images were better than thick-slice images for radiomics features.31,3262,63 In patients 

with lung cancer, He et al. reported that a radiomics signature based on thin slices (1.25 

mm) demonstrated better diagnostic performance than when applied to thick slices (5 

mm).3263 In a chest phantom study, thinner (1.25 mm and 2.5 mm) slice thickness was 

found to be better for radiomics features (e.g. quantifying tumor size, shape, and 

density).3162 To minimize measurement variability thinner slice images are recommend, 

slice thickness should be the same and slices of different thickness should not be mixed 

together for analysis (Figure 3).  

Studies comparing tumor volumes at different reconstruction kernels are scarce 

and have conflicting results. One study reported that, compared to sharp kernels, soft 
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tissue reconstructions demonstrated more repeatable volumetric measurements.3364 

Another study reported that, compared to high frequency bone algorithms, low 

frequency soft algorithms demonstrated larger volumes.43,6534  

 

c. Effects of respiration and intravenous contrast 

Differences in lung inflation should not be underestimated when measuring lung 

nodules. For example, collapse of the alveoli at expiration may bring over and 

underestimation of tumor size, whereas stretching of the tumor parenchyma and blurring 

of the tumor margins could be responsible for an apparent larger tumor size at 

inspiration. Interestingly, results of significant changes in apparent tumor volume during 

the respiratory cycle have been previously reported.1225 Furthermore, motion artefacts 

during respiration can significantly affect the ability to segment lung nodules, rendering 

their outline and volume assessment unreliable. In addition, the presence of a pleural 

effusion or pneumothorax may also have a large influence on the apparent tumor 

volume.66 For radiomics, Oliver et al. suggested that approximately 75% of the current 

dictionary of CT radiomics features are susceptible to respiration.3567  

Another interesting point is the impact of intravenous contrast material on lung 

nodule volume. Due to increased attenuation of the peripheral portion of a nodule at 

post-contrast scans (more vascular and viable region of the tumor nodule), the contrast 

difference between the parenchyma and the nodule increases; thus, volume 

segmentation may include a greater area of the peripheral lung nodule.2243 Results from 

two studies showed that, although the precise increase in nodule volume was small, 

radiologists should be aware of this artifact on the contrast enhanced exams.36,3768,69  

 

B. MRI 

Owing to the ability of MRI to gather multiparametric data from NSCLC, MRI may 

play an increasing role in categorizing the therapeutic response in lung cancer.38,3970,71 
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MRI is more reproducible in the identification of NSCLC and has superior soft tissue 

contrast in comparison to CT.72 MRI lung nodule volumes are smaller than CT lung nodule 

volumes due to the higher resolution of CT and the magnetic susceptibility of air 

surrounding.73,7440 Ideally, for quantitative analysis, MRI images should all have the same 

field of view and acquisition matrix, field strength, and slice thickness. Each one of these 

acquisition parameters which have a strong effect on signal-to-noise ratio.3971 However, 

the many choices for acquisition in Lung MRI complicates comparison between studies of 

the many features extracted from the images.4175 Standardization of Lung MRI protocols 

in the setting of gathering radiomic features from NSCLC will be very helpful. 

a. Magnetic field strengths 

As MR field strength increases, the signal-to-noise (SNR) increases. This increase 

in the SNR can be utilized to for an increase in the number of phase encoded steps for 

better spatial resolution and improved anatomical identification.40,4274,76 The use of 

higher MR field strength improves the ability to contour tumor masses and reduces the 

measurement variability.4074 However, as MR field strength increases, it is accompanied 

by Bo and B1 inhomogeneity, an increased number of image artifacts due to changes in 

tissue magnetic susceptibility and increase in chemical shift,76,7742 B1 inhomogeneity 

results in systematic error for T1 measurement.4378 In oncology practice, tumor necrosis 

from response to anticancer therapies leads to increased water diffusion. This results in 

higher signal intensity on the higher-b-value images, and the apparent diffusion 

coefficient (ADC) value of the corresponding region will typically increase as there is no 

restriction to the diffusion of water with a destruction of the closely packed cell 

membranes. Changes in ADC on DWI have been shown to be effective for monitoring 

therapeutic response in solid tumore.79-8144 Therefore, the field strength should be 

considered to evaluate the therapeutic response with ADC value. 

There are field strength-related changes on the relaxivity of MR contrast media. 

The relaxivity of gadolinium based MR contrast media increases 5% to 10% when 
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changing from 1.5T to 3T.4276 The individual dependencies of relaxivities on field strength 

for the types of MR contrast media were significantly different (Table 1).45,4682,83 

Successful treatment leads to decreased magnitude of enhancement. For detecting 

change of enhancement of tumor, dosing for contrast media would need to be modified 

according to field strength.  

 

b. MRI Acquisition parameters for staging of lung cancer 

In patients with lung cancer, MRIs have been widely used to evaluate invasion of 

mediastinum and organs because of superior soft tissue contrast. With advancement of 

MR techniques, size threshold for nodules have increased, and MR has potential role for 

assessing indeterminate lung nodules.4784 With short echo times, fast spin echo 

sequences have enabled to assess NSCLC, however, T2 blurring affected the 

reproducibility of the evaluation of NSCLC.4885 Ultrashort echo time (UTE) with the 

exceedingly short T2 and T2* relaxation times of the lungs has been used in nodule 

detection and nodule type classification47,4984,86. However, UTE sequences have the 

disadvantages of long scan duration because of inefficient k-space coverage and are 

sensitive to motion artifacts.5087 3D UTE provide isotropic spatial resolution with full 

chest coverage and is less sensitive to motion artifacts.4885 The use of limited field-of-

view excitation, variable readout gradient, and radial oversampling improves image 

quality on 3D UTE.4885 Most 3D UTE sequences have acquired images using radial-based 

trajectories.5087 A recent study by Ohno et al. showed that UTE images with radial 

acquisition was useful in detection and classification of pulmonary nodules larger than 4 

mm, and interobserver agreement for nodule classification was excellent (κ = 0.95).4986 

In addition, UTEs with spiral trajectories over a radial readout are reported to have the 

advantage of high k-space coverage speed while preserving image quality.5087 A study 

reported that there was a 100% detection rate for nodules 5 mm or larger and 76.7% 

for 2-5 mm nodules on 3D UTE with stack-of-spirals trajectory.5087   
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 Short T1 inversion recovery (STIR) turbo spin-echo imaging sequence, which is 

very sensitive to change in T1 and T2, has been known as an important sequence in 

pulmonary MR imaging.8851 The specificity (60.6%) and accuracy (74.5%) of STIR were 

higher than T1 (37.9% and 67.9%) and T2 (48.5% and 67.9%) in distinguishing 

malignant from benign nodules.5189 Therefore, STIR sequence could be used to 

characterize lung nodule, and assess clinical stage of NSCLC. DWI could be useful in 

assessment of lung nodules, the staging, and early detection and prediction of treatment 

response of NSCLC. With high lesion-to-background ratio on high b-value images, DWI is 

useful in the detection of lung nodules. In addition, DWI allows for the characterization 

of lung nodules using a quantitative assessment of diffusion of water molecules by 

calculating the ADC.4784 Thus, ADC is widely used a quantitative imaging biomarker in 

evaluating NSCLC. A study reported that ADC value increased by 25% after one cycle of 

chemotherapy due to tumor necrosis and apoptosis, and this suggest that early response 

of treatment can be predicted by means of ADC change.5290 However, the DWI-based 

evaluation of lung nodule can show the difference in value depending on the quantitative 

evaluation method and b value selection.5290 Due to the impact of b value selection on 

DWI, quantitative parameter values should be changed depend on b value selection. 

Susceptibility artifacts is one of the reasons for the lower ADC differentiation of lung 

nodule. As b value increased, the change of distortion and susceptibility artifacts 

increased, and results in poor SNR.5391. The interobserver coefficient of variation of ADC 

in nodules less than 2 cm was relatively poor.5492. Contrast-enhanced T1 sequence can be 

used to characterize lung nodules according to contrast enhancement patterns as well as 

difference in signal intensity before and after injection of contrast agent.5290 Contrast 

enhancement with gadolinium contrast agent on T1-weighted gradient-recalled echo 

(GRE) or turbo GRE sequences is superior to those on spin-echo and turbo spin-echo 

(TSE) sequences.5593. 

 Quantitative features than can be derived from medical images helps to evaluate 

of lung cancer.614 Entropy was known as the most reproducible MR parameter reflecting 
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tumor heterogeneity.5694 A recent study showed that histogram and texture parameters 

varied after contrast agent injection on DCE MRI, and the 120-150 second after contrast 

agent infection was optimal for analysis of MR texture parameter.5694 The effects of 

acquisition parameter variations on pixel signal intensities are masked because of 

blurring and partial volume effects, thus reducing the effect on the radiomics features. 

Repeatability of MR quantitative parameters is better for global features such as first-

order statistical histogram and model-based fractal features than for local-regional 

texture parameters.3870 

 

c. Compensating for respiratory motion 

There is an artificial increase in the volume of a solitary NSCLC during inspiration 

because of stretching of the tumor and the surrounding peritumoral lung parenchyma 

1225 Moreover, breathing-related motion can decrease the signal intensity on MRI 

particularly in areas of dynamic air trapping. During inspiration, lung volume is larger; 

thus, tissue density and MR signal are lower.5795 Perfusion could be evaluated 

qualitatively and quantitatively, and perfusion MRI is performed during breath hold to 

minimize artifacts from respiration motion because of the fast transit time of contrast 

agent. However, measurement of perfusion depends strongly on the level of inspiration. 

