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Summary

Transmissible spongiform encephalopathies (TSEs) or prion diseases of animals notably 

include scrapie in small ruminants, chronic wasting disease (CWD) in cervids, and classical 

bovine spongiform encephalopathy (C-BSE). Due to the transmission barrier phenomenon that 

naturally limits the propagation of prions from one species to another, and the lack of 

epidemiological evidence for an association with human prion diseases, the zoonotic potential 

of these diseases was for a long time considered negligible.  

However, in 1996 C-BSE was recognized as the cause of a new human prion disease, variant 

Creutzfeldt-Jakob disease (vCJD), which triggered an unprecedented public health crisis in 

Europe.

Large scale epidemio-surveillance programs for scrapie and C-BSE that were implemented in 

the EU after the BSE crisis revealed that the distribution and prevalence of prion diseases in the 

ruminant population had previously been underestimated. They also led to the recognition of 

new forms of TSEs (named atypical) in cattle and small ruminants and to the recent 

identification of CWD in Europe.

At this stage, the characterization of the strain diversity and zoonotic abilities associated with 

animal prion diseases remain largely incomplete. However, transmission experiments in non-

human primates and transgenic mice expressing human PrP clearly indicate that classical 

scrapie, and certain forms of atypical BSE (L-BSE) or CWD may have the potential to infect 

humans. The remaining uncertainties about the origins and relationships between animal prion 

diseases emphasizes the importance of the measures implemented to limit human exposure to 

these potentially zoonotic agents, and of continued surveillance for both animal and human 

prion diseases.

Keywords: prion, TSE, BSE, scrapie, CWD, zoonotic
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Introduction

Prion diseases, or transmissible spongiform encephalopathies (TSE), are fatal 

neurodegenerative diseases in which a key feature of the pathogenesis is the accumulation of a 

misfolded form (PrPSc) of a normal host glycoprotein (PrPC). The term prion (derived from 

proteinaceous infectious particle) arises from the hypothesis that infectious or contagious forms 

of these diseases are caused solely by transmission of PrPSc (108). 

Animal prion diseases include scrapie in sheep, bovine spongiform encephalopathy (C-BSE) in 

cattle, chronic wasting disease (CWD) in cervids, and transmissible mink encephalopathy 

(TME) in farmed mink, which all have an infectious aetiology. The origin of new outbreaks or 

forms of animal prion disease are often obscure and therefore unpredictable, as evidenced by 

the recent emergence of CWD in Scandinavia and recognition of a novel prion disease of camels 

in Algeria (11, 17). In humans, as well as acquired prion diseases such as iatrogenic and variant 

Creutzfeldt-Jakob disease (iCJD, vCJD), there are genetic/inherited prion diseases, but the most 

common form of disease is sporadic CJD (sCJD) for which the aetiology is not fully understood 

(28, 57). 

The first evidence for the infectious nature of prion diseases came from experiments in which 

scrapie was transmitted to healthy sheep by inoculation of brain extracts from a diseased animal 

(45, 46). Following this seminal result, experimental inoculation of scrapie and other prion 

diseases (kuru, Creutzfeldt-Jakob disease) was attempted in a variety of species, including many 

commonly used laboratory rodents, as well as non-human primates (58). It was quickly 

recognized that attempts to transmit infection from one species to another are limited by a 

transmission barrier, also named “species barrier”. Transmission barriers often result in a lack 

of propagation of prion in the new host species. In other cases, inoculation of a prion into a new 

host species produces a low or inconsistent disease incidence, and prolonged incubation periods 

or subclinical infection. After one or more sub-passages in the same host, the clinical incidence 

rate increases and incubation periods become shorter, and are ultimately very predictable for a 

defined dose and route of infection (21).

The molecular mechanisms that determine the permeability of transmission barrier to a prion 

in a particular host are still not fully understood. However, there is now a wealth of evidence 

that important factors influencing cross-species transmission include the nature of the prion 

strain, compatibility between the primary amino acid sequence of donor and host PrP, and the 
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dose/exposure route in the recipient host. Despite this progress, it still remains impossible to 

predict a priori the capacity of a prion to propagate in a new host species.  

Concerns and speculation about the possibility of cross-species transmission of animal prion 

diseases to humans have existed since the infectious nature of these diseases was demonstrated.

It has been known for several centuries that scrapie is endemic in sheep used for human food 

production (48). However, despite the likely exposure of certain individuals to infected sheep, 

no link could be established between scrapie and TSE occurrence in humans (132). This lack 

of evidence of zoonotic transmission led to the general opinion that a high transmission barrier 

protects humans from animal prion diseases. However, the emergence in 1996 of vCJD 

provided incontrovertible evidence that inter-species transmission barriers are not sufficient to 

protect the human population from prion agents circulating in domesticated animals and 

wildlife (139). The resulting public health crisis provided the impetus for development of novel 

experimental techniques and models, which have also been employed to estimate the risk to 

humans from other animal prion diseases. Using the example of BSE and vCJD, this paper will 

review and discuss the available evidence for associations between human and animal prion 

diseases. 
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Classical BSE and variant CJD 

History and epidemiology

Classical BSE (C-BSE) was first recognized in 1984-85 as novel prion disease affecting cattle 

in the UK (136). The origin of C-BSE has still not been clearly established, but the number of 

cases was amplified by the recycling of infected carcasses into cattle feed in the form of meat 

and bone meal (MBM) (138). 

BSE was disseminated to at least 28 countries, mostly in Europe but also in the USA, Canada, 

and Japan, through the export of infected live animals and/or contaminated MBM and livestock 

feed. However, the numbers of cattle affected were much lower than in the UK, with a total of 

6,193 recorded cases in EU countries between 1989 and 2016.

