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Imaging for a Forward Scanning
Automotive Synthetic Aperture Radar

Shahzad Gishkori, Liam Daniel, Marina Gashinova and Bernard Mulgrew

Abstract—In this paper, we propose a forward scanning
synthetic aperture radar methodology for a forward-looking
automotive (low-terahertz) radar which combines scene scanning
with synthetic aperture processing, resulting in enhanced angular
resolution and improved imaging. We propose two algorithms:
i) a modified back-projection algorithm, and i) a compressed
sensing based back-projection algorithm. We suggest techniques
to reduce computational complexity of the proposed algorithms.
Results of simulation and real-data experiments corroborate the
validity of our proposed methodology and algorithms.

Index Terms—Automotive SAR, forward-looking SAR, tera-
hertz, angular resolution, back-projection, compressed sensing.

I. INTRODUCTION

Automotive (Auto-) radar has received a lot of attention over
the past few years especially in the context of advanced driver
assistance systems (ADASs) and highly automated driving
(HAD) [1]-[3]. The main role of an Auto-radar in these
applications has been restricted to detection and/or collision
avoidance only, whereas scene imaging has mostly been per-
formed by optical sensors, e.g., lidar and camera. Imaging
capability of the optical sensors is substantially reduced in
severe weather conditions, e.g., fog, rain, snow, etc. However,
the radar can provide substantial sensing capabilities even
in such harsh weather conditions, especially when operating
at very high frequencies, and it can create an image of the
scene for both on- and off-road driving. Therefore, we are
primarily concerned with the imaging scenarios where radar
is the only available sensor and all useful information, e.g.,
detection, classification, height estimation, etc, needs to be
extracted from the radar image. Recently, automotive-terrain
imaging capabilities of a low-THz (150 GHz) radar were
presented in [4] by using frequency modulated continuous
wave (FMCW) signalling. Low-THz frequencies provide the
radar with enhanced penetration capabilities and as a result,
the radar can cope with severe weather conditions. However,
imaging is limited to short ranges, which is not problematic
for automotive driving as the maximum imaging requirement
is limited to a fraction of a kilometre only [5]. One major
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challenge for the Auto-radar imaging is its range and angular
resolution, especially when the targets start manoeuvring (e.g.,
changing lanes, etc) at short ranges (0.15 — 30 m) [5], [6].
Range resolution is primarily a function of transmit signal
bandwidth, which can be increased to acquire desired results.
At low-THz, signal bandwidth is of the order of tens of GHz,
which can easily provide range resolution of a few centimetres.
However, angular/azimuth resolution (AR) is a function of the
physical aperture size of the radar antenna. Physical aperture
size is generally limited by the physical constraints and cannot
be changed arbitrarily. One way to circumvent this problem is
to use a synthetic aperture, i.e., the radar illuminates a target
scene at multiple locations and the returns are integrated coher-
ently to generate a long synthetic aperture. This functionality
gives rise to the term synthetic aperture radar (SAR). Given
the movement of the vehicle, SAR processing comes natural
to the Auto-radar. Generally, a side looking SAR (SL-SAR),
i.e., when the axis of radar view is normal to the axis of radar
motion, provides maximum gains of the synthetic aperture.
However, a reduction in this normality causes a reduction in
the effective synthetic aperture. An Auto-radar, in most part
of its functionality, is a forward looking radar (FL-SAR), i.e.,
with a high squint angle, instead of a side looking radar. This
causes a reduction in the effective synthetic aperture. Thus, AR
enhancement of an Auto-radar with SAR mechanism has very
limited gains. This paper tackles the issue of AR enhancement
in this particular scenario.

Prior Works. A lot of work has been done in the past to
enhance AR of FL-SAR. In [7], a sector imaging radar for
enhanced vision (SIREV) has been presented. It is a bistatic
radar with a single transmit antenna and an array of receive-
only antennas. Given the absence of motion between the sensor
and the targets, SAR functionality is emulated by sequentially
switching between the receive antenna elements in combina-
tion with digital beamforming. However, AR is still limited
by the length of the receive antenna array. Some direction
of arrival (DOA) based approaches, e.g., [8]-[10], can also
improve AR. However, these approaches generally require a
priori knowledge of the number of scatterers to be resolved
within an antenna beamwidth and/or their performance can
be limited by the number of available frequency channels. A
large body of literature consists of deconvolution approaches
to improve the AR. Since the signal received in the angular
domain, for a given range bin, can be considered (under certain
assumptions) as a convolution between the antenna pattern and
the targets’ refelectivity pattern [11], a deconvolution process
should improve the AR, in principle. In [12], an iterative
noncoherent AR improvement technique has been proposed.



