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Rate-Splitting Robustness in Multi-Pair Massive
MIMO Relay Systems

Anastasios Papazafeiropoulos and Tharmalingam Ratnarajah

Abstract—Relay systems improve both coverage and system
capacity. Towards this direction, full-duplex (FD) technology,
being able to boost the spectral efficiency by transmitting
and receiving simultaneously on the same frequency and time
resources, is envisaged to play a key role in future networks.
However, its benefits come at the expense of self-interference
(SI) from their own transmit signal. At the same time, massive
multiple-input massive multiple-output (MIMO) systems, bring-
ing unconventionally many antennas, emerge as a promising
technology with huge degrees-of-freedom (DoF). To this end,
this paper considers a multi-pair decode-and-forward FD relay
channel, where the relay station is deployed with a large number
of antennas. Moreover, the rate-splitting (RS) transmission has
recently been shown to provide significant performance benefits
in various multi-user scenarios with imperfect channel state in-
formation at the transmitter (CSIT). Engaging the RS approach,
we employ the deterministic equivalent (DE) analysis to derive
the corresponding sum-rates in the presence of interferences.
Initially, numerical results demonstrate the robustness of RS in
half-duplex (HD) systems, since the achievable sum-rate increases
without bound, i.e., it does not saturate at high signal-to-noise
ratio (SNR). Next, we tackle the detrimental effect of SI in FD.
In particular, and most importantly, not only FD outperform s
HD, but also RS enables increasing the range of SI over which
FD outperforms HD. Furthermore, increasing the number of
relay station antennas, RS appears to be more efficacious due
to imperfect CSIT, since SI decreases. Interestingly, increasing
the number of users, the efficiency of RS worsens and its
implementation becomes less favorable under these conditions.
Finally, we verify that the proposed DEs, being accurate fora
large number of relay station antennas, are tight approximations
even for realistic system dimensions.

Index Terms—Rate-splitting, massive MIMO systems, half-
duplex relaying, full-duplex relaying, deterministic equivalent
analysis.

I. I NTRODUCTION

Massive multiple-input massive multiple-output (MIMO)
technology is a key enabler for the fifth generation (5G)
wireless communication systems achieving energy-efficient
transmission and high spectral efficiency [2]–[4]. According to
its characteristic topology, a large number of service antennas
per unit area performs coherent linear processing, and offers an
unprecedented number of degrees-of-freedom (DoF). Among
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its benefits, we emphasize the substantial reduction of both
intra-cell and inter-cell interference, which ultimately, lead to
high performance efficiency, both spectral and energy.

In a parallel direction, in-band full-duplex (FD) is a novel
technology that doubles the throughput induced by standard
half-duplex relaying by means of simultaneous transmission
and reception at the same frequency and time during a wireless
communication [5], [6]. Moreover, its theoretical and experi-
mental progress towards its practical implementation [7]–[9]
is notable. Actually, the theoretical progress can lead to a
practical achievement with new opportunities. However, this is
quite demanding because the FD transmission is accompanied
by an inherent obstacle. Specifically, this obstacle is the so-
called self-interference (SI) due to the leakage from the relay’s
output to its input [7]. It is worthwhile to mention that the
main difference between SI and general interference is that
SI is known at the receiver, which could be sufficient for SI
suppression. There are several challenges for the mitigation of
SI, being crucial for FD operation. For example, the received
signal and the SI may exhibit a large amplitude difference
going to exceed the dynamic range of the analog-to-digital
converter at the receiver side [9]. Although the SI cancellers try
their best to maximize the cancellation performance, residual
interference remains and rate saturation at high signal-to-noise
ratio (SNR) appears. Hence, the circumvention of the harmful
consequences of the SI takes a prominent position in the
research area of FD systems. Among the suppression methods
for SI, MIMO processing, specialized in the spatial domain,
provides an exceptionally effective means [7], [10], [11].As
a result, driving to massive MIMO is a reasonable approach
for next-generation systems.

To grasp the benefits of massive MIMO the accurate
knowledge of channel state information at the transmitter
(CSIT) is required. In fact, accurate CSIT becomes even more
challenging as the number of antennas increases [12], [13].In
such case, the Time Division Duplex (TDD) design has proved
to be a more feasible solution against Frequency Division
Duplex (FDD) schemes because the latter are accompanied
with further channel estimation and feedback challenges [3],
[4], [14]–[16]. The DoF decrease as the CSIT inaccuracy
increases. Especially, in realistic scenarios, where CSITis
imperfect, linear precoding techniques lead to a rate ceiling
at high SNR, if the error variance is fixed.

In order to enhance the sum DoF, the rate splitting (RS)
strategy has been proposed [17]. The RS outperforms conven-
tional broadcasting at high SNR because it does not experience
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any ceiling effect [18]–[21]1. According to this strategy, the
message intended for one user is split into a private part
and a common part by using a fraction of the total power.
The private part is transmitted by means of zero-forcing (ZF)
beamforming, while the common part is superimposed on
top of the precoded private part by means of the remaining
power. The common message is drawn from a public codebook
and decoded by all users. At the receiver side, the decoding
procedure involves first the decoding of the common message
by means of successive interference cancellation, and then, the
decoding of the private message of each user follows.

Although the relaying in previous cellular generations was
mostly used for coverage enhancement, in today’s cellular
networks, it is shown that it can improve both coverage
and system capacity [23]. In this regard, relaying has been
already considered as one of the salient features in 3GPP
Long Term Evolution (LTE) advanced [24]. Especially, the
importance of relaying in massive MIMO systems has been
already demonstrated in several studies [25] .

In the area of massive MIMO relaying, both half-duplex
(HD) and FD have been studied [26]–[32]. In particular, in the
case of HD, the spectral efficiency has been investigated for
a very large number of relay station antennas [26]–[30], [33].
On the other hand, e.g., FD relaying with a large number of
antennas and linear processing as well as the scaling behavior
with the number of relay antennas of the self-interference were
analyzed in [31] in terms of the end-to-end achievable rate.
Towards this direction, the asymptotic performance of amplify-
and-forward massive MIMO relay systems with additive hard-
ware impairments was determined in [32].

A. Motivation-Contributions

Following the research trends and needs in massive MIMO
and FD systems, we consider a collection ofK sources com-
municating with another collection ofK destinations through
an intermediate massive MIMO FD relay station, and we focus
on the application of RS. In particular, in our architecture
scenario, two sources, leading to rate saturation, are faced. The
first includes the multi-user interference with imperfect CSIT
in the second link, and the second concerns the SI emerging
from the FD transmission. This work tackles the challenge of
mitigating the rate saturation by leveraging the RS approach.
In particular, we investigate the robustness of the RS method in
realistic massive MIMO FD settings suffering from both pilot
contamination and SI. The motivation of this work started by
the observation that in FD systems the CSIT is altered due
to the presence of SI. Furthermore, it is known that RS is
applicable in multi-user settings with imperfect CSIT. Hence,
these observations suggest that RS will be effective in the
mitigation of the SI and the consecutive circumvention of the
rate saturation due to the overall imperfect CSIT. Note that
our system setup is quite general, since it can model cellular
networks with some users transmitting simultaneously signals

1Interestingly, a further gain of RS over no RS (NoRS) can be achieved
by optimizing the precoders [22], where for the sake of exposition and
comparison, henceforth, we denote by NoRS all the conventional techniques
to contrast with the RS techniques.

to several other users via an infrastructure-based relay station
serving several roles such as a low power base station [34].
Moreover, having a MIMO relaying in the scene, we test
RS in the basic scenario of just HD transmission. The main
contributions are summarized as follows:

• Contrary to existing works such as [5]–[11], which have
studied FD MIMO systems, we focus on massive MIMO
systems, and examine the impact of SI, when RS trans-
mission is applied at the second link. For the sake of
comparison, we also present the results corresponding to
an HD relay system. It is shown that RS is robust in both
multipair HD and FD settings.