In the UK, the C-BSE epidemic peaked in 1992, with more than 37 000 confirmed cases in that 

year (Figure 1). Legislation prohibiting the inclusion of MBM and other animal proteins in 

livestock feed in the UK (1988, 1996) and EU (2001) was instrumental in controlling 

transmission of BSE and exposure of other farmed animals. The incidence of C-BSE has now 

declined to very low levels, with no cases or a single-digit number of cases reported each year 

since 2011 (Table 1, Figure 1). It has been estimated that globally over 1 million BSE-infected 

cattle entered the human food chain, resulting in potential dietary exposure to C-BSE for 

millions of consumers [6]. Even if the number of C-BSE cases that occurred into the UK 

exceeded by several orders of magnitude those observed in other affected countries, 

international trade of food commodities could have resulted in exposure of people even in 

regions that did not experience autochthonous C-BSE cases.

The occurrence of a large epidemic of a novel prion disease in cattle rapidly raised concerns 

about the risk C-BSE might represent for humans. The first protective measures for the food 

chain were implemented in November 1989, with a ban on the use of certain specified bovine 

offal in human food (Figure 2). Concomitantly, the UK Department of Health set up the 

National CJD Surveillance Unit in 1990, whose mission was to monitor the incidence and study 

the epidemiology of human prion diseases.
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The detection of a novel prion disease (feline spongiform encephalopathy) in cats in the UK,  

and the experimental transmission of the C-BSE agent to non-human primates (marmoset) 

further reinforced concerns regarding the ability of C-BSE to cross interspecies transmission 

barriers (1, 12). In 1995, two cases of CJD were reported in teenagers in the UK, an unusually 

early onset of disease (14, 27). These patients also displayed atypical clinical symptoms and 

distinctly different neuropathological changes compared to known human prion diseases, and 

the emergence of a new form of prion disease, named variant CJD (vCJD), naturally pointed to 

C-BSE as the probable causative agent (139).

Definitive evidence for the link between BSE and vCJD was provided by transmission studies 

in inbred mouse lines, in which mice injected with vCJD exhibited phenotypes (incubation 

periods and lesion profile) indistinguishable from those obtained following transmission of BSE 

or feline spongiform encephalopathy (FSE), indicating that all three diseases were caused by 

the same prion agent (32). Similarly, C-BSE isolates from individual affected cattle in different 

farms and locations displayed identical phenotypes following strain typing in mice, which 

confirmed that C-BSE was caused by a single prion strain (33, 38).

To date, out of 231 vCJD cases identified worldwide, 178 cases have occurred in UK residents, 

and a number of other cases have occurred in individuals with a history of residence in the UK 

during the high risk period 1980-1996 (http://www.cjd.ed.ac.uk/surveillance/data-and-reports). 

All definite clinical cases of vCJD that have undergone PRNP genetic analysis are homozygous 

for methionine at codon 129 (129MM), apart from the latest UK case, who was heterozygous 

(129MV) (95). 

After a peak in 2001-2002, the number of vCJD cases recorded in the UK has declined. While 

the limited number of cases is consistent with inefficient transmission of the C-BSE agent to 

humans, many uncertainties remain concerning the  number of individuals incubating vCJD in 

the exposed population (49). To address this issue, several studies have been performed to 

estimate the prevalence of vCJD infection in the UK population. Since abnormal PrP deposits 

(PrPd) can be detected in the lymphoid organs of vCJD patients during preclinical and clinical 

phases of the disease (64, 106), prevalence studies were based on anonymized surveys of more 

than 45,000 appendix and tonsil samples removed and archived following routine surgery. 

Targeted patients belonged to age cohorts most likely to have experienced dietary exposure to 

C-BSE, and the tissues were tested for the presence of PrPd by immunohistochemistry (IHC). 

Page 6 of 34

Brain Pathology Editorial Office, Blackwell Publishing, Oxford, UK

Brain Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.cjd.ed.ac.uk/surveillance/data-and-reports


For Peer Review Only

In two separate surveys, a total of 19 appendix samples were positive for abnormal PrP 

accumulation (59, 67). Strikingly, positive samples were found to have codon 129 methionine-

methionine, methionine-valine and valine-valine PRNP genotypes, suggesting that the BSE 

agent may infect individuals of all codon 129 genotypes (59). These findings led to an estimated 

global prevalence of abnormal PrP of up to 1 in 2000 of the UK population (95% confidence 

interval 1/3500–1/1250) (59). Whether this represents the true prevalence of vCJD infection is 

still a matter of debate, particularly since the prevalence estimates are not consistent with the 

small observed numbers of clinical vCJD cases. One interpretation is that there are subclinically 

infected individuals in the population who may never develop vCJD themselves, but who may 

be a source of iatrogenic transmission of infection e.g. by blood or organ donation. In light of 

these unresolved concerns, it is likely that vCJD will remain a public health issue for the 

foreseeable future.  

Pathogenesis of C-BSE 

Experimental oral challenges of cattle with C-BSE have been used to study disease 

pathogenesis in the natural host. In cattle receiving a range of oral doses, transmission was 

observed in all dose groups, including one of fifteen animals given the lowest dose of 1mg of 

BSE-infected cattle brain, demonstrating the sensitivity of cattle to C-BSE (76). In experiments 

where groups of cattle were culled at different intervals following oral infection with BSE, 

infectivity was first detected in the distal ileal Peyer’s patch (PP), and later in the central nervous 

system and specific sensory ganglia a few months before the onset of clinical disease (51, 68, 

135). The distribution of infectivity and PrPSc in the CNS in preclinical animals suggests that 

neuroinvasion from the gastrointestinal tract occurs via the autonomic innervation (68, 123). 

Studies to date have failed to find evidence of infectivity in lymphoid tissues other than the ileal 

PP and tonsils of preclinical or clinically affected cattle, or in blood and milk (51, 135, 137). 

At late stages of the disease, there is growing evidence for centrifugal spread of infection along 

neuronal pathways to tissues such as the tongue and nasal mucosa (13). 