During inspiration, pulmonary vascular resistance is increased, while right atrial filling is 

increased due to the drop in intrapleural pressure. One consequence of this change in 

physiology is that perfusion at during a breath hold MR angiography exam performed at 

full inspiration (total lung capacity) is lower than perfusion performed at  full expiration 

(residual volume). It is difficult to control the degree of inspiration during breath 

hold.5896 Therefore, measurements of perfusion performed with have relatively poor 

reproducibility.5795 Some authors have suggested that measurement of perfusion during 

quiet free breathing can be assessed more reproducibly because free breathing offers 

better patient compliance.5795    
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d. Functional MR analysis 

Angiogenesis is one of the important factors in the evaluation of lung cancer related to 

tumor survival and growth. DCE-MRI provides information of tumor angiogenesis such as 

blood flow, vascular volume, and permeability. Once multiple images can be acquired 

during the first transit or recirculation and washout of contrast medium, quantitative 

evaluation of contrast passage kinetics can be made.97,9859 Pulmonary blood flow (PBF), 

pulmonary blood volume (PBV) and mean transit time (MTT) can be generated by means 

of pixel-by-pixel analysis.6099 In addition, an arterial input function (AIF), rate of change 

in the concentration of contrast medium in the plasma with time, is quantified in the 

larger arteries including main pulmonary.59,6197,100 An accurate AIF is necessary for 

quantitative analysis.61100 AIF allows conversion of signal time curves to concentration 

time curves from assumption of a linear relation between the signal intensity and the 

concentration of contrast agent.97,10159  

Quantitative evaluation of DCE-MRI is based on many pharmacokinetic models, 

and the Toft’s and Kermode model (ToftsToft’s model, Table 2 and figure 4) are the most 

frequently used in DCE –MRI analysis.61100 The ToftsToft’s model was originally 

constructed with ignoring the effect of intravascular tracer62102: 

C(t) = Ktrans e-tkep * Ca(t)                                       [1] 

Where “*” is convolution, and C(t) and Ca(t) are concentration-time curves in the tissues 

in interest and in the plasma of a feeding artery, respectively. The standardized terms 

are presented in Table 2. The parameters of Ktrans and kep are defined as follows102-10462: 

   Ktrans = EFp Kep = EFp /ve                                   [2] 

Where ve is the fractional volume of the extravascular extracellular space (EES), Fp is the 

flow of plasma in the capillary bed, and E is related to Fp and the permeability-surface 

are permeability surface area product of the endothelial wall. The assumption of 

negligible plasma volume is invalid, particularly tumor tissues. To overcome the 
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limitation, the Tofts model has been formulated to allow for an intravascular contribution, 

which is referred as the extended Tofts model.62 

C(t) = vpCa(t) + Ktrans e-tkep * Ca(t)                              

[3] 

vp is the fractional volume of the plasma space.  

Various factors could affect the reliability of results in DCE-MRI. The accuracy and 

precision of pharmacokinetic parameter estimates are strongly influenced by SNR, and 

temporal resolution.61100 Using a theoretical AIF, differences in injection rate and cardiac 

output are ignored, which may differ between subjects and for a single subject over 

time.63105 Measurement of suboptimal AIF results in worse reproducibility than if a 

standardized AIF is used, although the AIF might be not so important for evaluating 

treatment response.64106 In addition, blood supply of lung takes places through both the 

dual pulmonary and bronchial arterial systems.98 Primary lung cancers are supplied by 

dual blood supply and the bronchial circulation plays an important role in lung cancer, 

especially when the size of tumor is larger.65107 The single input perfusion analysis 

according to the maximum slope method calculated the dominant circulation, and 

ignored the secondary circulation, therefore the result of perfusion of lung cancer are 

likely to be underestimated.66108 To overcome underestimation of perfusion, the dual-

input perfusion analysis technique is employed in lung cancer perfusion analysis, and a 

study reported that dual-input perfusion analysis is helpful for predicting the treatment 

effect of multi-arterial infusion chemotherapy.66108 

 

C. PET 

Due to its quantitative ability and ability to target cellular biology the use of PET 

has continuously increased for the assessment of therapeutic response in lung cancer. 

The most commonly used variable is the standardized uptake value (SUV) of 18F-

Formatted: Superscript

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



deoxyglucose (FDG)-based quantitative PET parameters are used as radiomics features 

and therapeutic response criteria. Many biological and technical factors affect the 

measurement of SUV, which are described below.67109  

a. Normalization method for SUV calculation 

SUV is calculated by activity concentration in tissue adjusted by the administered 

dose of radiopharmaceutical, background SUV of the blood pool and body size. Body size 

usually corresponds to the body weight of the patient (SUVbw). However, other indexes 

such as lean body mass (SUVlbm) or body surface area (SUVbsa) can also be used. The 

choice of how to normalize SUV affects the measurement of SUV and how this value can 

be used in comparing other studies for therapeutic response to specific agent. One 

disadvantage of SUVbw is its known overestimation in obese patients. Both SUVbw and 

SUVbsa are less sensitive to patient weight.68110,111 

b. b. PET/CT scanner models and image acquisition/reconstruction 

protocol 

PET/CT hardware models, image acquisition and reconstruction protocols also 

affect the quantitative measurement of SUV. For the performance of PET/CT scanners, 

the most important factors are the intrinsic resolution and  detector sensitivity. These 

key parameters directly affect in-plane resolution and voxel size  which  determines the 

amount of partial volume artifact and, SUV variability. This is magnified in the lung bases 

where nodules move with respiration further adding to volume averaging artifacts and 

image misregistration with respect to the CT used for attenuation correction. 

In the image acquisition protocol, one of most important factors is uptake time. 

Uptake time is defined as the time interval between the injection of the PET 

radiopharmaceutical and start of PET scanning. This also influences the measurement of 

SUV. In the case of 18F- FDG, the most common uptake time is 60 min. The SUV after 

FDG injection continuously increases as metabolically active cells take up the glucose 

analogue, which is subsequently trapped.69112 Therefore, the use of a fixed uptake time 
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is important for the consistency of SUV measurement. On the other hand total scan 

duration or scan mode (2D vs. 3D) does not have a significant effect on SUV 

accuracy.70113 

In the reconstruction protocols, the attenuation correction method, 

reconstruction method (analytical vs. statistical/iterative methods), and smoothing filter 

are major factors affecting SUV measurement. For example, increased smoothing results 

in decreased noise and increased bias. Increased bias will result in reduced SUV.71114 

c. c. Patient factors 

Even with the same PET/CT protocols and within the same patient repeatability is 

an important issue. SUV can vary due to the biological process such as different blood 

glucose and insulin levels, this leads to a high test-retest variability.72115 It is well known 

that plasma serum blood glucose level is inversely correlated with SUVs.73116 

d. d. Types of quantitative PET parameters 

Most quantitative PET parameters have important problems related to 

measurement variability, precision and repeatability. This includes maximum SUV, 

average SUV, peak SUV, metabolic tumor volume (MTV), and total lesion glycolysis 

(TLG).117 Although maximum SUV is usually not affected by the determination of lesion 

region of interest (ROI) or VOI, in other PET parameters, ROI/VOI has significant 

influence. However, there is a persistent concern that maximum SUV represents a single 

pixel value that may not be representative of the total metabolic profile of the tumor. 

According to previous studies of NSCLC, MTV and TLG were better prognostic measures 

than maximum SUV and mean SUV,118,11974 suggesting that volume-based parameters of 

PET may have a role in providing further prognostic information.74,75120 

e. e. Harmonization of PET parameters 

Based on the literature, the measurement variability of maximum SUV, average 

SUV, and peak SUV expressed as a coefficient of variation is approximately 10%.76121 
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Due to these measurement variabilities the harmonization of PET response criteria has 

been studied. For example, image reconstruction-related variability can be solved using a 

standardized filter such as EQ.PET.77122 To apply this kind of standardized filter for image 

reconstruction, it is necessary to obtain recovery coefficients according to the lesion size 

by National Electrical Manufacturers Association (NEMA) NU-2 phantom.78123 However, 

further efforts are necessary to standardize the quantitative measurement of PET 

parameters.  

f. f. PET Radiotracers for lung cancer 

Representative PET radiotracers for lung cancer and their clinical utilities are 

summarized in Table 3. FDG, a glucose analogue, is the most widely used PET radiotracer 

for lung cancer. It is clinically useful for the single pulmonary nodule evaluation, initial 

staging, detecting recurrence, and therapy response evaluation.79124 18F-Fluorothymidine 

PET is good for evaluating therapy response to radiotherapy or chemotherapy early in 

lung cancer.80125 18F-fluoromisonidazole PET shows the hypoxic portion within the tumor, 

which can be used for radiotherapy planning in lung cancer by boosting radiation dose to 

hypoxic tumor.81126 18F-alfatide, reflecting tumor angiogenesis, has a potential to 

evaluate therapy response in lung cancer, although published studies were very few.82127 

PET tracers targeting tumor epidermal growth factor receptor (EGFR) such as 11C-

PD153035 and 11C-erlotinib may be applicable for therapy response evaluation to EGFR–

tyrosine kinase inhibitors.128,129.83  

 

3) Special considerations on radiomics analysis 

A. Bin number 

Radiomics analysis computes hundreds or sometimes thousands of features from 

the underlying imaging modalities and ROIs. The features are different from semantic 

features and are agnostic computational features whose formulae are defined with 
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various parameters.130 Thus, for a given radiomics feature, if the associated parameter 

changes, the ensuing radiomics feature might change as well. Many radiomics features, 

noted as histogram-based features, are computed from the intensity histogram using the 

underlying imaging data within the ROI. Histograms are affected by binning parameters 

of bin width and range (Figure 5). Range is application dependent, and we typically use 

4096 for CT. Many people also use a number of bins, which is range divided by bin width 

for the binning parameter. Using many bins allows fine differentiation between intensity 

values, but using too many bins leads to very narrow bin width. A narrow bin width leads 

to unreliable histogram estimates, as we may not have enough samples for some bins. 