Processing is done in the frequency domain by approximating
the inverse filter as a geometric series to avoid infinite gain at
higher frequencies. However, due to noncoherent processing,
the phase information is lost. In [13], a minimum mean square
error (MMSE) approach was used to provide adaptive pulse
compression resulting in improved range resolution. The same
approach was used in [14] to propose a linear minimum mean
square error (LMMSE) based method for improving AR. The
AR is improved in comparison to the matched filter (MF)
approach. However, the achieved AR is still comparable to the
antenna pattern beamwidth. In [15], a maximum a posteriori
(MAP) based approach has been proposed to improve the
AR. A limiting factor for this method is the assumption of
Poisson distribution of the targets’ reflectivity/scattering. In
[16], a truncated singular value decomposition (TSVD) based
approach has been presented to enhance the spatial resolution.
This approach was applied to FL-SAR in [17]. However, the
key limitation in this approach is the truncation parameter
which needs to be learnt.

AR improvement through deconvolution is inherently an ill-
posed inverse problem, i.e., the number of unknowns (i.e.,
angular bins to be resolved) can be much larger than the
number of available measurements. This is also referred to
as an under-determined problem. The ill-posed nature of the
problem can be circumvented by using certain regulariza-
tion techniques. This can also result in enhancing certain
features of the target scene, e.g., sparsity, grouping of the
targets and non-negative nature of their reflectivities, etc.
In general, the problem is formed as a least squares (LS)
minimization problem regularized by various constrains. A
common regularization technique, with connotations to the
Wiener filter, is Tikhonov regularization which penalizes the
LS cost function with an f3-norm penalty. This can result
in a unique solution to the problem. However, this method
is devoid of sparsity. Replacing the ¢5-norm penalty with an
£1-norm penalty can offer a sparse solution. This observation
forms a key component of a recently introduced technique of
compressed sensing (CS) [18], [19], as a solution to the under-
determined problem. CS has been used in the radar related
problems in a number of papers, either to create sparsity or to
improve resolution (azimuth/range) or to reduce speckle, etc.
(see, e.g., [20]-[22] and references therein). In [23], CS was
used to improve the AR of a scanning phased array radar.
AR improvement is achieved by oversampling the antenna
pattern and by solving the resulting under-determined system
by CS. Constraints on the measurement process are satisfied
by limiting the number of targets in the scanned scene. In
this paper, we use a similar approach to increase AR of
an Auto-radar for a given range bin. However, our method
includes SAR processing as well, which has the ability to
enhance AR even further. In terms of SAR processing, a
number of classical algorithms are available, e.g., Doppler
beam sharpening (DBS), range migration algorithm (RMA)
[11], back-projection (BP) [24], and their variants. Except
for BP, most of these techniques have their limitations and
can perform only under certain conditions. BP algorithm, on
the other hand, is quite flexible and it can accommodate a
variety of imaging scenarios. However, a limiting factor for BP

algorithm is its computational complexity. Nonetheless, some
fast implementations of BP are also available, as explained in
subsequent sections.

Our Contributions. In this paper, we provide signal processing
techniques to enhance AR of the Auto-radar with the aim
of forming a 2-D radar image. We use a monostatic FMCW
radar working at low-THz frequencies. The radar scans the
target scene at multiple look angles and then moves forward
to the next scanning position/step over the aperture. We call
this process as forward scanning SAR (FS-SAR). Note that
steering the radar beam at multiple look angles can be done
mechanically as well electronically. For the ease of explana-
tion, we assume here a mechanically steered beam. We develop
algorithms for the FS-SAR mode and verify their effectiveness
via simulation as well as real-data experiments in controlled
laboratory conditions. Note, on-the-road experiments are out
of the scope of this paper since the main objective here is
to introduce novel techniques to provide AR enhancement for
Auto-radar imaging. The salient features of our paper can be
detailed as below.

1) We propose an FS-SAR methodology as a new mode
of SAR operation. We use Auto-radar as our primary
application. However, the FS-SAR methodology can be
extended to other forward looking scenarios.

2) We present a mathematical analysis for the composite
antenna pattern generated by FS-SAR. We show that
FS-SAR methodology causes an improvement in the
effective aperture and an increase in the composite
antenna gain. This results in the enhancement of AR.

3) We present two algorithms for the FS-SAR mode, i.e.,
a modified back-projection algorithm, and a compressed
sensing based back-projection algorithm. The modified
back-projection algorithm jointly utilizes the radar re-
turns from all the angles and all the aperture positions.
This algorithm can work directly on the radar returns
and does not necessarily require any pre-processing. The
compressed sensing based back-projection algorithm en-
hances AR by reconstructing an individual scan followed
by SAR processing over the reconstructed returns of all
the scans. This algorithm capitalises on the sparsity of
the scene and it has the ability to reconstruct extended
targets in the radar image.

4) We show that the computational complexity of the
proposed algorithms is not a bottleneck for their prac-
tical implementation and it can be easily managed by
using the already available techniques on complexity
reduction.

5) We verify our proposed methodology and algorithms
via both simulation as well as real-data measurements.
We show that our methods can perform better than the
existing technique.