Information from these experiments on the distribution of the C-BSE agent in the tissues of 

infected cattle underpinned the development of a list of tissues defined as Specified Risk 

Material (SRM). Legislation to enforce the systematic retrieval of SRM from all slaughtered 

cattle was introduced in the UK (1996) and EU (2001), preventing entry into the human food 
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chain of significant amounts of C-BSE infectivity (Figure 2). This measure was decisive in 

limiting the occurrence of human dietary exposure to the C-BSE agent (114). 

Experimental modelling of the human transmission barrier to BSE

Careful surveillance and epidemiological studies were instrumental in the identification of 

zoonotic transmission of classical BSE. However, the success of this approach depended on the 

occurrence of a large BSE epidemic in the UK cattle population followed by the emergence of 

a new human prion disease phenotype (variant CJD) in the same country (139). Given the low 

total numbers of vCJD cases, if transmission of BSE had resulted in a disease similar or 

indistinguishable from sporadic CJD, it is unlikely that surveillance for human prion diseases 

in the UK alone would have been able identify its zoonotic properties. Moreover, epidemiology 

necessarily relies upon the retrospective analysis of events, and therefore obviously offers no 

possibility of preventing human transmission before it occurs.  

In that context, a number of in vivo and in vitro experimental models have been developed, 

using C-BSE/vCJD as a benchmark, with the aim of assessing the relative ability of animal 

prion agents to cross the human transmission barrier (21, 37, 112, 113). Among these models, 

transmission in non-human primates and transgenic mice expressing human PrP (Table 2) are 

currently considered as the most informative and reliable approaches (114).

BSE transmits efficiently to cynomolgous macaques by intracerebral and intravenous routes 

(including blood transfusion), producing similar clinical and neuropathological features to those 

observed in human patients affected by vCJD (65, 85, 87). The relative efficacy of C-BSE 

transmission observed in macaques exposed by the oral route to low infectious doses of C-BSE 

also fits well with the limited number of vCJD cases that occurred in dietary exposed human 

populations (84). BSE has also been successfully transmitted to other non-human primates 

including marmosets, squirrel monkeys and lemurs (Table 2) (12, 26). The degree to which 

different non-human primate species are evolutionarily related to humans may influence the 

interpretation of zoonotic risk following experimental transmission of animal prions. Since Old 

World monkeys (including macaques) are more closely related to humans than New World 

monkeys (e.g. squirrel monkeys) and lemurs, cynomolgus macaques are regarded as a better 

model to assess the permeability of the human transmission barrier to C-BSE and other animal 

prion diseases.
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The major drawback of using non-human primates in prion research are ethical issues and the 

long incubation periods following infection, which make such experiments very expensive and 

severely limit their use in characterizing the zoonotic potential of animal prions.

Following the demonstration that the transmission barrier preventing infection of mice with 

hamster-adapted scrapie could be removed by expression of hamster PrPC in transgenic mice 

(117), several transgenic mouse lines expressing human PrPC (TgHu) have been developed. 

These include lines that over-express PrP (30, 118, 126, 134) and gene-targeted lines that 

express PrP at physiological levels under the control of mouse PRNP regulatory elements (24). 

These mouse models express different variants of the human PRNP gene including the 

methionine/valine (M/V) di-morphism at codon 129, which is a major determinant of 

susceptibility to human prion disease (92, 143). Most TgHu mouse lines have been shown to 

propagate human prion diseases, e.g. sCJD, without an apparent species barrier (10, 24, 66, 

104).

Transmission of C-BSE to transgenic mice over-expressing human 129MM, 129VV or 129 MV 

PrP resulted in low attack rates and long incubation times in 129MM and apparent absence of 

transmission of the agent in 129MV and VV PrP expressing mice (Table 2) (10, 66, 104). 

Iterative passages of C-BSE into 129 MM mice led to an increase in the attack rate and a slight 

reduction of the incubation period, but did not result in disease transmission to 129MV- and 

129VV-expressing mice (36, 54, 69). In contrast, vCJD isolates transmitted to all three 

humanized lines, producing a gradation in transmission efficiency from MM (most efficient) to 

VV (less efficient) (54). In gene-targeted 129MM, 129MV and 129VV mouse lines, inoculation 

with BSE failed to transmit the infection, while vCJD transmitted to all three lines with a similar 

gradation in efficiency to that seen in over-expressing transgenic models  (24).

Taken together, the results of experimental transmission of C-BSE to TgHu mice converge to 

indicate a high transmission barrier to C-BSE in humans, and a higher susceptibility of 129MM 

individuals to infection, which is consistent with the vCJD epidemiological features observed 

in exposed human populations. The relative efficiency of transmission of C-BSE, vCJD and 

sCJD to TgHu mice strongly supports the view that these models provide good predictive value 

of the capacity of prion agents to cross the human transmission barrier. However, these models 

also have their limitations, including the short lifespan (2-3 years) of mice in comparison to the 
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long incubation periods (several decades) reported in patients accidentally exposed to human 

prions (like sCJD contaminated growth hormones) (28). 

Scrapie in small ruminants

Classical scrapie is the archetype of prion disease. It was reported for the first time in sheep in 

the United Kingdom in 1732 and few years later (1759) in Germany. Over the following 

centuries, scrapie spread to many countries in the world through the export of living animals, 

and is still endemic in most of these regions (47, 48). 

In 1998, a new form of sheep prion disease (named Nor98) was identified in Norway. The 

epidemiological features and biochemical properties of PrPSc associated with Nor98 cases 

clearly differed from scrapie cases that had been previously reported (termed “classical” 

scrapie), and the disease was therefore considered to be an “atypical” form of scrapie (16). 