The Freedman-Diaconis rule can be used to set bin width.84131,132  

In addition, we are computing hundreds and thousands of features from a given 

ROI, which mightcan frequently lead to having too many parameters in an analytical 

model. This could beresults in thought as overfitting the of data when we areand is an 

important limitation when training an artificial intelligence model with limited samples. 

Thus, it is desirable to have as many as possible.As a general rule there should not be 

more features than patients in the training set. Many recent radiomics papers included 

hundreds or sometimes over one thousand samples.133-13585,86 In practice, not all the 

features are included in the resultant radiomics model. There are often feature selection 

procedure (through least absolute shrinkage and selection operator or something 

equivalent), where the number of features is reduced to a few (i.e., typically tens of 

features).85,87133,136 In this case, having 70-80 samples could still be adequate regarding  

to avoid ing overfitting. 

 

B. Texture features 

Texture features are widely recognized radiomics features.133,137,13885 The most 

representative texture features are computed from gray-level co-occurrence matrix 

(GLCM) and intensity size zone matrix (ISZM). These matrices are built out of 2D 
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histograms, which measure the frequency of a pair of observations compared to a 1D 

histogram, where researchers consider the frequency of one observation (e.g., intensity). 

GLCM measures the frequency of intensity pairs in the neighborhood, while ISZM 

measures the frequency of blobs with certain size and intensity. For GLCM, the 2D 

histogram is built using intensity of the given voxel as the first axis and intensity of the 

neighboring voxel as the second axis. The GLCM quantifies how intensity pairs occur in a 

neighbor and hence can reflect textural information. Similar to the 1D histogram case, 

the number of bins is a major parameter in 2D histograms. In general, the samples in a 

given bin for a 2D histogram is less than those in an equivalent 1D histogram as the 

voxels need to fill the bins spanning the 2D histogram compared to filling the 1D 

histogram. In general, the number of samples in a the 2D histogram areis a lot less as 

the voxels need to fill the bins spanning the 2D space compared to the 1D histogram. 

Due to this sparsity in the 2D histogram, researchers typically use 128/256 bins for 

GLCM.88139 Figure 6 shows typical 1D intensity histogram and 2D GLCM and ISZM 

histograms. 

The size of the ROI also affects the 1D/2D histogram measures. If theyour ROI is 

big enough to contain thousands of voxels, then the above approaches are suitable. If 

thea ROI has a very small number of voxels (perhaps arounde.g. 100), then researchers 

need to reduce the number of bins significantly to make sure there are enough voxels 

occupying the bins.  

 

C. Shape features 

Shape features are important parts of radiomics analysis.133,14085 The shape of 

ROI is quantified with various formulae. ROI is composed of voxels that could be 

isotropic or non-isotropic. In many cases, we havechest imaging there is often good in-

plane resolution and  poorvariable out-of-plane resolution (i.e., non-isotropic voxels). 

For non-isotropic voxels, the shape features are more sensitive to shape change 
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occurring in-plane while less sensitive to shape change occurring out-of-plane. For 

isotropic voxels, the shape features are equally sensitive into all directions. The shape of 

the target ROI may change in any direction; thus, isotropic voxels are preferable over 

non-isotropic ones. If the imaging data is non-isotropic, we can interpolate the imaging 

data to make it isotropic. This interpolation makes the data smoother but at least 

reducesalso reduces the shape variability.  In other words, the fine edge detail is lost. 

This is similar to iterative reconstruction methods in CT used to decrease patient dose. 

The dose is decreased, but fine detail can beis lost in these smoother more “plastic” 

appearing images. 

 

D. Filter and Wavelet 

Some researchers have applied an edge enhancement filter such as Laplacian of 

Gaussian (LoG) to the reconstructed image data and only then compute radiomics 

features from the filtered image.89141 The LoG filter has a scale parameter that controls 

the scale at which enhancement occurs (Figure 7). Researchers need to specify the scale 

parameter to suit their intended application. The scale should be set based on image 

quality and the size of ROI. If researchers have poor quality image with large ROIs, large 

scale operations are recommended.  

Some studies also apply wavelet decomposition to imaging data.85133 The 

imaging data are decomposed into many output data, and radiomics features are then 

computed from the decomposed data. There are many wavelet transforms to choose 

from, each with a plethora of parameters. Coiflets are widely used for their simplicity. 

Researchers can decompose one 3D scan into 8 3D decomposed scans in its simplest 

version. Different wavelet transform leads to different decomposed data and thus affects 

the radiomics features. Researchers should fully consider the various parameters of 

wavelets before applying them in their projects.  
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Future considerations 

 

3. Future Suggestions and Conclusion  

As radiomics features show promising benefits for quantification of lung cancer 

biology and response to treatment, many researchers are now paying close attention to 

the clinical usefulness of radiomics in oncologic studies. However, as the number of 

radiomics studies explodes, it should be clearly noted that the extracted radiomics 

features are subject to lack of precision and repeatability. Therefore, in order to 

homogenize evaluation criteria and reporting guidelines for radiomics, Lambin et al. 

proposed the radiomics quality score (RQS) (Table 4).86134 The RQS evaluates the 

necessary steps in radiomics analysis including 16 key components of which each is 

given a number of points corresponding to the importance of the respective 

component.86134 Major check points in the RQS are data selection, medical imaging, 

features extraction, exploratory analysis, and modeling. The highest possible total RQS 

for quantification of the overall methodology and analysis of radiomics practice is 36 

points. Therefore, efforts should be made to consider RQS in future studies and to 

stablish collaborative foundations to control and fully realize the potential of radiomics.   

One last considerationAnother feature that may help in tumor response 

evaluation is delta radiomics.86,90134,142 In contrast to most radiomics studies, which are 

based on features extracted at a single time point (usually at the time of diagnosis), 

delta radiomics evaluates changes in radiomics features between interval studies. Delta-

radiomics features have shown potential in predicting response or survival in patients 

with colorectal cancer liver metastasis, metastatic renal cell, and lung cancer.90-92142-144  

According to a study of 107 NSCLC patients, pretreatment radiomics features were not 

prognostic, while texture-strength measured at the end of treatment significantly 

stratified high- and low-risk patients, thus suggesting the potential of delta-radiomics 

features.90142 Nevertheless, if delta radiomics were to be employed in clinical practice, 
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standardization of technical factors and high reproducibility of the features remain 

prerequisites. 

In conclusion, compared to the current RECIST version 1.1, tumor volumetric 

measurement and radiomics are more quantitative measures and supplement the 

limitations of RECIST in the current era of precision cancer therapy. Nevertheless, 

substantial variability can be introduced in the process of measuring tumor burden due 

to various technical factors. Furthermore, the increasing role of software post- 

processing and radiomics support the need for increased awareness of technical factors 

of image acquisition among radiologists. We await the incorporation of these advanced 

image processing metrics of Radiomics and Artificial Intelligence into the new RECIST 

criteria for tumor response assessment.In the future, the traditional role of radiological 

practice in oncological studies is likely to change, and the concepts and knowledge 

described in this review will support radiologists with a new perspective for tumor 

response evaluations in the cutting edge cancer patient care. 
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Figure Legends 

Figure 1. Various methods of tumor segmentation. A) Part-solid adenocarcinoma with 

internal air-bronchogram at the right upper lobe. B) Automatic segmentation of the solid 

portion. C) Automatic segmentation of the ground glass opacity (GGO) portion. D) Semi-

automatic segmentation with subjective tumor margin editing demonstrates the final 

solid portion (blue) and GGO portion (red). 

 

Figure 2. Graph demonstrates the attenuation profile along a vertical line through the 

tumor. Tumor margins are assumed by the rapid slope of pixel values. The area of 

negative pixel values within the tumor suggests the presence of air-bronchogram.  

 

Figure 3. As part-solid adenocarcinoma, 5 mm slice images (top row) show less solid 

portion compared to 1.25 mm slice images (bottom row). Thicker-slice image contains 

larger partial volume artifacts than a thinner-slice image, thus influencing the true 

details of lung adenocarcinoma.  

 

Figure 4. The extended Tofts model. Assumption of this model is the equilibrium of the 

contrast agent between the plasma and extravascular extracellular space (EES) 

 

Figure 5. Difference in grey-level co-occurrence matrix  (GLCM) according to number of 

bins. The two GLCMs are from the same patient with different numbers of bins. The 

GLCMs are displayed using the same scale. The left figure has more bins thus can have 

fewer counts per bin, while the right figure has fewer bins and thus more counts per bin. 

These differences in counts per bin led to different features values of GLCM. 