• We derive the deterministic SINRs of NoRS and RS
in multipair FD systems with imperfect CSIT and use
them to investigate the performance benefits of RS over
NoRS in the presence of SI. Actually, first, we ob-
tain the estimated channels of both links by means of
MMSE estimation. Next, we apply RS in the second link
by designing the precoder of the private and common
messages, and we consider suitable power allocation.
Although the basic implementation of the RS strategy
assumes just ZF precoding for the transmission of the
private messages except [17], we consider regularized
ZF (RZF) precoding because it is another low-complexity
linear processing technique applicable in massive MIMO
systems. However, RZF provides better performance than
ZF. Finally, we provide the DEs of the SINRs of the pri-
vate and common messages. Note that these deterministic
expressions allow avoiding any Monte Carlo simulations
with very high precision.

• Above this, RS is robust in HD and FD scenarios because
it can mitigate the multi-user interference taking place in
the second link of both HD and FD cases. In fact, we
elaborate on the impact of the severity of SI. Actually,
RS is able to mitigate the saturation due to the SI in
spite of the knowledge of perfect or imperfect CSIT.
Furthermore, in the case of lower SI, RS behaves better.
The same observation is made as the number of relay
station antennas is increased, since then, SI becomes
lower.

• We show that an increase of the number of user elements
(UEs) in a multipair FD system results in a reduction
of the performance gain of RS over NoRS because
the common message has to be decoded by more UEs.
Moreover, we quantify this decrease exhibited due to a
less mitigated SI.

The remainder of this paper is structured as follows. Sec-
tion II presents the system and signal models for both links
of the multi-pair FD relay system. Section III presents the
data transmission phase, while in Section III-B, we provide
the estimated channels obtained during the uplink training
phase of the two links. Next, we present the RS approach.
In Section IV, we present the end-to-end transmission by
obtaining the SINR of each link. Section V exposes the DE
analysis, which enables the design of the precoder of the
common message, and mainly, the derivation of the achievable
rates in the presence of SI. The numerical results are placed



3

in Section VI, while Section VII summarizes the paper.
Notation: Vectors and matrices are denoted by boldface

lower and upper case symbols.(·)T, (·)∗, (·)H, andtr(·) repre-
sent the transpose, conjugate, Hermitian transpose, and trace
operators, respectively. The expectation operator is denoted
by E [·]. The diag{·} operator generates a diagonal matrix
from a given vector, and the symbol, declares definition. The
notationsCM×1 andCM×N refer to complexM -dimensional
vectors andM × N matrices, respectively. Finally,b ∼
CN (0,Σ) denotes a circularly symmetric complex Gaussian
variable with zero-mean and covariance matrixΣ.

II. SYSTEM MODEL

The concept of our model involves a multipair FD relaying
system with a common relay stationR and K communica-
tion pairs (Sk,Dk) , k = 1, . . . ,K sharing the same time-
frequency resources. Specifically, we considerK user pairs,
where thekth sourceSk exchanges information through a relay
operating in decode-and-forward protocol with thekth UE
destinationDk. Moreover, the system suffers from SI due to
the simultaneous transmission and reception, since it operates
under an FD mode. Note that there is no direct link between
the sourceSk and the corresponding destinationDk because
of heavy shadowing and large path-loss. The source and the
destination pairs are equipped with a single antenna, whilethe
FD relay station is deployed withN receive antennas andM
transmit antennas, i.e., it includesV = M + N antennas in
total2.

A. Signal Model

We consider frequency-flat channels between the source
userk and the relay as well as between the relay and destina-
tion UE k, modeled as Rayleigh block fading. The channels
are assumed static across a coherence block ofT channel
uses with the channel realizations between blocks being in-
dependent. The size of the block is defined by the product
between the coherence timeTc and the coherence bandwidth
Bc. Specifically, the frequency-flat channel matrices between
the K sources and the relay station’s receive antenna array
as well as between the relay station’s transmit antenna array
and theK destinations, modeled as Rayleigh block fading,
are denoted byGSR ∈ C

N×K as well asGRD ∈ C
M×K ,

respectively. We express each channel realization as3

GSR , HSRD
1/2
SR (1)

GRD , HRDD
1/2
RD . (2)

These channel matrices account for both small-scale and
large-scale fadings. Specifically, the matricesHSR andHRD,
having independent and identically distributed (i.i.d.)CN (0, 1)
elements, describe small-scale fading, while the matricesDSR

andDRD are diagonal and express the large-scale fading in

2This network configuration is of high practical interest. For example, it
can describe a cellular setup, where the communication between two users is
performed by means of a massive antenna low power base station.

3According to the favorable propagation assumption which has been
validated in practice [9], we consider that the channels from the relay station
to different sources and destinations are independent [31].

terms of thekth diagonal elements, which are denoted by
βSR,k and βRD,k, respectively. Furthermore, assuming that
there is no line-of-sight component, the SI channel is modeled
by means of the Rayleigh fading distribution. Mathematically,
it is described by theGRR ∈ CM×N channel matrix between
the relay’s transmit and receive arrays. In other words, the
elements of the SI channel matrixGRR can be modeled as
i.i.d. complex Gaussian random variables with zero mean and
varianceσ2

SI, i.e., CN
(
0, σ2

SI

)
. The physical meaning ofσ2

SI

can be seen as the level of SI that is dependent on the distance
between the transmit and receive antenna arrays. Also, the
assumption that the channels between the transmit and receive
antennas are i.i.d. considers that the distance between the
transmit and the receive arrays is much larger than the distance
between the antenna elements.

III. E ND-TO-END TRANSMISSION

This section presents the data transmission and the uplink
estimation phases of the multipair decode-and-forward FD
model as well as the RS approach.

A. Data Transmission

At time instantn, the K user sourcesSk (k = 1, . . . ,K)
transmit simultaneously their signals to the relay, which,in
turn, broadcasts the signal to allK destinations. Actually, we
denote

√
pSuk [n] the kth user transmit signal at timen with

pS being the average transmit power of each source since
E
{
|uk [n] |2

}
= 1, while at the relay station the received

signal is interfered with its transmit signal.
Herein, we present the conventional input-output signal

model (NoRS) as a measure of comparison. More precisely,
the signal received by the receive antenna array of the relay
from all the sources is given by [31]

yR [n] =
√
pSGSRu [n] +GRRs [n] + zR [n] , (3)

while the signal received by theK destinations from the
transmit antenna array of the relay station is written as

yD [n] = GH

RDs [n] + zD [n] , (4)

wherezR ∼ CN (0, IN ) andzR ∼ CN (0, IK) are the additive
white Gaussian noises (AWGNs) at the relay station and theK
destinations, respectively. Note thatu[n] is a vector whose k-th
element isuk[n], and the vectors[n] expresses the transmitted
signal from relay to destinations. For the sake of complexity,
we assume that the relay station applies linear processing,
i.e., the relay station achieves the decoding of the transmitted
signals from theK sources by employing a linear receiver,
and at the same time, the relay forwards the signals to theK
destinations by using linear precoding. In the general case,
the linear decoder and precoder are given byWH and F,
respectively. Specifically, the received signal is seperated into
K streams after multiplication with the linear receiverWH

according to

r [n] = WHyR [n]

=
√
pSW

HGSRu [n] +WHGRRs [n] +WHzR [n] . (5)
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TABLE I
NOTATIONS SUMMARY

Notation Description
K Communication pairs

M , N Numbers of transmit and receive antennas
Sk , Dk The kth source and destination
Tc, Bc Coherence time, bandwidth
σ2
SI

The variance of the elements of the self-interference matrix
τ Duration of the training phase

pS, ptr Average transmit power per source and transmit power per pilot symbol
GSR, GrD, GRR Channel matrices of the first link, second link, and self-interference

HSR, HRD Small-scale fading matrices of the first and second links
DSR, DRD Large-scale fading matrices of the first and second links

fc, fk Precoding vectors of the common and private messages corresponding to UEk
ρc, ρk Powers allocated to the common and private messages corresponding to UEk

λ Normalization of the precoded message
γSR, RSR SINR and achievable rate of the first link

γc
RD,k

, γp

RD,k
SINR of the common and private messages of the second link

Rc
RD, Rp

RD,k
Achievable rates of the common and private messages of the second link

The kth element ofr [n], or equivalently, thekth stream
enables the decoding of the signal transmitted from thekth
sourceSk. More precisely, we have

rk [n] =
√
pSw

H

kgSR,kuk [n] +
√
pS

K∑

j 6=k

wH

kgSR,juj [n]

+wH

kGRRs [n] +wH

kzR [n] , (6)

where the first and second terms represent the desired signal
and the interpair interference, while the third and last term
express the SI and the post-processed noise. Note thatgSR,k

andwk are thekth columns ofGSR andW, respectively.
Having detected the signals transmitted from theK sources,

the relay station employs linear precoding to process them.
Then, the relay station broadcasts the signals to allK destina-
tions. If we assume that the processing delay is equal tod ≥ 1,
we have4

s [n] = u [n− d] , (7)

where u [n− d] includes the linear precoding matrix. By
substituting of (7) into (4), we obtain the received signal at
Dk as

yD,k [n] = gH

RD,ku [n− d] + zD,k [n] (8)

with gRD,k being thekth column ofGRD, while zD,k is the
kth element ofzD.