Classical scrapie can be caused by several prion agent strains. Historically, identification of 

scrapie strains has relied on characteristic biological phenotypes (incubation period and lesion 

profile) observed following transmission to a panel of inbred mouse lines. However, the 

propagation of natural prion isolates into inbred mice lines requires passage through a 

transmission barrier, which can result in the non-propagation of certain isolates and/or a radical 

evolution (mutation) of the prion agent they contain (31, 55). Therefore, transmission to 

conventional mouse models is unlikely to provide a comprehensive and reliable picture of the 

diversity of prion agents in small ruminants. Transgenic mice expressing ovine or caprine Prnp 

genes display a lower transmission barrier to scrapie agents (61, 117). Serial transmission of 

about 80 scrapie isolates from Europe in such mouse lines has so far permitted identification of 

at least four phenotypically distinct classes of classical scrapie agents (18, 21, 127-129). In 

contrast to classical scrapie, no strain variability has been observed among isolates of atypical 

scrapie (9, 60, 86).

For the most part, identification of scrapie cases has relied on clinical suspicion (passive 

surveillance). Starting in 2001, active surveillance for prion diseases of small ruminants was 

implemented in EU countries, and more recently in a number of other countries e.g. USA, 

Canada. Active surveillance relies on systematic testing of a proportion of the slaughtered or 

found-dead animals for the detection PrPSc in the posterior brainstem. These surveillance 

programs resulted in the identification of atypical scrapie cases in most EU member states, USA 
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and Canada, and indeed, atypical scrapie has been incidentally detected in many countries 

across the world, including those considered free of classical scrapie i.e. Australia and New 

Zealand (16). Data from the EU active surveillance program clearly demonstrated that earlier 

evaluations based on passive surveillance had significantly underestimated the prevalence of 

prion diseases in small ruminants and their geographical distribution (53). 

A review of the epidemiology of classical and atypical scrapie in EU member states, using 

active surveillance data collected between 2002 and 2012, was published by the European Food 

Standards Agency (EFSA) in 2014 (63). Over this period, totals of 4.7 million sheep and 1.4 

million goats were tested, and classical and/or atypical scrapie cases were identified in 25 EU 

countries. The annual crude prevalence of classical scrapie in the EU was equivalent to about 9 

cases per 10,000 tested animals, but prevalence estimates differed considerably among different 

individual member states. For example, in Cyprus the annual crude prevalence of classical 

scrapie was between 10 and 800 times higher than that observed in other affected countries. For 

affected flocks, the within-flock prevalence was on average 20 times higher than the apparent 

prevalence in the general population identified by active surveillance.  Over the same period 

atypical scrapie was detected with an overall prevalence of about 5.8 cases per 10,000 tested 

animals. In contrast with classical scrapie, atypical scrapie displayed a similar prevalence over 

time and in different countries (53).

In both sheep and goats, susceptibility to classical scrapie is strongly influenced by 

polymorphisms of the gene (Prnp) encoding for PrP protein. In sheep, the A136R154R171 

(denoting amino acids encoded at Prnp codons 136, 154 and 171) haplotype is associated with 

a very high resistance to infection in homozygous individuals. Heterozygous ARR individuals 

also have a reduced susceptibility to infection (80, 91). In goats, the K222, S146 and D146 

polymorphisms of the Prnp gene are also associated with a strong resistance to infection by 

classical scrapie (43, 105). The EU, the USA and several other countries have implemented 

breeding policies in sheep, with the aim of control/eradication of classical scrapie by increasing 

the frequency of the ARR allele in affected flocks, and in the general sheep population. 

Similarly, several countries are now considering the development of Prnp genotype selection 

programmes for the control and eradication of scrapie in goats.

The association between genetic Prnp variations and susceptibility to atypical scrapie is totally 

different from that observed in classical scrapie. Susceptibility to atypical scrapie is linked to 
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polymorphisms at Prnp codon 141 and 154, and strikingly, ARR allele carriers (both 

homozygous and heterozygous) that are resistant to classical scrapie can develop the disease (9, 

97, 98). This difference means that genetic selection for the ARR allele, which has been the 

basis of successful control programmes for classical scrapie, will not be effective in controlling 

atypical scrapie at the flock/herd or population level.

According to the EFSA expert group, the eradication and control measures that were 

implemented at the EU level from 2001 (including selective breeding for scrapie resistance) 

were very effective in controlling classical scrapie outbreaks at flock/herd level. However, over 

the studied period, a statistically significant reduction in classical scrapie prevalence/incidence 

was demonstrated in only six EU countries. These results demonstrate the difficulties in 

monitoring the epidemiology of animal prion diseases and the effect of control measures at a 

population level.  

Classical scrapie is a prion disease that, under natural conditions, is acquired from the 

environment and/or other infected animals by the oral route (48). The within-host dissemination 

of the classical scrapie agent in naturally exposed small ruminants has been carefully 

characterized by the study of animals born and raised in endemically infected flocks.

These studies have established that infection usually occurs during the first weeks of life. The 

scrapie agent enters the host animal via gut-associated lymphoid tissues (GALT) e.g. Peyer’s 

patches,  before rapid spread to draining mesenteric lymph nodes and later to all secondary 

lymphoid organs (3, 133). The amount of infectivity and PrPSc in lymphoid tissues increases 

with age before reaching a plateau level. Prnp genotype appears to influence the extent of 

scrapie replication in lymphoid tissues, e.g. sheep heterozygous for the ARR allele have much 

less detectable PrPSC in the lymphoreticular system (70).  The scrapie agent disseminates to the 

CNS (brain and spinal cord) about halfway through the incubation period, apparently via axonal 

transport through the enteric (autonomic) nervous system (3, 133). In later stages, the agent 

appears to redistribute (centrifugally) from the central to the peripheral nervous system and 

skeletal muscle (5). In blood, the infectious agent can be detected as early as three months of 

age and persists throughout the incubation period (83). In clinically normal ewes infected with 

scrapie, the placenta accumulates large amounts of infectivity, and plays a major role in the 

dissemination of the prion into the environment and to other individuals (81, 111, 131). 