 



Figure 6. Histogram samples for radiomics. A) 1D Histogram within ROI. In most cases, 

the analysis using CT images considers a full range of HU values (i.e., 4096 bins). B) 2D 

histogram of grey-level co-occurrence matrix (GLCM). The 2D histogram of GLCM is built 

using intensity of given voxel as the first axis and intensity of the neighboring voxel as 

the second axis. C) 2D histogram of intensity size zone matrix (ISZM). The horizontal 

axis denotes intensity, and the vertical axis denotes size of a given blob. 

 

Figure 7. Original image of lung cancer is enhanced by two different methods of Laplace 

of Gaussian. 
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Abstract 

Multimodality imaging measurements of treatment response are critical for clinical 

practice, oncology trials and the evaluation of new treatment modalities. The current 

standard for determining treatment response in non-small cell lung cancer (NSCLC) is 

based on tumor size using the RECIST criteria. Molecular targeted agents and 

immunotherapies often cause morphological change without reduction of tumor size. 

Therefore, it is difficult to evaluate therapeutic response by conventional methods. 

Radiomics is the study of cancer imaging features that are extracted using machine 

learning and other semantic features.  This method can provide comprehensive 

information on tumor phenotypes and can be used to assess therapeutic response in this 

new age of immunotherapy. Delta radiomics, which evaluates the longitudinal changes in 

radiomics features,  shows potential in gauging treatment response in NSCLC. It is well 

known that quantitative measurement methods may be subject to substantial variability 

due to differences in technical factors and require standardization. In this review, we 

describe measurement variability in the evaluation of non-small cell lung cancer and the 

emerging role of radiomics. 

 

Key words: Molecular Targeted Therapy; Immunotherapy; Medical oncology; Phenotype; 

Lung cancer response; Image; Radiomics 

  



Abbreviations: 

ADC : apparent diffusion coefficient  

AIF : arterial input function 

CT : computed tomography 

DCE : dynamic contrast enhanced  

DWI : diffusion-weighted 

EES : extravascular extracellular space 

EGFR : epidermal growth factor receptor  

FDG : fluoro-deoxyglucose 

GGO : ground-glass opacity 

GLCM : gray-level co-occurrence matrix 

GRE : gradient-recalled echo 

ISZM : intensity size zone matrix 

LoG : Laplacian of Gaussian 

MRI : magnetic resonance imaging 

MTT : mean transit time  

MTV : metabolic tumor volume 

NEMA : National Electrical Manufacturers Association 

NSCLC : non-small cell lung cancer 

PBF : pulmonary blood flow  

PBV :pulmonary blood volume  

PET : positron emission tomography  

RECIST : Response Evaluation Criteria In Solid Tumors 

ROI : region of interest 

RQS : radiomics quality score 

SNR : signal-to-noise ratio 

STIR : Short T1 inversion recovery 

SUV : standardized uptake value  

SUVbw : normalization of standardized uptake value for patient body weight  

SUVbsa : normalization of standardized uptake value for body surface area  

SUVlbm : normalization of standardized uptake value for lean body mass 

TLG : total lesion glycolysis  

TSE : turbo spin-echo 



UTE : ultrashort echo time  

VOI : volume of interest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 

Assessment of anti-tumor activity of cancer therapies is generally determined by 

an anatomical measurement of tumor burden. Since its first introduction in 2000 and 

subsequent revision in 2009, Response Evaluation Criteria In Solid Tumors (RECIST) has 

served as the reference standard for measuring tumor burden and confirming tumor 

response.1 According to RECIST criteria, measurement is the maximal axial (in-plane) 

unidimensional measurement of a tumor’s diameter. However, this conventional tumor 

size analysis is imperfect due to inter and intra reader measurement variability, 

heterogeneous tumor morphology, and different technical parameters at the time of 

scanning.2 All of these factors contribute to measurement variability, which can lead to 

an erroneous determination of treatment response/progression and  thereby misinform 

treatment decisons.2,3  

During the past decade, due to an improved understanding of cancer biology, a 

vast collection of targeted molecular therapies have been developed. This has led to a 

paradigm shift in the local and systemic treatment of non-small cell lung cancer (NSCLC). 

While conventional chemotherapy is focused on destroying rapidly dividing tumor cells, 

molecular targeted therapy aims at transmembraneous receptors and intracellular 

molecules that are responsible for the survival and proliferation of tumor cells. Molecular 

targeted therapy has been shown to be effective in tumors with specific genomic driver 

mutations. This has opened a new era of tumor response evaluation where the 

limitations of RECIST-based approaches are increasingly being found.4 Cancer 

immunotherapy with immune-checkpoint blockade helps to activate the cancer pateints 

own  immune system to kill the cancer cells.5 Cancer immunotherapy is associated with 

unconventional response patterns that are not accurately characterized by the RECIST 

criteria.4,5 In addition, morphological changes such as tumor necrosis and cavitation 

without concurrent tumor size reduction are frequently observed in the setting of anti-

angiogenic therapy.2,4  



Radiomics is the process of extracting large amounts of advanced quantitative 

information embedded within radiological images. This approach to image analysis aids  

the field of oncology by providing a more quantitative approach for tumor response 

assessment.6 Although state-of-the-art methods have been shown to work well for 

measuring tumor volume, a great deal of variability exists, and radiologists should be 

familiar with the technical variations, benefits, and drawbacks of radiomics regarding 

measurement variability. Furthermore, although computed tomography (CT) continues to 

play an important role, additional imaging modalities such as positron emission 

tomography (PET), magnetic resonance imaging (MRI) dynamic contrast enhanced (DCE) 

perfusion images and MRI diffusion-weighted (DWI) MRI allow for  multiparametric 

assessment of tumor biology (e.g. glucose metabolism, tumor perfusion, and tumor 

hypoxia) of tumor biology.6 Thus, by combining detailed functional and metabolic 

information, these protocols provide a more comprehensive depiction of the tumor 

microenvironment and may allow for an earlier determination of tumor response. The 

purpose of the review is to focus on the technical issues regarding NSCLC tumor 

measurement variability and how radiomics is emerging for the early assessment of 

tumor response. 

 

2. Technical aspects of measurement 

1) Measuring tumor volume  

A. Segmentation 

Precise NSCLC tumor measurement between interval studies is the current basis 

for tumor response assessment. Currently the long axis diameter, a unidimensional 

measurement, remains the standard RECIST criteria for assessment of whether a tumor 

is growing or shrinking, discordant tumor response between primary reviewers and 

secondary reviewers has been reported.3 In a previous study, using RECIST for NSCLC, 



there was a significant difference between readers for unidimensional measurements of 

tumor size. The misclassification rates for progressive disease were 30% and 10% for 

interobserver and intraobserver measurements, respectively.3 The primary reason for 

this variability is related to inter-reader differences in the manual measurements of the 

primary tumor. 3,7 For instance, in the case of a single unidimensional largest diameter 

measurement for RECIST, each reviewer may measure the tumor at different image 

slices. As a solution to this problem, most radiologists now agree that measuring the 

entire tumor volume is more accurate than a single unidimensional RECIST 

measurement.8,9 Many recent publications have shown that volumetric measurements 

demonstrate better reproducibility and repeatability. According to a recent review article, 

although limit of agreement for both manual diameter measurements and semi-

automated volume measurements lies in the same range in terms of absolute 

percentages, the percentage of lung nodules in which an actual inter-reader difference 

found was with 11% far lower for semi-automated nodule volume measurements 

compared to manual diameter measurements, where inter-reader variability occurs 

commonly. 10 Second, volumetric measurement is more sensitive in detecting even small 

changes than is unidimensional measurement.11 For example, in a 10 mm spherical 

nodule, a 1 mm increase of unidimensional diameter corresponds to a 10% increase in 

cross-sectional diameter and a 33% increase in volume.12 Finally, as lung CT post-

processing computer software is becoming widespread, tumor volumetric measurements 

are gaining in popularity. This has now become the standard for oncological trials are 

beginning as their clinical response endpoint11. We will now discuss the factors affecting 

the variability of tumor volume measurement.11 

Segmentation is the process by which humans (manual segmentation) and 

machines delineate tumor boundaries from the surrounding lung. Generally, the whole 

tumor is selected as the volume of interest (VOI), which is usually feasible, but in certain 

cases may be hampered due to indistinct tumor margins.13 For example, when lung 

cancer is surrounded by a pathological abnormality such as post-obstructive pneumonia 



or radiation-induced lung injury, the tumor boundary is frequently obscured. Tissue 

reorganization and post radiation therapy, scar formation disrupts accurate tumor 

segmentation, leading to variability in tumor measurement. 