Choosing MMSE/RZF processing, i.e., employing MMSE
for the decoder and RZF for the precoder, we achieve to
maximize the received SNR by not taking into account the
interpair interference [16]. In other words, MMSE and RZF
behave quite well. Hereafter, we omit the time index from our
analysis for the sake of simplicity.

4This common assumption in the existing literature for FD systems, enables
us to assume that at a given time instant, the receive and transmit signals at
the relay station are uncorrelated. Also, we assume that therelay can obtain
the source signals without any error. Otherwise,s[n] in (7) would include a
noise term.

B. Pilot Training Phase

In practical systems, the relay station has to estimate both
the channelsGSR and GRD. A good transmission protocol
to implement the current design is TDD, which is the most
favorable scheme for massive MIMO. According to TDD, the
protocol consists of coherence blocks having duration ofT
channel uses. In turn, each block is split intoτ ≥ 2K training
pilot symbols to guarantee that the source and the destination
user elements (UEs) are spatially separable by the relay station
and the remaining channel uses are allocated for the data
transmission symbols5. Note that during the data transmission
phase, the channel is known due to the property of the
channel reciprocity. After sending the pilots, the received
signal matrices at the receive and transmit antennas of the
relay are given by

Ytr
r =

√
τptr

(
GSRΦS + ḠRDΦD

)
+ Ztr

r , (9)

Ytr
t =

√
τptr

(
ḠSRΦS +GRDΦD

)
+ Ztr

t , (10)

where the channel matrices from theK sources to the transmit
antenna array of the relay station and from theK destinations
to the receive antenna array of the relay station are given by
ḠSR ∈ CM×K and ḠRD ∈ CN×K , respectively. Similarly,
Ztr
r and Ztr

t denote AWGN matrices having i.i.d.CN (0, 1)
elements. Also, thekth rows ofΦS ∈ C

K×τ andΦD ∈ C
K×τ

are the pilot sequences transmitted from the corresponding
source and destination users, i.e.,Sk and Dk. Actually, we
assume that all the pilot sequences are pairwisely orthogonal,
which requires thatτ ≥ 2K, sinceΦSΦ

H

S = IK , ΦDΦ
H

D = IK ,
andΦSΦ

H

D = 0. Note thatptr denotes the transmit power of
each pilot symbol.

Under the assumption that the relay station applies min-
imum mean square-error (MMSE) estimation to estimate the
channelsGSR andGRD, the estimated channels can be written

5The pilot sequences ofτ symbols are transmitted simultaneously by all
the sources and destinations.
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by following the corresponding procedure in [31] as

ĜSR =
1√
τptr

Ytr
r Φ

H

SD̃SR

= GSRD̃SR +
1√
τptr

NSD̃SR (11)

and

ĜRD =
1√
τptr

Ytr
t Φ

H

DD̃RD

= GRDD̃RD +
1√
τptr

NDD̃RD, (12)

where NS = Ztr
t Φ

H

D and ND = Ztr
r Φ

H

S. In addition,

we have D̃SR =
(

D̃−1
SR/ (τptr) + IK

)

and D̃RD =
(

D̃−1
RD/ (τptr) + IK

)

. Given that the rows ofΦS and ΦD

are pairwisely orthogonal, the elements ofNS and ND are
i.i.d. obeying to theCN (0, 1) distribution.

Taking into account the property of orthogonality of MMSE
estimation, we decompose the current channels in terms of the
estimated channels as [35]

GSR = ĜSR +ESR (13)

GRD = ĜRD +ERD, (14)

where ESR and ERD are the estimation error matrices
of GSR and GRD. Actually, the rows of ĜSR, ESR,
ĜRD, and ERD are mutually independent and distributed
asCN

(

0, D̂SR

)

, CN
(

0,DSR − D̂SR

)

, CN
(

0, D̂RD

)

, and

CN
(

0,DRD − D̂RD

)

. Note thatD̂SR andD̂RD are diagonal

matrices with
[

D̂SR

]

kk
= σ2

SR,k and
[

D̂RD

]

kk
= σ2

RD,k

being the diagonal elements of̂DSR, and D̂RD, which are
equal toσ2

SR,k = τptrβ
2
SR,k/ (τptrβSR,k + 1) and σ2

RD,k =
τptrβ

2
RD,k/ (τptrβRD,k + 1), respectively.

C. RS Approach

After having described the conventional multipair with
relay transmission (NoRS) in Section III, we focus on the
application of the promising RS transmission method that is
going to be applied in the second link between the relay
station and the destination users. Below, we provide shortly
its presentation.

The main benefit of the RS transmission, taking place in
multi-user scenarios, is the achievement of unsaturated sum-
rate with increasing SNR despite the presence of imperfect
CSIT as was shown in [18], [19], [22], [36]. The NoRS strat-
egy treats as noise every multi-user interference originating
from the imperfect CSIT. On the other hand, the RS strategy
is able to bridge treating interference as noise and perform
interference decoding through the presence of a common
message. Thus, the key to boost the sum-rate performance is
the ability to decode part of the interference6. This observation

6 At the time of demodulation, a user needs to know the precodedchannel
to perform coherent demodulation. Actually, the user does not need to know
the channel itself and the precoder itself, but just the inner product of the
two, i.e. the precoded channel. The same action takes place in conventional
MU-MIMO. In practice, this is achieved through the use of demodulation
reference signals, called DMRS in LTE-A [37].

motivates us to investigate the potential benefits of RS in the
presence of the SI, since the SI has the effect of altering the
CSI between the estimation stage and the transmission stage.

According to the RS method, the message, intended for
destination UEk, is split into two parts, namely, the common
and private parts. Regarding the common part, it is drawn from
a public codebook and it has to be decoded by all UEs with
zero error probability. As far as the private part is concerned, it
has to be decoded only by destination UEk. It is worthwhile to
mention that the messages, intended for the other UEs, consist
of a private part only. In mathematical terms, the transmit
signal is written as

u =
√
ρcfcuc

︸ ︷︷ ︸
common part

+

K∑

k=1

√
ρkfkuk

︸ ︷︷ ︸

private part

, (15)

whereuc and uk are the common and the private messages
for UE k, while fc denotes the precoding vector of the
common message with unit norm andfk is the linear precoder
corresponding to UEk. More concretely, the private message
uk ∀k is superimposed over the common messageuc and sent
with linear precoding. In addition,ρc is the power allocated to
the common message. Regarding the decoding procedure, the
first step is the decoding of the common message by each UE,
while all private messages are treated as noise. The next step
includes the subtraction of the contribution of the common
message in the received signal by each UE, and thus, each
UE is able to decode its own private message. Herein, we
focus on the application of the RZF precoder for the private
messages, as mentioned before.

Remark 1 (Conventional Transmission (NoRS Approach)):
According to the conventional approach, there is no common
message transmission. Thus, since no common part exists, (15)
degenerates to

u =
K∑

k=1

√
ρkfkuk, (16)

whereλ is a normalization parameter insidefk given byλ =
K

E[trFHF]
.