Similarly colostrum and milk were shown to contain infectivity, and their capacity to transmit 

disease to suckling lambs was demonstrated (78, 82).  
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The pathogenesis of atypical scrapie has not been characterized to the same extent. Initial 

investigations failed to identify PrPSc accumulation in peripheral (non-neuronal) tissues 

collected from field cases or experimental atypical scrapie cases (4, 16). The apparent 

restriction of the agent to the CNS was interpreted to support the hypothesis that atypical scrapie 

could be a spontaneous disorder of PrP folding and metabolism, occurring in aged animals 

without external cause (16). In addition, there was no statistical difference in the prevalence of 

atypical scrapie between the general population and flocks where a positive case had been 

identified, providing further support for the idea that atypical scrapie may not be a contagious 

disease (52). However, low levels of infectivity have been detected in skeletal muscle, 

peripheral nerves and lymphoid tissues of animals infected naturally or experimentally with 

atypical scrapie (4). In the same study, brain samples containing very high levels of infectivity 

were negative for PrPSc using the most sensitive current diagnostic tests. Moreover, atypical 

scrapie can be experimentally transmitted via the oral route in small ruminants, resulting in a 

similar clinic-pathological phenotype to that observed in natural cases (122). These findings 

mean that the origin and aetiology of atypical scrapie (spontaneous disorder versus acquired 

disease) remains an open question.

Zoonotic potential of classical and atypical scrapie 

Several epidemiological studies, generally based on case-control approaches, have failed to 

identify exposure to small ruminants or small ruminant products as a risk factor for developing 

CJD (29, 132). Countries considered to be scrapie-free, such as Australia and New Zealand, 

display a similar sCJD prevalence to countries affected with scrapie. In addition, there is no 

apparent difference in the range of clinical and pathological manifestations of human TSE cases 

between scrapie affected countries and those designated scrapie free. Together, these different 

lines of evidence have led to the general conclusion that small ruminant prion diseases were of 

negligible risk to humans.  

Recently cases of atypical scrapie were confirmed in both Australia and New Zealand, casting 

serious doubt on the validity of one of the most popular arguments used to reject the zoonotic 

potential of small ruminant prion diseases (42, 73). More generally, active surveillance 

programs for TSE in small ruminants revealed how inaccurate was knowledge on the 

prevalence and geographical distribution of TSEs in small ruminants (53), and highlighted the 
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limited value of past epidemiological studies aiming at assessing the zoonotic potential of 

animal TSEs.

Data collected through active surveillance programmes offer an opportunity to reassess the 

zoonotic potential of small ruminants TSEs through informed and modern epidemiological 

investigations. However, the incubation period for prion disease in humans after exposure to 

prions via peripheral routes, such as in cases of iatrogenic CJD and kuru, can exceed several 

decades (28, 39). In this context, it will be a challenge to combine epidemiological data 

collected contemporaneously in animal and human populations to determine the existence of a 

causative link between prion disease occurrences in these different hosts.

Seminal early experiments failed to demonstrate the transmissibility of classical scrapie in non-

human primates (58). However, subsequently one sheep classical scrapie isolate was 

transmitted to two intra-cerebrally challenged marmosets (Table 2). The incubation periods 

observed with this scrapie isolate were slightly shorter than with a cattle BSE isolate, suggesting 

that that transmission barrier for both isolates might not be different (12). More recently, 

successful transmission of a classical scrapie isolate to a cynomolgus macaque has been 

described. The incubation period in this animal was  prolonged (> 10 years following 

intracerebral challenge) and the neuropathology observed was unique in comparison to other 

animal prion diseases (C-BSE, L-BSE) transmitted in this model (41). To date there are no 

available results concerning the experimental transmission of atypical scrapie to non-human 

primates (Table 2).

The transmission of both classical and atypical scrapie isolates to TgHu mice has been tested 

in several studies (Table 2). In gene-targeted transgenic mouse lines expressing physiological 

levels of human PrP and challenged intracerebrally with a number of natural sheep and goat 

scrapie isolates, there was no evidence of infection or clinical disease following primary 

passage (107, 141, 142). However, serial passages in the same transgenic mouse lines, which 

could allow the identification of subclinical infection, were not performed in these studies.  The 

same mouse lines were also shown to be resistant to cattle BSE (25), and therefore this model 

does not allow assessment of whether the zoonotic potential of classical or atypical scrapie is 

lower or higher than that of BSE.

In a more recent study, a panel of classical scrapie isolates was tested in transgenic mouse lines 

that over-express human PrP (36). The mouse lines represented 129MM (tg340), 129VV 
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(tg361) and 129MV (F1 cross of tg340 and tg361) PRNP genotypes. Following intracerebral 

inoculation of the three mouse lines with a panel of six natural sheep scrapie isolates (collected 

in EU countries between 1994 and 2002), clinical disease was not identified in any inoculated 

mice, but PrPSc accumulation was observed in the brain of two out of six 129MV mice infected 

with a single scrapie isolate. Serial passage of the isolates in the same mouse lines led after 

second passage to positive transmission, resulting in clinical signs in mice inoculated with three 

of six isolates. Interestingly, the sheep scrapie prions that propagated in humanized transgenic 

mouse models displayed a transmission efficiency (attack rate on first and second passage) that 

was comparable to that of cattle BSE. After third passage, the propagated prions displayed a 

phenotype (incubation periods and PrPSc distribution in the brain) that was identical to those 

causing sporadic CJD (sCJD) in humans. This last finding raised important questions about the 

possible link between TSE in small ruminants and occurrence of human TSE cases. These 

transmission experiments unambiguously showed that sheep scrapie prions propagate in mice 

that express variants of human PrP. While the efficiency of transmission at primary passage 

was low, subsequent passages resulted in a highly virulent prion disease in human PrP 

expressing mice. 