Among various methods of segmentation, automatic and semi-automatic 

methods using volumetric software have been shown to be more reproducible than 

manual segmentation.13 Although the current “gold standard” is considered to be manual 

segmentation drawn by experts, this method has major drawbacks: (1) it is a time-

consuming, (2) labor-intensive task and (3) has inter and intra-reader variability. In a 

study comparing manual and semi-automatic segmentation, the radiomics features 

derived from the latter demonstrated significantly higher reproducibility (p=0.0009; 

intra-class correlation coefficient values of 0.85 and 0.77 for semi-automatic 

segmentation and manual segmentation, respectively) and were more robust compared 

to those derived from manual contouring.14 When comparing repeatability (intra-

algorithm comparisons) and reproducibility (inter-algorithm comparisons) of 

segmentation algorithms, repeatability was significantly higher than the reproducibility 

(p<0.007; average Dice score of 0.95 and 0.81 for repeatability and reproducibility, 

respectively), recommending that the same software be used at all time points in 

longitudinal studies.15 However, in cases of part-solid adenocarcinomas, which have a 

ground-glass opacity (GGO) component, fully automatic segmentation is also be 

problematic due to the reduced contrast between the GGO component and surrounding 

lung parenchyma.16 Thus, as of today, for part-solid adenocarcinomas, semi-automatic 

segmentation with tumor margin editing based on subjective decision by an experienced 

expert remains the optimal choice for accurate volumetric assessments of NSCLC (Figure 

1).17 Likewise, advanced NSCLC lung cancer patients with large tumors having irregular 

margins, heterogeneous intra-tumoral texture and surrounding atelectasis or effusions often    

require semi-automated approach with expert radiologist manual editing of the 

segmentation.9 In the setting of molecular targeted therapy for NSCLC, tumor volumes 



obtained by a semi-automated approach have been shown to be a prognostic marker for 

improved survival, solidifying its value in this era of precision medicine.8,18  

In terms of rapid and accurate tumor segmentation, fully automatic 

segmentation methods based on deep learning may be the solution. Several 

investigators have trained convolutional neural networks and demonstrated that deep 

learning is capable of performing accurate localization and segmentation of tumors in 

multiple organs.19,20 Although most of these articles were based on MRI scans, such as 

brain, prostate, and rectum, deep learning technologies have shown potential to improve 

accuracy and robustness of tumor segmentation. 

Another point that needs to be highlighted is the usage of different vendor 

volumetric software platforms. Studies comparing multiple volumetric software packages 

found considerable variation in nodule volume. This shows that that the results of 

software packages should not be used interchangeably.21,22 Next we discuss the impact 

of technical factors at the time of CT acquisition and CT reconstruction such as radiation 

dose, iterative reconstruction, inspiration, and slice thickness on the variability in 

volumetric measurement. 

 

2) Technical issues according to particular imaging modality 

A. CT  

Chest CT is the modality of choice in routine lung cancer imaging, and iterative 

reconstruction techniques have allowed for a significant reduction of radiation dose with 

overall similar image quality (Figure 2).23 Quantitative analysis of CT data can provide 

accurate anatomical information about NSCLC and the surrounding lung. In principle, 

lung nodule volumetric measurement and comparison across interval CT scans is 

relatively easy and reproducible on the same scanner hardware. However, imagers and 

oncologists should keep in mind that there is variability in these “objective” CT metrics 



that are introduced by individual reviewer RECIST measurements, manual segmentation 

of tumor volume, and technical factors (e.g.  choice of reconstruction kernel, slice-

thickness, and inter-scanner differences).24 Any combination of these, factors may cause 

considerable measurement variability of the tumor burden, making the task more 

challenging for radiologists. We next carefully discuss the various technical factors that 

may impact tumor measurement accuracy. 

 

a. CT Reconstruction algorithms and radiation dose 

Previous studies have investigated the influence of the reconstruction kernel  

and radiation dose on lung nodule volume using chest phantoms.25,26 The vast majority 

of those studies demonstrated that various iterative reconstructions (e.g. adaptive 

statistical iterative reconstruction, iDose, and model based iterative reconstruction) 

showed no significant variability in nodule diameter or volume measurement when 

compared to filtered back projection.25,26 In fact, some studies reported that iterative 

reconstructions demonstrated better measurement accuracy at a reduced radiation dose. 

They suggested that reduced noise or increased image quality from iterative 

reconstruction helped reduce measurement errors.25,26 In a study comparing lung cancer 

screening individuals who underwent low dose CT and ultra-low dose CT with iterative 

reconstruction, there was no significant difference in nodule size and volume 

measurement between the two protocols.27 In a recent study comparing subsolid nodules 

between model-based iterative reconstruction and filtered back projection, Cohen et al. 

demonstrated that semi-automatic measurements of diameter, volume, and solid 

components of the subsolid nodules were within the range of measurement variability.28 

Thus, lung nodule volumetric measurements acquired from scans with different 

reconstruction techniques can be reliably compared. 

 

b. Slice thickness and reconstruction kernel 



Prior studies have investigated the impact of slice thickness on tumor 

measurement for cancer screening or tumor response evaluation.29,30 Significant 

differences in volume according to CT slice thickness variation were noted for smaller 

lung nodules, where thicker slices introduced greater measurement variability.29,30 The 

reason for this is related to partial volume effects. Given that a thicker CT slice contains 

larger partial volume artifacts than a thinner image, the margin of the tumor is blurred 

on thicker images. The lack of isotropic voxels for Lung CT influences NSCLC nodule 

segmentation and any extracted radiomics features.31 In cases of subcentimeter nodules, 

which have very small VOI, partial volume artifacts substantially influences the volume 

measurement.12  

Similarly, when employing radiomics, recent studies have shown that thin-slice 

images were better than thick-slice images for radiomics features.31,32 In patients with 

lung cancer, He et al. reported that a radiomics signature based on thin slices (1.25 mm) 

demonstrated better diagnostic performance than when applied to thick slices (5 mm).32 

In a chest phantom study, thinner (1.25 mm and 2.5 mm) slice thickness was found to 

be better for radiomics features (e.g. quantifying tumor size, shape, and density).31 To 

minimize measurement variability thinner slice images are recommend, slice thickness 

should be the same and slices of different thickness should not be mixed together for 

analysis (Figure 3).  

Studies comparing tumor volumes at different reconstruction kernels are scarce 

and have conflicting results. One study reported that, compared to sharp kernels, soft 

tissue reconstructions demonstrated more repeatable volumetric measurements.33 

Another study reported that, compared to high frequency bone algorithms, low 

frequency soft algorithms demonstrated larger volumes.34  

 

c. Effects of respiration and intravenous contrast 

Differences in lung inflation should not be underestimated when measuring lung 



nodules. For example, collapse of the alveoli at expiration may bring over and 

underestimation of tumor size, whereas stretching of the tumor parenchyma and blurring 

of the tumor margins could be responsible for an apparent larger tumor size at 

inspiration. Interestingly, results of significant changes in apparent tumor volume during 

the respiratory cycle have been previously reported.12 Furthermore, motion artefacts 

during respiration can significantly affect the ability to segment lung nodules, rendering 

their outline and volume assessment unreliable. In addition, the presence of a pleural 

effusion or pneumothorax may also have a large influence on the apparent tumor volume. 

For radiomics, Oliver et al. suggested that approximately 75% of the current dictionary 

of CT radiomics features are susceptible to respiration.35  

Another interesting point is the impact of intravenous contrast material on lung 

nodule volume. Due to increased attenuation of the peripheral portion of a nodule at 

post-contrast scans (more vascular and viable region of the tumor nodule), the contrast 

difference between the parenchyma and the nodule increases; thus, volume 

segmentation may include a greater area of the peripheral lung nodule.22 Results from 

two studies showed that, although the precise increase in nodule volume was small, 

radiologists should be aware of this artifact on the contrast enhanced exams.36,37  

 

B. MRI 

Owing to the ability of MRI to gather multiparametric data from NSCLC, MRI may 

play an increasing role in categorizing the therapeutic response in lung cancer.38,39 MRI is 

more reproducible in the identification of NSCLC and has superior soft tissue contrast in 

comparison to CT. MRI lung nodule volumes are smaller than CT lung nodule volumes 

due to the higher resolution of CT and the magnetic susceptibility of air surrounding.40 

Ideally, for quantitative analysis, MRI images should all have the same field of view and 

acquisition matrix, field strength, and slice thickness. Each one of these acquisition 

parameters which have a strong effect on signal-to-noise ratio.39 However, the many 

choices for acquisition in Lung MRI complicates comparison between studies of the many 



features extracted from the images.41 Standardization of Lung MRI protocols in the 

setting of gathering radiomic features from NSCLC will be very helpful. 

a. Magnetic field strengths 

As MR field strength increases, the signal-to-noise (SNR) increases. This increase 

in the SNR can be utilized to for an increase in the number of phase encoded steps for 

better spatial resolution and improved anatomical identification.40,42 The use of higher 

MR field strength improves the ability to contour tumor masses and reduces the 

measurement variability.40 However, as MR field strength increases, it is accompanied by 

Bo and B1 inhomogeneity, an increased number of image artifacts due to changes in 

tissue magnetic susceptibility and increase in chemical shift,42 B1 inhomogeneity results 

in systematic error for T1 measurement.43 In oncology practice, tumor necrosis from 

response to anticancer therapies leads to increased water diffusion. This results in higher 

signal intensity on the higher-b-value images, and the apparent diffusion coefficient 

(ADC) value of the corresponding region will typically increase as there is no restriction 

to the diffusion of water with a destruction of the closely packed cell membranes. 

Changes in ADC on DWI have been shown to be effective for monitoring therapeutic 

response in solid tumore.44 Therefore, the field strength should be considered to 

evaluate the therapeutic response with ADC value. 

There are field strength-related changes on the relaxivity of MR contrast media. 

The relaxivity of gadolinium based MR contrast media increases 5% to 10% when 

changing from 1.5T to 3T.42 The individual dependencies of relaxivities on field strength 

for the types of MR contrast media were significantly different (Table 1).45,46 Successful 

treatment leads to decreased magnitude of enhancement. For detecting change of 

enhancement of tumor, dosing for contrast media would need to be modified according 

to field strength.  