IV. END-TO-END ACHIEVABLE RATE

This section considers the presentation of the transmission
between thekth source user and the corresponding destina-
tion user through the multiple antennas relay station, i.e.,
(Sk → R → Dk). Reasonably, this rate depends on the weakest
link between the two hops, or else, this rate is limited by the
minimum of the achievable rates of the two links [10]. More
concretely, the achievable user rate from end-to-end is given
by

Rk = min{RSR,k, RRD,k}, (17)

whereRSR,k and RRD,k denote the achievable rates of the
corresponding links.

In the first transmission link, a conventional MAC is consid-
ered with an MMSE decoder at the relay station, while, in the
second hop, we employ the RS scheme with an RZF precoder
for the transmission of the private messages.
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A. Sk → R (Conventional Transmission)

During the first hop, we setpS = ρ, whereρ refers to the
SNR, since the AWGN is assumed to have unit variance. Thus,
the SINR of the source UEk is expressed by means of (6) as

γSR,k =
ρ|wH

kgSR,k|2
∑K

j 6=k ρ|wH

kgSR,j |2 + ‖wH

kGRR‖2 + ‖wH

k‖2
. (18)

Note that we have relied on the worst-case assumption by
treating the multi-user interference and distortion noises as
independent Gaussian noises [38]. According to this SINR,
we obtain the achievable sum-rate, being a lower bound of
the mutual information between the received signal and the
transmitted symbols, as

RSR =
K∑

k=1

RSR,k, (19)

whereRSR,k = T−τ
T log2 (1 + γSR,k).

B. R → Dk

During the second link, we employ the RS transmission
scheme, in order to mitigate the saturation of the system at
high SNR. Specifically, we apply uniform power allocation
for the private messages, however, the power allocated to
the common part is different. The allocation scheme assumes
ρc = ρ (1− t) to the common message andρk = ρt/K to the
private message of each UE, wheret ∈ (0, 1]. Thet parameter
is used to adjust the fraction of the total power spent on the
transmission of the private messages.

Following the RS principles, we have to evaluate the SINRs
of both common and private messages. Assuming that perfect
CSI is available at the receivers and given that the transmit
signal is given by (15), the corresponding SINRs are given by

γc
RD,k =

ρc|gH

RD,kfc|2
∑K

j=1
ρt
K |gH

RD,kfj |2 + 1
(20)

γc
RD = min

k

(
γc
RD,k

)
(21)

γp
RD,k =

ρt
K |gH

RD,kfk|2
∑K

j 6=k
ρt
K |gH

RD,kfj |2 + 1
. (22)

Note thatγc
RD = min

k

(
γc
RD,k

)
andγp

RD,k correspond to the

SINRs of the common and private messages, respectively. In
this case, the achievable sum-rate is written as

RRD = Rc
RD +

K∑

j=1

Rp
RD,j , (23)

where, similar to (19), we haveRc
RD= T−τ

T log2(1+γc
RD) and

Rp
RD,k = T−τ

T log2

(

1 + γp
RD,k

)

corresponding to the achiev-
able rates of the common and private messages, respectively.

V. DETERMINISTIC EQUIVALENT PERFORMANCE

ANALYSIS

The DEs of the SINRs for both links are such that for each
link it holds thatγk −γk

a.s.−−−−→
M→∞

07, whereγk is the SINR of

thekth user and̄γk is the corresponding DE. In this direction,
the corresponding deterministic rate of UEk is obtained by
the dominated convergence [39] and the continuous mapping
theorem [40] by means of (19), (23) for both links as

Ri,k − R̄i,k
a.s.−−−−→

M→∞
0, i = SR,RD (24)

whereR̄i,k is the DERi,k.

A. DE of the Achievable Rate of the First Hop (Sk → R)

The design of the first hop, being basically a MAC, follows
a standard uplink transmission scheme. We choose the MMSE
linear decoder, in order to keep the implementation complexity
to a reasonable level and at the same time achieve a high rate.

The MMSE decoder is designed by means of the channel
estimateĜSR, as [16]

WSR =
(

ŴSR+ZSR+NαRSRIM

)−1

ĜSR, (25)

where we define

Σ̂SR ,

(

ŴSR+ZSR+NαSRIM

)−1

(26)

with ŴSR , ĜSRĜ
H

SR. The matrixZSR ∈ CN×N is an
arbitrary Hermitian nonnegative definite matrix andαSR is a
regularization parameter scaled byN , in order to converge to
a constant, asN , K → ∞. AlthoughαRD andZRD can be
optimized, this is outside the scope of this paper and we leave
it for future work.

The data transmission during this hop has a duration of
T − τ time slots. The DE of thek user rate, whenK, N go
to infinity with a given rationβ = N/K, is provided by the
following theorem.

Theorem 1: The DE of the SINR of UEk for the first link
of a multipair FD system with MMSE decoding and imperfect
CSIT is given by (27), where

µjk ≍
δ
′

j

N
+

∣
∣
∣δ

′′

k

∣
∣
∣

2

δ
′

k

N (1 + δk)
2 − 2Re

{

δ
′′

k δ
′

k

N (1 + δk)

}

. (28)

Also, we have δSR,k = 1
N tr D̂SR,kTSR,k, δ

′

SR,k =
1
N tr D̂SR,kT

′

SR,k, δ
′′

SR,k = 1
N tr D̂SR,kT

′′

SR,k, δSR,jk =
1
N tr D̂SR,kTSR,jk, δ

′

SR,jk = 1
N tr D̂SR,jT

′

SR,jk, δ
′′

jk =
1
N tr D̂SR,jkTSR,jk, S = ZSR/N , andã = αSR where

∗ TSR,k = TSR,k(ã) and δ = [δ1, · · · , δK ]T = δ(ã) =
e(ã) are given by [41, Thm. 1] forS = S, D =
D̂SR,k, L = D̂SR,k ∀k ∈ K,

∗ TSR,k = T
′

SR,k(ã) is given by [16, Thm. 2] forS = S,
D = D̂SR,k, K = DSR,k − D̂SR,k, ∀k ∈ K,

7Note that
a.s.

−−−−−→

M→∞

denotes almost sure convergence, andan ≍ bn

expresses the equivalence relationan − bn
a.s.

−−−−−→

M→∞

0 with an andbn being

two infinite sequences.
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γSR,k =
ρδ2SR,k

ρ 1
N δ

′

SR,k +
1
N δ

′′

SR,k +
1
N trTRR + ρ

∑K
j 6=k

µSR,jk

N

(27)

∗ TSR,k = T
′′

SR,k(ã) is given by [16, Thm. 2] forS = S,
D = D̂SR,k, K = IN , ∀k ∈ K,

∗ TRR = TRR(ã) is given by [16, Thm. 2] forS = S,
D = IN , K = σ2

SIIN , ∀k ∈ K,
∗ TSR,jk = TSR,jk(ã) is given by [16, Thm. 2] forS = S,

D = D̂SR,k, K = D̂SR,k, ∀k ∈ K,
∗ TSR,jk = T

′

SR,jk(ã) is given by [16, Thm. 2] forS = S,
D = D̂SR,k, K = D̂SR,k, L = D̂SR,j∀k ∈ K.

∗ TSR,jk = T
′′

SR,jk(ã) is given by [16, Thm. 2] forS = S,
D = D̂SR,k, K = D̂SR,k, L = D̂SR,k∀k ∈ K.

Proof: The proof of Theorem 1 is given in Appendix A.

B. DE of the Achievable Rate of the Second Hop with RS
(R → Dk)

This section presents the DE of the user rate during the data
transmission with RS in the second link, which takes place for
T − τ time slots. In fact, we derive the DE of thekth UE in
the asymptotic limit ofK,M for fixed ratioζ = K/M .

In addition, we provide the precoder design for the common
message, implemented to be used under the RS approach.
Moreover, among the main results, we present the DEs of the
SINRs characterizing the transmissions of the common and
the private messages of UEk.

C. Precoder Design

For the sake of simplicity, we employ linear precoding
during the application of the RS method. Actually, the RS
method includes two different types of precoders for the
transmission of the private and common messages, respec-
tively. In the case of a MISO broadcast channel (BC) with
imperfect CSI, the optimal precoder has to be optimized
numerically [22]. However, we consider that the transmission
of the private message takes place by using RZF due to the
prohibitive complexity, as mentioned in a previous section8.
Further elaboration follows.