Atypical BSE

The implementation by the EU of an active surveillance system in ruminant livestock in 2001, 

involving testing of healthy slaughtered cattle and fallen stock (Figure 2), led to the discovery 

of “atypical” cases of BSE in cattle, which were often not associated with overt neurological 

abnormalities/disease. Two atypical phenotypes were observed, categorized on the basis of low 

and high apparent molecular masses of unglycosylated protease-resistant PrP on Western blots, 

and were termed as bovine amyloidotic spongiform encephalopathy (BASE) or L-BSE and H-

BSE, respectively (22, 35). 

Transmission of atypical BSE isolates in various mouse models clearly demonstrated that H- 

and L-type BSE cases are caused by specific prion strains that differ from the classical 

BSE/vCJD agent (18, 19, 34, 75). The transmission of H-BSE field isolates to transgenic mice 

expressing bovine PrP resulted in the propagation of an agent with phenotypic characteristics 

of classical BSE in some animals (130). This suggested that a low level of C-BSE agent could 

be present in a proportion of the H-BSE isolates and might represent a source for C-BSE re-

emergence in cattle
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The L-BSE and H-BSE cases reported so far were mainly detected in asymptomatic cattle 8 

years of age or older, in contrast to C-BSE, where the majority of cases were 4-6 years old. 

Since 2001, a total of 60 cases of L-BSE and 44 cases of H-BSE were reported in the whole EU 

(Table 1). Epidemiological studies in the French cattle population indicated that the apparent 

prevalence of atypical BSE cases is very low (1.9 cases H-BSE and 1.7 cases L-BSE per million 

tested cattle over 8 years old) (23). Outside the EU, rare atypical BSE cases have been reported 

in Japan, the USA, Canada, Switzerland and Brazil (50, 88, 115). 

The origin of H-BSE and L-BSE cases is unknown. It has been argued that the low prevalence 

and the advanced age of positive animals provide evidence for a spontaneous origin of atypical 

BSE, but an infectious etiology cannot be definitively ruled out.    

Limited tissues are available from L-BSE and H-BSE cases identified through surveillance, 

therefore experimental transmission studies in cattle are the main source of information 

concerning the pathogenesis of atypical BSE agents. Following IC challenge, abnormal prion 

protein accumulation was identified in the central nervous system (brain, spinal cord and 

retina), the peripheral nervous system (autonomic and motor) and at lower levels in skeletal 

muscle (muscle spindles) of affected animals. No consistent prion accumulation was detected 

in the lymphoid organs (13, 77, 100, 124). Following oral challenge of cattle with a range of 

doses of L-BSE infected cattle brain homogenate, only one animal that received the highest 

dose (50g) developed neurological clinical signs. This animal showed a similar tissue 

distribution of PrPSc to that observed in IC challenged animals (central & peripheral nervous 

system), although there were subtle differences in the distribution of PrPSc within the brain 

regions (101). 

Other experiments in which cattle were orally challenged with L-BSE and H-BSE are still 

ongoing, and the final analysis of the pathogenesis of atypical BSE in comparison to C-BSE 

awaits their results. However, the examination of a limited panel of tissues collected from 

natural L-BSE cases in Italy confirmed the apparent restriction of the prion to the central and 

peripheral nervous system (124). 

Due to the low apparent prevalence of atypical BSE and the design of cattle TSE surveillance 

programs, it is unlikely that atypical BSE cases are efficiently detected. Therefore, it should be 
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assumed that small numbers of atypical BSE incubating cattle are entering the human food 

chain. The many uncertainties related to the distribution of atypical BSE cases in the cattle 

population mean that epidemiological approaches are unlikely to be informative in assessing 

the zoonotic abilities of these prions.

Intracerebral injection of L-BSE isolates from European and Japanese cattle into cynomolgus 

macaques resulted in disease transmission with shorter survival times than in C-BSE infected 

macaques (23–25 months for L-BSE versus 38–40 months C-BSE) (Table 2) (40, 103). In 

contrast, no positive transmission was reported in macaques that were inoculated with H type 

BSE (41). Inoculation of L-BSE, H-BSE and C-BSE isolates into transgenic mice over-

expressing human PrP demonstrated that L-BSE transmitted more efficiently than C-BSE on 

primary transmission, with 100% attack rates and no shortening of incubation periods on 

subsequent sub-passage (Table 2). In contrast, H-BSE isolates failed to transmit in the same 

mouse model (20). Another study using a different transgenic mouse model expressing human 

129M PrP also showed efficient primary transmission of L-BSE (75). Biological strain typing 

of L-BSE and a panel of sCJD subtypes in human PrP transgenic mice failed to find any 

evidence that L-BSE causes a recognised form of sCJD (69).

Collectively, these results support the view that H-BSE agent has a low zoonotic potential. In 

contrast, L-BSE displays an equal or greater virulence than C-BSE in primate and TgHu mouse 

models, and may therefore pose a higher risk of zoonotic infection. 

Chronic Wasting Disease

Chronic wasting disease (CWD) was first recognized as a disease of captive mule deer in 

Colorado (USA) during the 1960s, and confirmed to be a prion disease in 1980 (140). Since 

then the CWD affected area of North America has considerably expanded, with the disease now 

having been identified in 20 US states and two Canadian provinces (Saskatchewan and Alberta). 

CWD has become endemic in wild and captive cervid populations in most of these regions. It 

affects the majority of North American endemic cervid species, with the notable exception of 

free-ranging caribou in Canada. The prevalence of CWD in free-ranging cervids varies across 

North America, but can be as high as 30% in some areas, and the spread of CWD in North 

America is likely to be irreversible (140). Outside North America, CWD infection has been 

confirmed in captive cervids in South Korea as a result of importation of sub-clinically infected 
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animals from Canada (72). Despite the implementation of vigorous control and eradication 

measures CWD is still present in South Korea. 