 

b. MRI Acquisition parameters for staging of lung cancer 



In patients with lung cancer, MRIs have been widely used to evaluate invasion of 

mediastinum and organs because of superior soft tissue contrast. With advancement of 

MR techniques, size threshold for nodules have increased, and MR has potential role for 

assessing indeterminate lung nodules.47 With short echo times, fast spin echo sequences 

have enabled to assess NSCLC, however, T2 blurring affected the reproducibility of the 

evaluation of NSCLC.48 Ultrashort echo time (UTE) with the exceedingly short T2 and T2* 

relaxation times of the lungs has been used in nodule detection and nodule type 

classification47,49. However, UTE sequences have the disadvantages of long scan duration 

because of inefficient k-space coverage and are sensitive to motion artifacts.50 3D UTE 

provide isotropic spatial resolution with full chest coverage and is less sensitive to motion 

artifacts.48 The use of limited field-of-view excitation, variable readout gradient, and 

radial oversampling improves image quality on 3D UTE.48 Most 3D UTE sequences have 

acquired images using radial-based trajectories.50 A recent study by Ohno et al. showed 

that UTE images with radial acquisition was useful in detection and classification of 

pulmonary nodules larger than 4 mm, and interobserver agreement for nodule 

classification was excellent (κ = 0.95).49 In addition, UTEs with spiral trajectories over a 

radial readout are reported to have the advantage of high k-space coverage speed while 

preserving image quality.50 A study reported that there was a 100% detection rate for 

nodules 5 mm or larger and 76.7% for 2-5 mm nodules on 3D UTE with stack-of-spirals 

trajectory.50   

 Short T1 inversion recovery (STIR) turbo spin-echo imaging sequence, which is 

very sensitive to change in T1 and T2, has been known as an important sequence in 

pulmonary MR imaging.51 The specificity (60.6%) and accuracy (74.5%) of STIR were 

higher than T1 (37.9% and 67.9%) and T2 (48.5% and 67.9%) in distinguishing 

malignant from benign nodules.51 Therefore, STIR sequence could be used to 

characterize lung nodule, and assess clinical stage of NSCLC. DWI could be useful in 

assessment of lung nodules, the staging, and early detection and prediction of treatment 

response of NSCLC. With high lesion-to-background ratio on high b-value images, DWI is 



useful in the detection of lung nodules. In addition, DWI allows for the characterization 

of lung nodules using a quantitative assessment of diffusion of water molecules by 

calculating the ADC.47 Thus, ADC is widely used a quantitative imaging biomarker in 

evaluating NSCLC. A study reported that ADC value increased by 25% after one cycle of 

chemotherapy due to tumor necrosis and apoptosis, and this suggest that early response 

of treatment can be predicted by means of ADC change.52 However, the DWI-based 

evaluation of lung nodule can show the difference in value depending on the quantitative 

evaluation method and b value selection.52 Due to the impact of b value selection on DWI, 

quantitative parameter values should be changed depend on b value selection. 

Susceptibility artifacts is one of the reasons for the lower ADC differentiation of lung 

nodule. As b value increased, the change of distortion and susceptibility artifacts 

increased, and results in poor SNR.53. The interobserver coefficient of variation of ADC in 

nodules less than 2 cm was relatively poor.54. Contrast-enhanced T1 sequence can be 

used to characterize lung nodules according to contrast enhancement patterns as well as 

difference in signal intensity before and after injection of contrast agent.52 Contrast 

enhancement with gadolinium contrast agent on T1-weighted gradient-recalled echo 

(GRE) or turbo GRE sequences is superior to those on spin-echo and turbo spin-echo 

(TSE) sequences.55. 

 Quantitative features than can be derived from medical images helps to evaluate 

of lung cancer.6 Entropy was known as the most reproducible MR parameter reflecting 

tumor heterogeneity.56 A recent study showed that histogram and texture parameters 

varied after contrast agent injection on DCE MRI, and the 120-150 second after contrast 

agent infection was optimal for analysis of MR texture parameter.56 The effects of 

acquisition parameter variations on pixel signal intensities are masked because of 

blurring and partial volume effects, thus reducing the effect on the radiomics features. 

Repeatability of MR quantitative parameters is better for global features such as first-

order statistical histogram and model-based fractal features than for local-regional 

texture parameters.38 



 

c. Compensating for respiratory motion 

There is an artificial increase in the volume of a solitary NSCLC during inspiration 

because of stretching of the tumor and the surrounding peritumoral lung parenchyma 12 

Moreover, breathing-related motion can decrease the signal intensity on MRI particularly 

in areas of dynamic air trapping. During inspiration, lung volume is larger; thus, tissue 

density and MR signal are lower.57 Perfusion could be evaluated qualitatively and 

quantitatively, and perfusion MRI is performed during breath hold to minimize artifacts 

from respiration motion because of the fast transit time of contrast agent. However, 

measurement of perfusion depends strongly on the level of inspiration. During inspiration, 

pulmonary vascular resistance is increased, while right atrial filling is increased due to 

the drop in intrapleural pressure. One consequence of this change in physiology is that 

perfusion at during a breath hold MR angiography exam performed at full inspiration 

(total lung capacity) is lower than perfusion performed at  full expiration (residual 

volume). It is difficult to control the degree of inspiration during breath hold.58 Therefore, 

measurements of perfusion performed with have relatively poor reproducibility.57 Some 

authors have suggested that measurement of perfusion during quiet free breathing can 

be assessed more reproducibly because free breathing offers better patient compliance.57    

d. Functional MR analysis 

Angiogenesis is one of the important factors in the evaluation of lung cancer related to 

tumor survival and growth. DCE-MRI provides information of tumor angiogenesis such as 

blood flow, vascular volume, and permeability. Once multiple images can be acquired 

during the first transit or recirculation and washout of contrast medium, quantitative 

evaluation of contrast passage kinetics can be made.59 Pulmonary blood flow (PBF), 

pulmonary blood volume (PBV) and mean transit time (MTT) can be generated by means 

of pixel-by-pixel analysis.60 In addition, an arterial input function (AIF), rate of change in 

the concentration of contrast medium in the plasma with time, is quantified in the larger 



arteries including main pulmonary.59,61 An accurate AIF is necessary for quantitative 

analysis.61 AIF allows conversion of signal time curves to concentration time curves from 

assumption of a linear relation between the signal intensity and the concentration of 

contrast agent.59  

Quantitative evaluation of DCE-MRI is based on many pharmacokinetic models, 

and the Toft’s and Kermode model (Toft’s model, Table 2 and figure 4) are the most 

frequently used in DCE –MRI analysis.61 The Toft’s model was originally constructed with 

ignoring the effect of intravascular tracer62: 

C(t) = Ktrans e-tkep * Ca(t)                                       [1] 

Where “*” is convolution, and C(t) and Ca(t) are concentration-time curves in the tissues 

in interest and in the plasma of a feeding artery, respectively. The standardized terms 

are presented in Table 2. The parameters of Ktrans and kep are defined as follows62: 

   Ktrans = EFp Kep = EFp /ve                                   [2] 

Where ve is the fractional volume of the extravascular extracellular space (EES), Fp is the 

flow of plasma in the capillary bed, and E is related to Fp and the permeability-surface 

are permeability surface area product of the endothelial wall. The assumption of 

negligible plasma volume is invalid, particularly tumor tissues. To overcome the 

limitation, the Tofts model has been formulated to allow for an intravascular contribution, 

which is referred as the extended Tofts model.62 

C(t) = vpCa(t) + Ktrans e-tkep * Ca(t)                              

[3] 

vp is the fractional volume of the plasma space.  

Various factors could affect the reliability of results in DCE-MRI. The accuracy and 

precision of pharmacokinetic parameter estimates are strongly influenced by SNR, and 

temporal resolution.61 Using a theoretical AIF, differences in injection rate and cardiac 



output are ignored, which may differ between subjects and for a single subject over 

time.63 Measurement of suboptimal AIF results in worse reproducibility than if a 

standardized AIF is used, although the AIF might be not so important for evaluating 

treatment response.64 In addition, blood supply of lung takes places through both the 

dual pulmonary and bronchial arterial systems. Primary lung cancers are supplied by 

dual blood supply and the bronchial circulation plays an important role in lung cancer, 

especially when the size of tumor is larger.65 The single input perfusion analysis 

according to the maximum slope method calculated the dominant circulation, and 

ignored the secondary circulation, therefore the result of perfusion of lung cancer are 

likely to be underestimated.66 To overcome underestimation of perfusion, the dual-input 

perfusion analysis technique is employed in lung cancer perfusion analysis, and a study 

reported that dual-input perfusion analysis is helpful for predicting the treatment effect 

of multi-arterial infusion chemotherapy.66 

 

C. PET 

Due to its quantitative ability and ability to target cellular biology the use of PET 

has continuously increased for the assessment of therapeutic response in lung cancer. 

The most commonly used variable is the standardized uptake value (SUV) of 18F-

deoxyglucose (FDG)-based quantitative PET parameters are used as radiomics features 

and therapeutic response criteria. Many biological and technical factors affect the 

measurement of SUV, which are described below.67  

a. Normalization method for SUV calculation 

SUV is calculated by activity concentration in tissue adjusted by the administered 

dose of radiopharmaceutical, background SUV of the blood pool and body size. Body size 

usually corresponds to the body weight of the patient (SUVbw). However, other indexes 

such as lean body mass (SUVlbm) or body surface area (SUVbsa) can also be used. The 

choice of how to normalize SUV affects the measurement of SUV and how this value can 



be used in comparing other studies for therapeutic response to specific agent. One 

disadvantage of SUVbw is its known overestimation in obese patients. Both SUVbw and 

SUVbsa are less sensitive to patient weight.68 

b. PET/CT scanner models and image acquisition/reconstruction protocol 

PET/CT hardware models, image acquisition and reconstruction protocols also 

affect the quantitative measurement of SUV. For the performance of PET/CT scanners, 

the most important factors are the intrinsic resolution and detector sensitivity. These key 

parameters directly affect in-plane resolution and voxel size which determines the 

amount of partial volume artifact and, SUV variability. This is magnified in the lung bases 

where nodules move with respiration further adding to volume averaging artifacts and 

image misregistration with respect to the CT used for attenuation correction. 