1) Precoding of the Private Messages: Given that the
complexity increases in large MIMO systems asM → ∞, the
choice of RZF for the transmission of the private messages
is the prevailing solution. In such case, the relay station
implements its RZF precoder, constructed by means of the
channel estimatêGRD, as [16]

FRD =
√
λ
(

ŴRD+ZRD+MαRDIM

)−1

ĜRD

=
√
λΣ̂RDĜRD, (29)

8Note that an extra gain of RS over NoRS can be achieved by jointly
optimizing the power allocation as well as the precoders of the common and
private messages [22]. However it is not really practical toresort to this type
of optimization for large-scale systems such as massive MIMO, where the use
of deterministic equivalent analysis is commonly used in order to get some
further insight into the system behaviour in terms of different aspects such as
the impact of hardware impairments [20].

where we define

Σ̂RD ,

(

ŴRD+ZRD+MαRDIM

)−1

(30)

with ŴRD , ĜRDĜ
H

RD and λ being a normalization pa-
rameter that satisfiesλ = K

E[trFH

RD
FRD]

, which is a long-

term total transmit power constraint at the relay. Similar to
the definition of the MMSE decoder,ZRD ∈ CM×M is an
arbitrary Hermitian nonnegative definite matrix andαRD is a
regularization parameter scaled byM , in order to converge to
a constant, asM , K → ∞. In addition,αRD andZRD can be
optimized as well, but this is outside the scope of this paper
and we leave it for future work.

2) Precoding of the Common Message: Herein, we provide
the design of the precoderfc of the common message by
following a similar procedure to [19]. In particular, taking
into account that in the large number of antennas regime the
different channel estimates tend to be orthogonal, we express
fc as a linear sum of these channel estimates in the subspace
of ĜRD, S = Span

(

ĜRD

)

. In other words,fc is designed as
a weighted matched beamforming. Mathematically, we have

fc =
∑

k

αkĝRD,k. (31)

The objective is to maximize the achievable rate of the
common messageRc

RD,k. This optimization problem is formed
as

P1 : max
fc∈S

min
k

qRD,k|gH

RD,kfc|2,

s.t. ‖fc‖2 = 1
(32)

where qRD,k = ρcλ

λ
∑

K
j=1

ρ
K

|gH

RD,k
fj |2+1

. The optimal{α∗
k} is

yielded by the following proposition.
Proposition 1: In the large system limit, the optimal solution

of the practical problem set byP1 is given by

α∗
k =

1
√

M
∑K

j=1

qk
1

M2
tr2 D̂RD,k

qj
1

M2
tr2 D̂RD,j

, ∀k. (33)

Proof: We achieve to result in an optimization problem
with deterministic variables by obtaining the DEs of the equa-
tion and the constraint ofP1. Indeed, applying Lemma [42,
Lem. B.26] to (32), we have

P2 : max
αk

min
k

qRD,k
1

M2
|αk tr D̂RD,k |2,

s.t.
∑

k

α2
k =

1

M
.

(34)

Use of Lemma2 in [43] indicates that the optimal solution,
satisfyingP2, results, if all terms are equal. Specifically, the
optimal solution is found whenqRD,kα

2
k

1
M2 tr

2 D̂RD,k =

qRD,jα
2
j

1
M2 tr

2 D̂RD,j , ∀k 6= j, and the proof is concluded.
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Theorem 2: The DEs of the SINRs of UEk for the second
link of a multipair FD system, corresponding to the private and
common messages with RZF precoding and imperfect CSIT,
are given by

γp
RD,k =

λ̄ ρt
K δ2RD,k

λ̄ρt
K

K∑

j 6=k

QRD,jk

M
+ (1 + δRD,k)

2

(35)

γc
RD,k =

ρcλ̄α
2
kδ

2
RD,k

λ̄ρt
K

K∑

j=1

QRD,jk

M
+ (1 + δRD,k)

2

, (36)

where

λ̄ = K

(

1

M

K∑

k=1

δ
′

RD,k

(1 + δRD,k)
2

)−1

,

and

QRD,jk ≍
δ
′′

RD,jk

M
+

∣
∣
∣δ

′′′

RD,jk

∣
∣
∣

2

δ
′′

RD,jk

M (1 + δRD,k)
2

− 2Re

{

δ
′′′

RD,jkδ
′′

RD,jk

M (1 + δRD,k)

}

. (37)

Also, we have δRD,k = 1
M tr D̂RD,kTSR,k, δ

′

RD,jk =
1
M tr D̂RD,kT

′

SR,k, δ
′

RD,jk = 1
M tr D̂RD,jT

′

SR,k, δ
′′

RD,jk =
1
M tr D̂RD,jkT

′′

SR,k, δ
′′′

RD,jk = 1
M tr D̂RD,jkT

′′′

SR,k, S =
ZRD/M , and ã = αRD where

∗ TSR,k = TSR,k(ã) and δ = [δ1, · · · , δK ]T = δ(ã) =
e(ã) are given by [41, Thm. 1] forS = S, DSR,k =
D̂SR,k ∀k ∈ K,

∗ TSR,jk = TSR,jk(ã) is given by [41, Thm. 1] forS = S,
DSR,k = D̂SR,k ∀k ∈ K,

∗ TSR,jk = T
′

SR,jk(ã) is given by [16, Thm. 2] forS = S,
LSR,k = IM , DSR,k = D̂SR,k ∀k ∈ K,

∗ TSR,jk = T
′′

SR,jk(ã) is given by [16, Thm. 2] forS = S,
K = D̂SR,j , K = D̂SR,j, Dk = D̂SR,k, ∀k ∈ K,

∗ TSR,jk = T
′′′

SR,jk(ã) is given by [16, Thm. 2] forS = S,
L = D̂SR,k K = D̂SR,k, Dk = D̂SR,k, ∀k ∈ K.

Proof: The proof of Theorem 2 is given in Appendix B.
The following remark will enable us to shed light on the

interesting properties of multipair FD systems with a large
number of relay station antennas during the presentation and
investigation of the numerical results.

Remark 2 (Impact of increasing transmit and receive relay
station antennas): According to [31], the impact of SI cancels
out, when the SI is projected onto its orthogonal complement.
Unfortunately, following this direction, the orthogonal projec-
tion may harm the desired signal, unless the receive antenna
array grows large (tending to infinity). In such case, the
channel vectors of the desired signal and the loop interference
become nearly orthogonal, and actually, the impact of SI is
reduced.

In a parallel path, if the size of the transmit antenna
array is increased, the relay station will be able to focus its

emitted energy into the proper destination users. Moreover, the
transmission towards the receive antennas of the relay station
is avoided. Hence, the SI reduces almost to zero.

Remark 3 (Reduction to HD transmission): Changing the
system model, describing the FD transmission, to HD trans-
mission by neglecting the SI term and changing the prelog
factor in the achievable rate, we reduce to the expressions
providing the DE rates of the private and common messages
corresponding to (35) and (36).

D. Power Allocation

The normal method to obtain the optimal power splitting ra-
tio t, maximizing (23), includes the derivation of the first-order
derivative. However, the complicated form of the solution,led
us to follow a suboptimal power allocation method similar
to [19], where RS outperforms the conventional broadcasting
schemes. Interestingly, the solution allows us to extract useful
observations. According to the main idea, the allocation of
the fraction t results by setting the total transmit power of
the private messages of RS, in order to achieve approximately
the same sum rate as the conventional multi-user BC with full
power. The remaining power is allocated for the transmission
of the common message of RS, which boosts the sum rate. The
gain in the sum-rate of the second link, achieved by the RS
strategy with comparison to the NoRS transmission, is given
by the difference

∆RRD = Rc
RD +

K∑

k=1

(

Rp
RD,k − RNoRS

RD,k

)

. (38)

Proposition 2: The necessary condition, described by
Rp

RD,k ≤ RNoRS
RD,k , becomes equality, when the power splitting

ratio t is given by

t = min

{
K

ρȲ
, 1

}

, (39)

whereȲ =
λ̄ 1

K
(δRD,k)

2

λ̄ 1

K

K∑

j 6=k

QRD,jk

M
+ (1 + δRD,k)

2

. In such case, the

sum-rate gain∆RRD,k becomes

∆RRD ≥ Rc
RD − log2 e. (40)

Proof: See Appendix C.