In April 2016, CWD was found in a free-ranging reindeer (Rangifer tarandus) population in 

the Nordfjella region of Norway, and then later (June 2016) in two European moose (Alces 

alces), in a different area of the country (17). This led to intensive active surveillance across 

Norway, and the implementation of a culling programme in the affected wild reindeer 

population. At the time of writing, 17 additional cases of CWD have been identified in reindeer 

from Nordfjella. One additional moose and one red deer from Norway also tested positive, and 

a further CWD-infected moose was identified in Finland.  At this stage it is still unclear whether 

the discovery of CWD in Europe has any relationship with the epidemic observed in North 

America. Epidemiological studies based on large scale testing of free-ranging cervids were 

recently implemented by several northern European countries, and should be helpful in 

documenting the geographical distribution and prevalence of CWD in European cervid 

populations.

There is clear evidence demonstrating that several prion strains are responsible for CWD in 

North American cervids. Inoculation of a panel of CWD isolates from various species and 

geographic locations in North America into transgenic mice over-expressing cervid PrP 

indicated the presence of at least two CWD prion strains (referred to as CWD1 and CWD2) that 

circulate either independently or as a strain mixture (7). Bioassays in heterologous PrP 

transgenic mouse models or in conventional rodent models are consistent with these results (44, 

125). However, it is unlikely that the strain typing work carried out so far has provided a 

definitive picture of the diversity of CWD strains that are circulating in North American cervid 

populations. Transmission experiments for strain typing of Norwegian CWD isolates are still 

ongoing, and thus definitive results are not yet available.  Preliminary data presented by several 

teams in the 2018 International Prion Congress suggests that the phenotypic characteristics of 

the Norwegian isolates are different from those observed so far in North American isolates. 

In North America, CWD pathogenesis has been investigated using both naturally exposed and 

experimentally challenged animals. Under natural exposure, the infection apparently occurs by 

the oral route following contact with an infected individual or contaminated environment (96). 

The pathogenesis and PrPSc distribution in CWD are very similar to that reported in classical 

scrapie in small ruminants.  Initial entry of the agent occurs through tonsils and GALT with 
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rapid involvement of the lymphoreticular system (LRS) and the enteric nervous system, 

followed by neuroinvasion of the CNS via autonomic nervous system pathways (56, 110, 119, 

121). Involvement of the LRS seems to vary between deer and wapiti, with less abnormal PrP 

deposition in the lymphoid tissues of  wapiti compared with deer (110). PrPSc has been detected 

in a large number tissues of affected deer, including those commonly consumed as venison 

(heart, skeletal muscles, tongue, liver, kidneys) or used as ‘natural medicine’ (antler velvet)(6, 

8, 94, 120). 

In both captive and wild cervids, CWD has been demonstrated to be highly contagious (93). 

During the preclinical phase of infection, the CWD agent has been demonstrated in placenta, 

saliva, faeces and urine, which are all likely to contribute both to inter-individual transmission 

and contamination of the environment (62, 89).

So far, 16 amino acid polymorphisms have been described in the PrP sequence of different 

cervid species, some of which are associated with lower rates of CWD infection and slower 

progression of the disease in natural hosts (116). For instance, in wapiti (Cervus canadensis 

nelsoni) the L132 allele (versus M132) is associated with partial protection against CWD 

infection (99),  while in mule deer (Odocoileus hemionus) the S/F dimorphism at codon 225 

influences susceptibility to the disease, the 225F allele being partially protective against 

infection under natural exposure conditions (71). As in small ruminants affected with classical 

scrapie, the selection of PrP CWD resistant alleles could be an effective means to control the 

disease and prevent cervid depopulation in endemic areas, at least in captive herds. However, 

none of the polymorphisms identified so far seems to provide a sufficient level of disease 

protection to make genetic selection a feasible proposition for control of CWD.   

No new or unusual form of human TSE has been identified so far in countries where CWD 

epidemics have developed (2). Comparison of the CJD prevalence rates between North America 

and other countries (Europe) does not suggest that CWD is responsible for a detectable increase 

in human prion disease prevalence.  A retrospective study carried out using State death registry 

data collected between 1979 and 2001 in Colorado failed to identify any statistical difference 

in CJD prevalence between CWD endemic versus CWD non-endemic counties (90). In the US, 

retrospective investigations identified several sCJD cases who had a history of potential or 

demonstrated exposure to CWD prions through venison consumption or hunting cervids in 

affected areas (15), but longitudinal studies related to known dietary exposure to CWD failed 

Page 19 of 34

Brain Pathology Editorial Office, Blackwell Publishing, Oxford, UK

Brain Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

to demonstrate an increased risk of developing a prion disease in these individuals (102). 

Nevertheless, considering the limited duration of the observation period in these studies (in 

comparison with the potentially very long incubation periods for TSE in man), the significance 

of these observations remain uncertain. Collectively the epidemiological data suggest a lack of 

causative link between CWD epidemics in North America and the occurrence of human TSEs. 

However, because of the considerable limitations of the data supporting this statement, it would 

probably be unwise at this stage to conclude an absence of zoonotic risk associated with CWD 

agents. 

Although CWD was relatively recently identified, a number of studies specifically aiming at 

clarifying the capacity of CWD agent(s) to cross the human species barrier have already been 

carried out through experimental inoculation of TgHu mice and primates. A total of seven CWD 

isolates have been inoculated into different conventional (wild-type) and TgHu mouse models, 

including models that expressed the 129M and/or the 129V variants of the PRNP gene (Table 

2). The lack of clinical disease or PrPSc accumulation in the brains of the inoculated mice 

indicates the existence of a substantial transmission barrier (74, 79, 125, 142). However, it 

should be noted that these studies did not include secondary passage in TgHu mice, which was 

necessary for revealing the transmissibility of scrapie isolates and certain C-BSE isolates in 

similar models (36). 