In the image acquisition protocol, one of most important factors is uptake time. 

Uptake time is defined as the time interval between the injection of the PET 

radiopharmaceutical and start of PET scanning. This also influences the measurement of 

SUV. In the case of 18F- FDG, the most common uptake time is 60 min. The SUV after 

FDG injection continuously increases as metabolically active cells take up the glucose 

analogue, which is subsequently trapped.69 Therefore, the use of a fixed uptake time is 

important for the consistency of SUV measurement. On the other hand total scan 

duration or scan mode (2D vs. 3D) does not have a significant effect on SUV accuracy.70 

In the reconstruction protocols, the attenuation correction method, 

reconstruction method (analytical vs. statistical/iterative methods), and smoothing filter 

are major factors affecting SUV measurement. For example, increased smoothing results 

in decreased noise and increased bias. Increased bias will result in reduced SUV.71 

c. Patient factors 

Even with the same PET/CT protocols and within the same patient repeatability is 

an important issue. SUV can vary due to the biological process such as different blood 



glucose and insulin levels, this leads to a high test-retest variability.72 It is well known 

that plasma serum blood glucose level is inversely correlated with SUVs.73 

d. Types of quantitative PET parameters 

Most quantitative PET parameters have important problems related to 

measurement variability, precision and repeatability. This includes maximum SUV, 

average SUV, peak SUV, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). 

Although maximum SUV is usually not affected by the determination of lesion region of 

interest (ROI) or VOI, in other PET parameters, ROI/VOI has significant influence. 

However, there is a persistent concern that maximum SUV represents a single pixel 

value that may not be representative of the total metabolic profile of the tumor. 

According to previous studies of NSCLC, MTV and TLG were better prognostic measures 

than maximum SUV and mean SUV,74 suggesting that volume-based parameters of PET 

may have a role in providing further prognostic information.74,75 

e. Harmonization of PET parameters 

Based on the literature, the measurement variability of maximum SUV, average 

SUV, and peak SUV expressed as a coefficient of variation is approximately 10%.76 Due 

to these measurement variabilities the harmonization of PET response criteria has been 

studied. For example, image reconstruction-related variability can be solved using a 

standardized filter such as EQ.PET.77 To apply this kind of standardized filter for image 

reconstruction, it is necessary to obtain recovery coefficients according to the lesion size 

by National Electrical Manufacturers Association (NEMA) NU-2 phantom.78 However, 

further efforts are necessary to standardize the quantitative measurement of PET 

parameters.  

f. PET Radiotracers for lung cancer 

Representative PET radiotracers for lung cancer and their clinical utilities are 

summarized in Table 3. FDG, a glucose analogue, is the most widely used PET radiotracer 



for lung cancer. It is clinically useful for the single pulmonary nodule evaluation, initial 

staging, detecting recurrence, and therapy response evaluation.79 18F-Fluorothymidine 

PET is good for evaluating therapy response to radiotherapy or chemotherapy early in 

lung cancer.80 18F-fluoromisonidazole PET shows the hypoxic portion within the tumor, 

which can be used for radiotherapy planning in lung cancer by boosting radiation dose to 

hypoxic tumor.81 18F-alfatide, reflecting tumor angiogenesis, has a potential to evaluate 

therapy response in lung cancer, although published studies were very few.82 PET tracers 

targeting tumor epidermal growth factor receptor (EGFR) such as 11C-PD153035 and 11C-

erlotinib may be applicable for therapy response evaluation to EGFR–tyrosine kinase 

inhibitors.83  

 

3) Special considerations on radiomics analysis 

A. Bin number 

Radiomics analysis computes hundreds or sometimes thousands of features from 

the underlying imaging modalities and ROIs. The features are different from semantic 

features and are agnostic computational features whose formulae are defined with 

various parameters. Thus, for a given radiomics feature, if the associated parameter 

changes, the ensuing radiomics feature might change as well. Many radiomics features, 

noted as histogram-based features, are computed from the intensity histogram using the 

underlying imaging data within the ROI. Histograms are affected by binning parameters 

of bin width and range (Figure 5). Range is application dependent, and we typically use 

4096 for CT. Many people also use a number of bins, which is range divided by bin width 

for the binning parameter. Using many bins allows fine differentiation between intensity 

values, but using too many bins leads to very narrow bin width. A narrow bin width leads 

to unreliable histogram estimates, as we may not have enough samples for some bins. 

The Freedman-Diaconis rule can be used to set bin width.84  

In addition, computing hundreds and thousands of features from a given ROI, 



can frequently lead to having too many parameters in an analytical model. This results in 

overfitting the of data and is an important limitation when training an artificial 

intelligence model with limited samples. As a general rule there should not be more 

features than patients in the training set. Many recent radiomics papers included 

hundreds or sometimes over one thousand samples.85,86 In practice, not all the features 

are included in the resultant radiomics model. There are often feature selection 

procedure (through least absolute shrinkage and selection operator or something 

equivalent), where the number of features is reduced to a few (i.e., typically tens of 

features).85,87 In this case, having 70-80 samples could still be adequate  to avoid 

overfitting. 

 

B. Texture features 

Texture features are widely recognized radiomics features.85 The most 

representative texture features are computed from gray-level co-occurrence matrix 

(GLCM) and intensity size zone matrix (ISZM). These matrices are built out of 2D 

histograms, which measure the frequency of a pair of observations compared to a 1D 

histogram, where researchers consider the frequency of one observation (e.g., intensity). 

GLCM measures the frequency of intensity pairs in the neighborhood, while ISZM 

measures the frequency of blobs with certain size and intensity. For GLCM, the 2D 

histogram is built using intensity of the given voxel as the first axis and intensity of the 

neighboring voxel as the second axis. The GLCM quantifies how intensity pairs occur in a 

neighbor and hence can reflect textural information. Similar to the 1D histogram case, 

the number of bins is a major parameter in 2D histograms. In general, the samples in a 

given bin for a 2D histogram is less than those in an equivalent 1D histogram as the 

voxels need to fill the bins spanning the 2D histogram compared to filling the 1D 

histogram. Due to this sparsity in the 2D histogram, researchers typically use 128/256 

bins for GLCM.88 Figure 6 shows typical 1D intensity histogram and 2D GLCM and ISZM 



histograms. 

The size of the ROI also affects the 1D/2D histogram measures. If the ROI is big 

enough to contain thousands of voxels, then the above approaches are suitable. If the 

ROI has a very small number of voxels (e.g. 100), then researchers need to reduce the 

number of bins significantly to make sure there are enough voxels occupying the bins.  

 

C. Shape features 

Shape features are important parts of radiomics analysis.85 The shape of ROI is 

quantified with various formulae. ROI is composed of voxels that could be isotropic or 

non-isotropic. In chest imaging there is often good in-plane resolution and variable out-

of-plane resolution (i.e., non-isotropic voxels). For non-isotropic voxels, the shape 

features are more sensitive to shape change occurring in-plane while less sensitive to 

shape change occurring out-of-plane. For isotropic voxels, the shape features are equally 

sensitive in all directions. The shape of the target ROI may change in any direction; thus, 

isotropic voxels are preferable over non-isotropic ones. If the imaging data is non-

isotropic, we can interpolate the imaging data to make it isotropic. This interpolation 

makes the data smoother but also reduces the shape variability.  In other words, the 

fine edge detail is lost. This is similar to iterative reconstruction methods in CT used to 

decrease patient dose. The dose is decreased, but fine detail is lost in these smoother 

more “plastic” appearing images. 

 

D. Filter and Wavelet 

Some researchers have applied an edge enhancement filter such as Laplacian of 

Gaussian (LoG) to the reconstructed image data and only then compute radiomics 

features from the filtered image.89 The LoG filter has a scale parameter that controls the 

scale at which enhancement occurs (Figure 7). Researchers need to specify the scale 



parameter to suit their intended application. The scale should be set based on image 

quality and the size of ROI. If researchers have poor quality image with large ROIs, large 

scale operations are recommended.  

Some studies also apply wavelet decomposition to imaging data.85 The imaging 

data are decomposed into many output data, and radiomics features are then computed 

from the decomposed data. There are many wavelet transforms to choose from, each 

with a plethora of parameters. Coiflets are widely used for their simplicity. Researchers 

can decompose one 3D scan into 8 3D decomposed scans in its simplest version. 

Different wavelet transform leads to different decomposed data and thus affects the 

radiomics features. Researchers should fully consider the various parameters of wavelets 

before applying them in their projects.  

Future considerations 

As radiomics features show promising benefits for quantification of lung cancer 

biology and response to treatment, many researchers are now paying close attention to 

the clinical usefulness of radiomics in oncologic studies. However, as the number of 

radiomics studies explodes, it should be clearly noted that the extracted radiomics 

features are subject to lack of precision and repeatability. Therefore, in order to 

homogenize evaluation criteria and reporting guidelines for radiomics, Lambin et al. 

proposed the radiomics quality score (RQS) (Table 4).86 The RQS evaluates the 

necessary steps in radiomics analysis including 16 key components of which each is 

given a number of points corresponding to the importance of the respective 

component.86 Major check points in the RQS are data selection, medical imaging, 

features extraction, exploratory analysis, and modeling. The highest possible total RQS 

for quantification of the overall methodology and analysis of radiomics practice is 36 

points. Therefore, efforts should be made to consider RQS in future studies and to 

stablish collaborative foundations to control and fully realize the potential of radiomics.   