VI. N UMERICAL RESULTS

This section presents the verification of the accuracy of
the derived DE expressions (analytical results) by means of
comparison with the Monte Carlo simulation results. Moreover,
the numerical illustrations allow to gain insights on the system
performance of the considered model, and mostly on the
impact of SI. In particular, the bullets represent the simulation
results.
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A. Simulation Setup

We consider a Rayleigh block-fading channel, where the
coherence time and the coherence bandwidth areTc = 5 ms
andBc = 100 KHz, respectively. As a result, the coherence
block consists ofT = 500 channel uses. The simulation
topology assumesK = 10 communication pairs, located
randomly inside a disk with a diameter of1000 m. The pilot
length is τ = 20. In each block, we assume fast fading by
means ofhSR,k ∼ CN (0, IN ) and hRD,k ∼ CN (0, IK).
Also, we account for path-loss and shadowing, whereDRS

is aK×K diagonal matrix with elements across the diagonal

modeled asβm
SR,k = 10

s
−1.53
SR,k

d3.76
SR,k

with dSR,k being the distance

in meters between the receive antennam at the relay station
and source UEk, and sSR,k ∼ N (0, 3.16) representing the
shadowing effect [44]. Without loss of generality, we assume
the same large-scale conditions for the second link. In addition,
the power of the uplink training symbols for both links is
ptr = 2 dB [16]. The number of transmit and receive antennas
is M = N = 100. Note that these parameters hold throughout
this section, unless otherwise stated.

B. Robustness of RS in FD systems?-Comparisons

The metric, we employ, to shed light on this meaningful
question is the theoretical DE sum-rate and the corresponding
Monte Carlo simulation. Actually, the theoretical curves are
obtained by means of Theorems 1 and 2 as well as (19) and
(23) by means of (24). On the other hand, the simulated curves
are obtained by averaging the corresponding rate over103

random channel instances. The choice oft took place by means
of Proposition 2. Although the DEs are derived forK, M , and
N → ∞ with given ratios, they coincide with the simulated
curves even for finite valuesK, M , andN9.

1) Comparison between FD and HD: Fig. 1 provides the
comparison between FD and HD strategies in different trans-
mission settings, whenσ2

SI = 0 dB. Specifically, the dashed
black lines denote the FD method, while the red solid lines
depict the HD method. In all cases, FD outperforms HD as
expected. In addition, we show that RS with perfect CSIT for
both FD and HD increase withρ without bound. The practical
scenario, where CSIT is imperfect, is depicted by means of
rate saturation in the case of NoRS, while RS provides an
unsaturated rate. Although the gap between FD and HD is kept
constant at high SNR in the case of NoRS, RS appears to be
even more preferable at the same SNR regime, as expected.
Hence, RS proves to be robust since the rate does not saturate,
and it is even more preferable at high SNR. Overall, RS is
beneficial for both FD and HD, but FD outperforms HD due
to the prelog factor and the mitigation of SI, especially at high
SNR (increasing gap with increasingρ).

2) Varying the severity of SI: Fig. 2 presents the sum-
rate versus the SNR for varyingσ2

SI. Actually, the solid
lines correspond to RS, while the dashed lines represent the

9It is shown that the simulations coincide with the DEs forM = N = 20
number of antennas. Therefore, the DEs provide reliable results even for low
system dimensions. It should be noted that this is not a new observation.
Similar observations have been made in the literature even for an 8 × 8
system [16], [40]–[42].

Fig. 1. Sum-rate versusρ for different transmission techniques and compar-
ison between HD and FD (M = 100, K = 10, T = 500, ptr = 2 dB,
σ2
SI

= 0 dB).

implementation of NoRS. The highest line corresponds to the
smallest value ofσ2

SI, i.e., σ2
SI = −1 dB, because in FD, the

least theσ2
SI is, the largest the rate becomes. Whenσ2

SI = 10
dB, the slope is less than the other cases showing that the
higher theσ2

SI is, the less capable RS is of mitigating the SI.

Fig. 2. Sum-rate versusρ for varying σ2
SI (M = 100, K = 10, T = 500,

ptr = 2 dB).

Fig. 3 illustrates the sum-rate versus the variance of the
SI for ρ = 20 dB, when the number of transmit antennas of
the relay stationM increases. At the same figure, we have
plotted the sum-rate corresponding to the HD case, which
does not depend onσ2

SI, i.e., it is constant with regard to
M (parallel to the horizontal axis). Furthermore, it is exposed
that, as the numberM increases, the impact of SI becomes
less severe, and hence, the sum-rate is higher. Until a specific
value ofσ2

SI, the sum-rate does not change, which means that
the impact of SI is negligible. After this value, the sum-rate
starts decreasing. Moreover, in the case thatM = 100, we can
observe that HD appears with higher sum-rate, if the impact
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from σ2
SI is large enough, i.e.,σ2

SI > 18 dB. For the sake of
comparison, we have included the plots corresponding to the
NoRS transmission. It is revealed that RS provides an increase
in the range of SI over which FD outperforms HD.

3) Varying the Number of Relay Station Transmit Antennas
M : Fig. 4 presents the sum-rate with RS versus the SNR
for increasingM . Clearly, the higher the number of transmit
antennasM , the less severe the SI becomes. In such case,
the sum-rate becomes larger. Moreover, we have added a line
in the case thatM = 200 corresponding to the optimum
solution, in order to compare the results from the proposed sub-
optimum power allocation method and the optimum solution
which is obtained numerically. As can be seen, the solution
provided by the sub-optimum method appears performance,
which is very close to the performance obtained by means
of exhaustive search. Especially, in the high-SNR regime, the
two lines coincide, which shows that the sub-optimum method
behaves as optimum in this region.

4) Varying the Number of Destination Users K: Fig. 5 aims
at the verification that the achievable rate due to common
message degrades with the number of destination usersK,
and also quantifies the sum-rate in the case of FD. Obviously,
increasing the numberK from 5 to 8, the achievable rate
degrades because the common message has to be decoded
by more destination users. A solution for this, known as
hierarchical rate-splitting (HRS), retains the benefits ofRS,
has been presented in [19]. However, the study of HRS in the
case of FD is left for future work.

Fig. 3. Sum-rate versusσ2
SI

for varyingM (σ2
SI

= 0 dB, K = 10, T = 500,
ptr = 2 dB).

VII. C ONCLUSIONS

RS achieves to mitigate the degradation emerged in multi-
user systems with imperfect CSIT. Motivated by this obser-
vation, we proposed the RS strategy to tackle the saturation
occured in multi-pair MIMO relay systems with imperfect
CSIT. Interestingly, we considered relay stations employing
a large number of antennas (massive MIMO), in order to
address the perfomance issues of the forthcoming 5G networks.

Fig. 4. Sum-rate versusρ for varying M (K = 10, T = 500, ptr = 2 dB).

Fig. 5. Sum-rate versusρ for varyingK (M = 100, T = 500, ptr = 2 dB).

Specifically, the objective of this work was to examine the
potential robustness of the RS transmission method in multi-
pair massive MIMO relay systems obeying mostly to the FD
design.

Initially, we presented the RS method and the FD approach.
Next, by considering realistic channels with imperfect CSIT,
we obtained the estimated channels of the first and the second
links. Having applied a conventional multi-user uplink design
for the first link, we assumed the implementation of RS in
the second link. Actually, we provided the DE analysis of the
achievable rate for the first link, and then, for the second one,
where the precoders for the common and private messages
were designed based on RS. Notably, the validation of the
analytical results was demonstrated by means of simulations
that depicted that the asymptotic results can be applicable
even for systems of finite dimensions. Remarkably, RS proved
to be robust in both cases of HD and FD relaying. Further-
more, among the interesting outcomes of this paper, it was
extracted that by increasing the number of relay antennas
or by decreasing the severity of SI, RS appears to be more
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robust. After a certain value of the SI, this property of RS
degrades. Furthermore, we showed that in the case of a dense
environment with increasing number of users, the ability of
RS to tackle SI and multi-user saturation worsens because the
common message has to be decoded by more users. As a future
work, we plan to focus on the robustness of RS in different
system models with altered CSIT. For example, we plan to
implement the RS strategy in millimeter wave systems with
imperfect CSIT that consider hybrid precoding.