Two separate studies have attempted to transmit CWD isolates to cynomolgus macaques (Table 

2). In the first study, cynomolgus macaques and squirrel monkeys were challenged by 

intracerebral and oral routes with CWD-infected brain homogenate. Although squirrel monkeys 

proved to be susceptible to CWD, there has been no evidence of transmission in macaques after 

observation periods ranging from 1.5 to over 13 years post inoculation (109) . In the second 

study, eighteen cynomolgus macaques were challenged with CWD by different routes, 

including oral inoculation with muscle tissue from CWD-infected deer. The results of this study 

are still unpublished, but presentations at recent international scientific conferences and 

meetings (https://www.cdc.gov/prions/cwd/transmission.html) described the occurrence of 

neurodegenerative disease 4.5 to 6.3 years post inoculation in 5 out of 18 of the cynomolgus 

macaques that had been exposed by either the intracerebral (n=2) or the oral route (n=3). Faint 

but consistent PrPSc accumulation and amyloid seeding activity were observed in the central 

nervous system of clinically affected animals, which strongly supports the view that the 

propagation of a prion disease was the cause of the neurodegenerative disorder. The reasons for 
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the discrepancy between the results from these two macaque transmission experiments are not 

clear, but may relate to differences in the oral dosing regimen and/or differences in CWD strains 

present in the inocula used. A more definitive analysis awaits completion and publication of the 

second study, but these preliminary data have prompted renewed concern about the potential 

for transmission of CWD to humans.

Conclusions:

Thirty years ago the BSE crisis brought the previously obscure ‘prion diseases’ into the world 

spotlight. Since then, our comprehension of the properties and biology of prions has progressed 

remarkably. However, despite the massive efforts that were deployed, there are still major 

unanswered questions about animal prion diseases and the risk they might represent for the 

human population. 

The recent discovery of atypical forms of BSE and scrapie, the identification of CWD cases in 

Europe, and the recognition of a novel prion disease of camels within the past year, illustrate 

beyond any words the limits of our knowledge in this field.

There is no epidemiological evidence that classical or atypical scrapie, atypical forms of BSE, 

or chronic wasting disease (CWD) are associated with human prion disease but the limitations 

of the epidemiological data should be taken into account when interpreting these results. 

Transmission experiments in non-human primates and human PrP transgenic mice clearly 

illustrate that classical scrapie, L-type atypical BSE (L-BSE) and CWD may have zoonotic 

potential. However, it is still difficult to predict from these results the likelihood that an animal 

prion disease will transmit to humans under conditions of field exposure. 

The profound uncertainties we are still facing concerning the zoonotic abilities of prion diseases 

of livestock emphasise the importance of maintaining the effective but expensive measures 

(SRM retrieval, surveillance program, feed ban on animal proteins) that were implemented 

during the BSE crisis (Figure 2) to prevent human exposure to these pathogens. 
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Figure Legends

Figure 1: Number of confirmed C-BSE cases (Logarithmic scale) reported to the OIE (Office 
International des Epizooties) by the UK, the European Union (excluding the UK) and the rest 
of the world, by year.

Implementation dates of key control measures (bans on the use of meat and bone meal in farm 
animal feedstuffs) and active surveillance system (post mortem testing of slaughtered cattle and 
fallen stock) in the UK and the EU (also applicable to UK) are indicated on the graph.

Figure 2: Timeline of major events and control measures for protection of animal and human 
health during the C-BSE epidemics in the UK and European Union.
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Table1: Number of cattle tested post mortem and numbers of confirmed classical and atypical BSE cases in the European Union per year. 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Total number of 
tested cattle
(in millions)

8.516 10.423 10.041 11.049 10.113 10.047 9.692 10.051 7.467 7.504 6.361 4.795 3.135 2.287 1.423 1.352

C-BSE cases 2174 2129 1334 848 542 323 157 117 55 37 23 12 3 3 3 1

H-BSE cases 2 3 4 2 3 3 5 5 6 4 4 1 4 2 2 4

L-BSE cases 0 5 4 4 4 4 8 6 5 4 3 6 1 6 1 0
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Table 2 : Transmissibility of animal prion diseases in animal models of the human species barrier

Positive transmission reported in animal models of the human species barrier
Prion diseases

New World Primates† Old world Primates†† Human PrP expressing  transgenic mice*

Cattle C-BSE Yes (IC and oral route) 
(12)

Yes (IC, intravenous and oral 
route) 

(65, 84, 87)

Yes (10, 36, 54,66, 69, 104)
No (25)

Atypical  H-BSE - still ongoing (IC route) (41) No (20, 142)

Atypical  L-BSE - Yes (IC route) (40, 103) Yes (20, 69, 75)
No (142)

Small Ruminants Classical Scrapie** Yes (IC route) (12) Yes (IC Route) (41) Yes (36)

Atypical Scrapie - Ongoing experiment (IC route) 
(41) No (107, 141, 142)

Cervids CWD**
 (North American isolates)

Yes (IC and oral route) 
(109)

No (IC and oral route) (109)
Yes (IC and oral route) ‡ No  (74, 125, 142)

†: Squirrel monkeys or Marmoset 
 ††: Cynomolgus Macaques – 
*: Mice were all inoculated by the intracerebral route (IC) – 
**: These prion diseases are associated with multiple prion strains  
‡ Czub et al. personal communication: https://www.cdc.gov/prions/cwd/transmission.html

Page 32 of 34

Brain Pathology Editorial Office, Blackwell Publishing, Oxford, UK

Brain Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Figure 1 : Number of confirmed C-BSE cases (Logarithmic scale) reported to the OIE (Office International 
des Epizooties) by the UK, the European union (Excluding the UK) and the rest of the world by year. 

Implementation dates of key control measures (bans on the use of meat and bone meal in farm animal 
feedstuffs) and active surveillance system (post mortem testing of slaughtered cattle and fallen stock) in the 

UK and the EU (also applicable to UK) are indicated on the graph. 
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Figure 2: Timeline of major events and control measures for protection of animal and human health during 
the C-BSE epidemics in the UK and EU. 

338x190mm (96 x 96 DPI) 

Page 34 of 34

Brain Pathology Editorial Office, Blackwell Publishing, Oxford, UK

Brain Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