Another feature that may help in tumor response evaluation is delta 



radiomics.86,90 In contrast to most radiomics studies, which are based on features 

extracted at a single time point (usually at the time of diagnosis), delta radiomics 

evaluates changes in radiomics features between interval studies. Delta-radiomics 

features have shown potential in predicting response or survival in patients with 

colorectal cancer liver metastasis, metastatic renal cell, and lung cancer.90-92  According 

to a study of 107 NSCLC patients, pretreatment radiomics features were not prognostic, 

while texture-strength measured at the end of treatment significantly stratified high- and 

low-risk patients, thus suggesting the potential of delta-radiomics features.90 

Nevertheless, if delta radiomics were to be employed in clinical practice, standardization 

of technical factors and high reproducibility of the features remain prerequisites. 

In conclusion, compared to the current RECIST version 1.1, tumor volumetric 

measurement and radiomics are more quantitative measures and supplement the 

limitations of RECIST in the current era of precision cancer therapy. Nevertheless, 

substantial variability can be introduced in the process of measuring tumor burden due 

to various technical factors. Furthermore, the increasing role of software post- 

processing and radiomics support the need for increased awareness of technical factors 

of image acquisition among radiologists. We await the incorporation of these advanced 

image processing metrics of Radiomics and Artificial Intelligence into the new RECIST 

criteria for tumor response assessment. 
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Figure Legends 

Figure 1. Various methods of tumor segmentation. A) Part-solid adenocarcinoma with 

internal air-bronchogram at the right upper lobe. B) Automatic segmentation of the solid 

portion. C) Automatic segmentation of the ground glass opacity (GGO) portion. D) Semi-

automatic segmentation with subjective tumor margin editing demonstrates the final 

solid portion (blue) and GGO portion (red). 

 

Figure 2. Graph demonstrates the attenuation profile along a vertical line through the 

tumor. Tumor margins are assumed by the rapid slope of pixel values. The area of 

negative pixel values within the tumor suggests the presence of air-bronchogram.  

 

Figure 3. As part-solid adenocarcinoma, 5 mm slice images (top row) show less solid 

portion compared to 1.25 mm slice images (bottom row). Thicker-slice image contains 

larger partial volume artifacts than a thinner-slice image, thus influencing the true 

details of lung adenocarcinoma.  

 

Figure 4. The extended Tofts model. Assumption of this model is the equilibrium of the 

contrast agent between the plasma and extravascular extracellular space (EES) 

 

Figure 5. Difference in grey-level co-occurrence matrix  (GLCM) according to number of 

bins. The two GLCMs are from the same patient with different numbers of bins. The 

GLCMs are displayed using the same scale. The left figure has more bins thus can have 

fewer counts per bin, while the right figure has fewer bins and thus more counts per bin. 

These differences in counts per bin led to different features values of GLCM. 

 



Figure 6. Histogram samples for radiomics. A) 1D Histogram within ROI. In most cases, 

the analysis using CT images considers a full range of HU values (i.e., 4096 bins). B) 2D 

histogram of grey-level co-occurrence matrix (GLCM). The 2D histogram of GLCM is built 

using intensity of given voxel as the first axis and intensity of the neighboring voxel as 

the second axis. C) 2D histogram of intensity size zone matrix (ISZM). The horizontal 

axis denotes intensity, and the vertical axis denotes size of a given blob. 

 

Figure 7. Original image of lung cancer is enhanced by two different methods of Laplace 

of Gaussian. 



Figure 1 Click here to download Figure Figure 1.tif 

http://www.editorialmanager.com/jti/download.aspx?id=179914&guid=3cfe71db-b04b-446f-8a16-3aaa63a0aa3a&scheme=1
http://www.editorialmanager.com/jti/download.aspx?id=179914&guid=3cfe71db-b04b-446f-8a16-3aaa63a0aa3a&scheme=1


Figure 2 Click here to download Figure Figure 2.tif 

http://www.editorialmanager.com/jti/download.aspx?id=179915&guid=2c8c00a7-6689-44d3-860e-85db754c9e79&scheme=1
http://www.editorialmanager.com/jti/download.aspx?id=179915&guid=2c8c00a7-6689-44d3-860e-85db754c9e79&scheme=1


Figure 3 Click here to download Figure Figure 3.tif 

http://www.editorialmanager.com/jti/download.aspx?id=179916&guid=89f495b6-6558-464f-bfe4-f6cfce57a360&scheme=1
http://www.editorialmanager.com/jti/download.aspx?id=179916&guid=89f495b6-6558-464f-bfe4-f6cfce57a360&scheme=1


Figure 4 Click here to download Figure Figure 4-final.tif 

http://www.editorialmanager.com/jti/download.aspx?id=179917&guid=b491db47-7a9e-4126-b0bd-aee536c5ff4f&scheme=1
http://www.editorialmanager.com/jti/download.aspx?id=179917&guid=b491db47-7a9e-4126-b0bd-aee536c5ff4f&scheme=1


Figure 5 Click here to download Figure Figure 5.tif 

http://www.editorialmanager.com/jti/download.aspx?id=179918&guid=994687df-78dd-4a52-9b73-48d514589bcc&scheme=1
http://www.editorialmanager.com/jti/download.aspx?id=179918&guid=994687df-78dd-4a52-9b73-48d514589bcc&scheme=1


Figure 6 Click here to download Figure Figure 6.tif 

http://www.editorialmanager.com/jti/download.aspx?id=179919&guid=adab71d9-3f2c-4ae5-9df4-1998fb397acc&scheme=1
http://www.editorialmanager.com/jti/download.aspx?id=179919&guid=adab71d9-3f2c-4ae5-9df4-1998fb397acc&scheme=1


Figure 7 Click here to download Figure Figure 7.tif 

http://www.editorialmanager.com/jti/download.aspx?id=179920&guid=65cb8a38-4a92-4c8e-9383-f2240c00a95a&scheme=1
http://www.editorialmanager.com/jti/download.aspx?id=179920&guid=65cb8a38-4a92-4c8e-9383-f2240c00a95a&scheme=1


Table Legends. 

Table 1. Dependence of gadolinium based contrast agent and 

Ferumoxytol relaxivity on field strength.82,83  

Short name or 

Internal Code 

Generic Name 

1.5T 3T 

R1 R2 R1 R2 

Gd-BOPTA Gadobenate 

dimeglumine 

6.0-6.6 7.8-9.6 5.2-5.8 10.0-12.0 

Gd-HP-DO3A Gadoteridol 3.9-4.3 4.2-5.8 3.5-3.9 4.8-6.6 

Gd-DO3A-butrol Gadobutrol 4.9-5.5 5.2-7.0 4.7-5.3 6.2-8.0 

Gd-DTPA Gadopentetate 

dimeglumine 

3.9-4.3 3.8-5.4  (3.5-3.9 4.3-6.1 

Gd-DOTA Gadoterate 

meglumine 

3.4-3.8 3.4-5.2 3.3-3.7 4.0-5.8 

Gd-DTPA-BMA Gadodiamide 4.0-4.6  4.2-6.2 3.8-4.2 4.7-6.5 

Code 7228* Ferumoxytol 17.3-20.7 63.1-66.7 9.3-9.7 63.4-67.0 

*Superparamagnetic iron oxide MR contrast agent 
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Table 2. Variables of Tofts equation 

Quantity Definition Unit 

C(t) Tissue concentration as a function of time mM 

Ca(t) Concentration in plasma as a function of time mM 

Ktrans 
Transfer constant from the blood plasma into 

the EES 
mL/g/min 

Kep 
Transfer constant from the EES back to the 

blood plasma 
1/min 

vp Volume fraction of the plasma space none 

ve Volume fraction of the EES none 

EES = extravascular extracellular space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Representative PET radiotracers for lung cancer 

PET radiotracers  Uptake mechanism Clinical utility 

FDG Tumor glucose 

metabolism 

Diagnosis, initial staging, detecting 

recurrence, and therapy response 

evaluation 

18F-Fluorothymidine Tumor cell proliferation Early therapy response evaluation 

18F-

fluoromisonidazole 

Tumor hypoxia Radiotherapy planning 

18F-alfatide Tumor angiogenesis Therapy response evaluation 

11C-PD153035, 11C-

erlotinib 

Tumor epidermal growth 

factor receptor (EGFR) 

Therapy response evaluation to EGFR–

tyrosine kinase inhibitors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Criteria of radiomics quality score (RQS) and 

corresponding points. 

Criteria Score 

Image protocol quality +1 or +2 

Multiple segmentation +1 

Phantom study +1 

Imaging at multiple time points +1 

Feature reduction or adjustment for multiple testing -3 or +3 

Multivariable analysis +1 

Biological correlates +1 

Cut-off analysis +1 

Discrimination statistics +1 or +2 

Calibration statistics +1 or +2 

Prospective study +7 

Validation -5 to +5 

Comparison to ‘gold standard’ +2 

Potential clinical applications +2 

Cost-effectiveness analysis +1 

Open science and data +1 to +4 

RQS total 36 

 

 

 

 

 

 

 