APPENDIX A
PROOF OFTHEOREM 1

After appropriate substitution of the MMSE decoder and
scaling by 1

N , the desired signal becomes

1

N
ĝH

SR,kΣ̂SRgSR,k =
1

N
ĝH

SR,kΣ̂SRĝSR,k (41)

=
1
N tr Σ̂SR,kD̂SR,k

1 + 1
N tr Σ̂SR,kD̂SR,k

(42)

=
1
N tr D̂SR,kTSR,k

1 + 1
N tr D̂SR,kTSR,k

, (43)

where we have used [45, Eq. 2.2], and̂ΣSR,k is defined
as Σ̂SR,k =

(
ĜSRĜ

H

SR − ĝSR,kĝ
H

SR,k + ZSR +NαSRIN
)
−1.

Applying [42, Lem. B.26] and [41, Thm. 1], we have
1
N ĝH

SR,kΣ̂SRĝSR,k ≍ δSR,k

1+δSR,k

a.s.−−−−→
Nt→∞

0, where δSR,k =

1
N tr D̂SR,kTSR,k. The DE of the power of the term concern-
ing the estimation error becomes

1

N2

∣
∣gH

SR,k
ˆ̂
ΣSRẽSR,k

∣
∣
2
=

1

N2

∣
∣
∣
∣

ĝH

SR,kΣ̂SR,kẽSR,k

1 + ĝH

SR,kΣ̂SR,kĝSR,k

∣
∣
∣
∣

2

(44)

≍ 1

N

δ
′

SR,k
(

1 + δSR,k

)2 , (45)

where δ
′

SR,k = 1
N tr(DSR,k − D̂SR,k)T

′

DSR,k and K =

DSR,k−D̂SR,k. The DE of the term, including the expression
of the received AWGN noise, is obtained as

1

N2

∣
∣ĝH

SR,kΣ̂SR

∣
∣
2
=

1

N2

∣
∣
∣
∣

ĝH

SR,kΣ̂SR,k

1 + ĝH

SR,kΣ̂SR,k b̂gSR,k

∣
∣
∣
∣

2

(46)

=
1

N2

ĝH

SR,kΣ̂
2
SR,kĝSR,k

(

1 + 1
N ĝH

SR,kΣ̂SR,kĝSR,k

)2

≍ 1

N

δ
′′

SR,k
(

1 + δSR,k

)2 , (47)

whereδ
′′

SR,k = 1
N tr D̂SR,kT

′′

SR,k andK = IN . Note that we
have applied [42, Lem. B.26] and [41, Thm. 1]. The derivation
of the DE of the power of the multi-user interference follows.
We have

1

N2

∣
∣ĝH

SR,kΣ̂SRgSR,j

∣
∣
2
=

1

N2

∣
∣
∣
∣

ĝH

SR,kΣ̂SR,kgSR,j

1 + ĝH

SR,kΣ̂SR,kĝSR,k

∣
∣
∣
∣

2

≍ 1

N2

ĝH

SR,kΣ̂SR,kDSR,jΣ̂SR,kĝSR,k
(

1 + ĝH

SR,kΣ̂SR,kĝSR,k

)2 . (48)

Since Σ̂SR,k is not independent ofgSR,j, the use of [16,
Lemma 2] gives

Σ̂SR,k=Σ̂SR,jk−
Σ̂SR,jkĝSR,j ĝ

H

SR,jΣ̂SR,jk

1 + ĝH

SR,kΣ̂SR,jkĝSR,k

, (49)

which introduces a new matrix̂ΣSR,jk to (48) defined
as Σ̂SR,jk =

(
ĜSRĜ

H

SR − ĝSR,j ĝ
H

SR,j − ĝSR,kĝ
H

SR,k +

ZSR,k + NαSRIN
)−1

. By substituting (49) into (48) and
applying [42, Lem. B.26] and [41, Thm. 1], we obtain
1
N2

∣
∣ĝH

SR,k
ˆ̂
ΣSR,kgSR,j

∣
∣
2 ≍ µSR,jk

N(1+δ̂SR,k)
2 , whereµSR,jk is given

by (50). The derivation of the DE of each term of (50) follows.
In particular, we have

1

N2
ĝH

SR,kΣ̂SR,jkD̂SR,jΣ̂SR,jkĝSR,k

≍ 1

N2
tr D̂SR,kΣ̂SR,jkD̂SR,jΣ̂SR,jk

≍ 1

N2
tr D̂SR,jT

′

SR,jk =
δ
′

SR,jk

N
, (51)

where we have used [41, Thm. 1] and [16, Thm. 2] as well as
we have definedδ′SR,jk = 1

N tr D̂SR,jT
′

SR,jk. Moreover, we

have used̂gH

SR,k
ˆ̂
ΣSR,jkĝSR,k ≍ 1

N tr D̂SR,kTSR,jk = δSR,jk

by means of [41, Thm. 1] and [16, Thm. 2]. As shown above,
application of Lemma [42, Lem. B.26] as well as [41, Thm.
1] and [16, Thm. 2] to the first and second term of (50) gives

1

N2

∣
∣
∣ĝ

H

SR,kΣ̂SR,jkĝSR,k

∣
∣
∣

2

≍ 1

N2
tr D̂SR,kΣ̂SR,jkD̂SR,kΣ̂SR,jk

≍ 1

N2
tr D̂SR,kT

′′

SR,jk =
δ
′′

SR,jk

N
. (52)

Regarding the term including the SI, we have

1

N2
wH

kGRRE [s [n] sH [n]]GH

RRwk =
1

N2
wH

kGRRG
H

RRwk

=
1

N2
ĝH

SR,kΣ̂SRGRRG
H

RRΣ̂SRĝSR,k (53)

=
1

N

1
N ĝH

SR,kΣ̂SR,kGRRG
H

RRΣ̂SR,kĝSR,k
(

1 + 1
N ĝH

SR,kΣ̂SR,kĝSR,k

)2 (54)

≍ 1

N

1
N trDSR,kΣ̂SR,kGRRG

H

RRΣ̂SR,k
(

1 + 1
N trDSR,kΣ̂SR,k

)2 (55)

≍ 1

N

1
N trDSR,kT

′′

SR,k
1
N trGRRG

H

RR
(
1 + 1

N trDSR,kTSR,k

)2 (56)

=
δ
′′

SR,jk
1
N trTRR

(1 + δSR,k)
2 , (57)

where in (54), we have used [45, Eq. 2.2] twice. Next, in
(55), we have applied [42, Lem. B.26], while in (56), [45,
Eq. 2.2] is used. Note that1N trTRR = 1

N trGRRG
H

RR due
to Theorem with the covariance of theith column ofGRR

equal toσ2
SIIN . If we make the necessary substitutions, we

obtain the corresponding deterministic equivalentγSR,k and
this concludes the proof.
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µSR,k = ĝH

SR,kΣ̂SR,jkD̂SR,jΣ̂SR,jkĝSR,k+

∣
∣
∣ĝH

SR,kΣ̂SR,jkĝSR,k

∣
∣
∣

2

ĝH

SR,kΣ̂SR,jkD̂SR,jΣ̂SR,jkĝSR,k

(

1 + ĝH

SR,kΣ̂SR,jkĝSR,k

)2

− 2Re

{

ĝH

SR,kΣ̂SR,jkgSR,kg
H

SR,kΣ̂SR,jkD̂SR,jΣ̂SR,jkĝSR,k

1 + ĝH

SR,kΣ̂SR,jkĝSR,k

}

. (50)

APPENDIX B
PROOF OFTHEOREM 2

First, we derive the DE of the normalization parameterλ.
We start with a simple algebraic manipulation toλ. We obtain
λ = K

tr ĜH

RD
Σ̂2

RD
ĜRD

= K
Ψ . Next, we have

Ψ =

K∑

k=1

ĝH

RD,kΣ̂
2
RDĝRD,k (58)

≍ 1

M

K∑

k=1

1
M tr D̂RD,kΣ̂

2
RD,k

(

1 + 1
M tr D̂RD,kΣ̂RD,k

)2 (59)

≍ 1

M

K∑

k=1

δ
′

RD,k

(1 + δRD,k)
2 ,=

K

λ̄
, (60)

where we have defined Σ̂RD,k ,
(

ŴRD−ĝRD,kĝ
H

RD,k+ZRD+αRDMIM

)−1

with

ŴRD = ĜRDĜ
H

RD. Also, we have applied [41, Thm.
1] and [16, Thm. 2] forL = D̂RD,k and K = IM ,
and we have denotedδRD,k = 1

M tr D̂RDkTRD,k and
δ
′

RD,k = 1
M tr D̂RD,kT

′

RD,k. Hence,λ ≍ λ̄. Regarding the
rest part of the desired signal power, we substitute the RZF
precoder, and after dividing by1M we have

1

M
gH

RD,kΣ̂RDĝRD,k =
1

M
ĝH

RD,kΣ̂RDĝRD,k (61)

=
1
M tr Σ̂RD,kD̂RD,k

1 + 1
M tr Σ̂RD,kD̂RD,k

(62)

=
1
M tr D̂RD,kTRD,k

1 + 1
M tr D̂RD,kTRD,k

, (63)

where we have applied Lemmas [45, Eq. 2.2], [42, Lem. B.26],
and [46, p. 207] in (61) and (62), respectively. Moreover,
we have exploited [41, Thm. 1] in (63) forL = D̂RD,k.
Writing in a concise form the last equation, we obtain
1
M gH

RD,kΣ̂RDĝRD,k =
δRD,k

1+δRD,k
. We continue the proof with

the derivation of the DE of the term of the interference part
of ρj

K

∑K
j 6=k |gH

RD,kfRD,j |2. Making use of [45, Eq. 2.2], we
obtain by means of [42, Lem. B.26] and [45, Eq. 2.2]

1

M2
|gH

RD,kfRD,j|2 =
1

M2
|ĝH

RD,kΣ̂RDĝRD,j |2 (64)

=
1

M2

ĝH

RD,kΣ̂RD,j ĝRD,jĝ
H

RD,jΣ̂RD,j ĝRD,k
(

1 + ĝH

RD,jΣ̂RD,jĝRD,j

)2 (65)

=
1

M2

ĝH

RD,kΣ̂RD,jD̂RD,jΣ̂RD,j ĝRD,k
(

1 + ĝH

RD,jΣ̂RD,j ĝRD,j

)2 , (66)

where in (66), we have taken into consideration thatĝRD,k

andĝRD,j are mutually independent. Given thatΣ̂RD,j is not
independent of̂gRD,k, we employ [16, Lemma 2], which
yields

Σ̂RD,j = Σ̂RD,jk −
Σ̂RD,jkĝRD,kĝ

H

RD,kΣ̂RD,jk

1 + ĝH

RD,kΣ̂RD,jkĝRD,k

, (67)

where the new matrix̂ΣRD,jk is defined aŝΣRD,jk=
(
ŴRD−

ĝRD,kĝ
H

RD,k−ĝRD,j ĝ
H

RD,j

+ZRD +αRD IM
)−1

. After substituting (67) into (66), we

have 1
M2

∣
∣
∣ĝH

RD,kΣ̂RDĝRD,j

∣
∣
∣

2

=
QRD,jk

M(1+δRD,k)
2 , whereQRD,jk

is given by (70). We proceed with the derivation of the DE of
each term in (70). Specifically, we have

1

M2
ĝH

RD,kΣ̂RD,jkD̂RD,jΣ̂RD,jkĝRD,k

≍ 1

M2
tr D̂RD,kΣ̂RD,jkD̂RD,jΣ̂RD,jk (68)

≍ 1

M2
tr D̂RD,jT

′′

RD,jk =
δ
′′

RD,jk

M
, (69)

where we have applied [42, Lem. B.26] and [16, Thm. 2] for
L = D̂RD,k andK = D̂RD,j . Similarly, we have

1

M2

∣
∣
∣ĝ

H

RD,kΣ̂RD,jkĝRD,k

∣
∣
∣

2

≍ 1

M2
tr D̂RD,kΣ̂RD,jkD̂RD,kΣ̂RD,jk

=
1

M2
tr D̂RD,kΣ̂RD,jkD̂RD,kΣ̂RD,jk (71)

≍ 1

M2
tr D̂RD,kT

′′′

RD,jk =
δ
′′′

RD,jk

M
, (72)

where L = D̂RD,k and K = D̂RD,k, and δ
′′′

RD,jk =
1
M tr D̂RD,jkT

′′′

RD,jk. The next term is written as

1

M2
ĝH

RD,kΣ̂RD,jkgRD,k ≍ 1

M
tr D̂RD,kΣ̂RD,jk (73)

≍ 1

M
tr D̂RD,kTRD,jk = δRD,jk, (74)

where in (73), we have applied both Lemmas [42, Lem.
B.26] and [46, p. 207], while in the next equation, we have
applied [41, Thm. 1]. Hence, (70) becomes

QRD,jk≍
δ
′

RD,j

M
+

∣
∣
∣δ

′′

RD,k

∣
∣
∣

2

δ
′

RD,k

M (1+δRD,k)
2

−2Re

{

δ
′′

RD,jkδ
′

RD,k

M (1+δRD,k)

}

. (75)

Making the necessary substitutions, the proof is concluded.
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QRD,jk = ĝH

RD,kΣ̂RD,jkD̂RD,jΣ̂jkĝRD,k+

∣
∣
∣ĝH

RD,kΣ̂RD,jkĝRD,k

∣
∣
∣

2

ĝH

RD,kΣ̂RD,jkD̂RD,jΣ̂RD,jkĝRD,k

(

1 + ĝH

RD,kΣ̂RD,jkĝRD,k

)2

− 2Re

{

ĝH

RD,kΣ̂RD,jkgRD,kg
H

RD,kΣ̂RD,jkD̂RD,jΣ̂RD,jkĝRD,k

1 + ĝH

RD,kΣ̂RD,jkĝRD,k

}

. (70)

APPENDIX C
PROOF OFPROPOSITION2

The private messages of the RS transmission in the second
link achieve almost the same sum rate as the conventional BC
with full power, whenRp

RD,k = RNoRS
RD,k holds. Actually, this

happens, when

λ̄ρt
K (δRD,k)

2

λ̄ ρt
K

K∑

j 6=k

QRD,jk

M
+ (1 + δRD,k)

2

> 1. (76)

Then, thinking that the number of usersK is generally much
larger than1, we set

λ̄ρt
K (δRD,k)

2

λ̄ρt
K

K∑

j 6=k

QRD,jk

M
+ (1 + δRD,k)

2

= K. (77)

Another reason for the dependence of this setting onK follows.
Specifically, let us denote

Ȳ =
λ̄ 1

K (δRD,k)
2

λ̄ 1
K

K∑

j 6=k

QRD,jk

M
+ (1 + δRD,k)

2

. (78)

Since the common message should be decoded by all destina-
tion users, less power is allocated at the common message as
K increases, and equivalently, the rate of the common message
reduces. Thus,̄Y should depend onK.

The power splitting ratiot is chosen ast = K/
(
ρȲ
)
. If

the choice oft is the smallest value betweent = K/
(
ρȲ
)

and1, the inequalityRp
RD,k ≤ RNoRS

RD,k becomes equality. Note
that at low SNR (ρ → 0), t becomes1, which means that
transmission of the common message is not beneficial, while
increasing the SNR, the common message boosts the sum-rate.
Similar to [19], the rate loss in the second link between the
private messages of the NoRS and RS is proved to be upper
bounded as

K∑

j=1

(

RNoRS
RD,j − Rp

RD,j

)

≤ log2 e. (79)

Substituted (79) into (38), we obtain the desired result.
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