Organisation. Section II presents the system model, Section
IIT gives details on the FS-SAR methodology by using the
composite antenna pattern, Section IV describes the proposed
algorithms, i.e, modified back-projection and compressed sens-
ing based back-projection, along with their computational
complexities, Section V demonstrates the effectiveness of



the proposed methods via simulation as well as real-data
experiments and conclusions are given in Section VI.

Notations. Matrices are in upper case bold while column
vectors are in lower case bold, [X]Z ; s the ijth entry of the
matrix X, Iy is the identity matrix of size N x N, Oy is a
vector of zeros of size N x 1, (-)T denotes Transpose, (-) is
Hermitian, (-)~! denotes inverse, |-| is the floor function, ®
stands for the Kronecker product, x describes the convolution,
X is the estimate of x, = defines an entity, 7{-} describes a
Fourier transform operation, 1 .- (X) upsamples the matrix
X by an order s along its rows and by an order ' along its
columns, O(+) is the big O notation for complexity and the £,,-

norm of a vector x is denoted as ||x||, = (Zf\!ol |[x]s|P)'/P.

II. SYSTEM MODEL

Traditional SAR has two basic modes of operation: %)
stripmap mode SAR (Strip-SAR), where the radar illuminates
a target scene at a fixed look angle (LA) while moving on
along its aperture, and i) spotlight mode SAR (Spot-SAR),
where the radar illuminates a fixed target scene from multiple
LAs. Our proposed FS-SAR mode of operation for Auto-SAR
has somethings in common with 7) and 4¢). At each scan step,
the radar scans the target scene at different LAs and then
moves on to the next scan step over the aperture. However,
in our case, neither the target area remains fixed as in Spot-
SAR, nor the LA remains fixed as in Strip-SAR. The contrast
between standard SAR modes and FS-SAR mode of Auto-
SAR generates new opportunities as well as new challenges.
Our aim here is to capitalise on the opportunities and tackle
the challenges for an improved radar imaging.

The FS-SAR can schematically be represented as in Figure
1, for 2-D processing. It has multiple scan steps, [, along
the synthetic aperture, ie. [ € [—(L — 1)/2,(L — 1)/2].
For each scan step, the radar scans at multiple LAs, 6, with
angular range, 6 € [—0max, +0max|- The target range, r is
the Euclidean distance between the target and the radar with
r € (0, Rimax]- The target scene is visualised in a Cartesian
coordinate system (CCS), i.e., target location is represented
as (x;,y;) with z; and y; being coefficients of z-axis and y-
axis, respectively. The target can also be represented in a polar
coordinate system (PCS), i.e., 7;;/0;;, where r;; = /22 + yf
and 0;; = arctan(y;/z;) (w.r.t. the current position of radar).
Note, Figure 1 shows the radar moving along z-axis only.
However, it is not a limitation of the proposed method and
the radar can undertake any kind of motion, in principle.

In our system model, we assume that the radar works on
a stop-and-go principle, i.e., the radar is static during the
transmission of an FMCW pulse. In general FMCW pulses
are long. Therefore, stop-and-go assumption may not remain
valid, as there is a possible motion of the radar platform during
the transmit pulse, giving rise to the instantaneous Doppler.
A number of methods are available to compensate for such a
radar motion, both in the frequency domain, e.g., [25], [26] and
in the time domain, e.g., [27]. In our case, our proposed algo-
rithms work in the time domain. Therefore, we can easily use
the approach of [27] to compensate for the radar motion during
the transmit pulse. This essentially comprises of shifting the

—

| >

Ny

1
Synthetic Aperture (1)

Fig. 1. FS-SAR schematic (2-D).

pulse contributions by a term which is a function of radar
velocity and the squint angle between radar and the target.
However, to keep the model simple, in this paper we continue
with the stop-and-go principle. Nonetheless, extensions for
instantaneous Doppler compensation are straightforward and
they do not affect our proposed approaches.

Let the generic FMCW transmit pulse be of the form

sTX(t) = exp (j27 fot + jmpt?) (1)

where fy is the carrier frequency, 3 £B /T is the chirp rate
defined as the ratio between bandwidth B of the transmitted
signal and pulse repetition interval (PRI) 7, and ¢ is the fast
time variable valid within the PRI, i.e., 0 < ¢ < T'. We assume
that one such pulse is transmitted at every LA!, over the
complete aperture. The received signal is the sum of reflections
from different scatterers within the radar beamwidth. At [th
scan step and 0th LA, the received signal can be written as

U
sﬁg(t) = Z o exp (2 folt — m,0(w)] + B[t — 11,0 (w)]?)

u=1

2
where «, is the reflectivity coefficient (which includes the
effects of range related variations in the back-scattered energy)
and 77,9 (u) is the two-way time delay of the uth scatterer. Note
that the total number of scatterers U can vary for different
scan steps and LAs but we assume them to be the same
here for ease of notations. The received signal is mixed with
the transmit signal, a process known as deramping, and low-
pass filtered, generating an intermediate frequency, also known
as beat frequency, corresponding to individual targets. The
resulting signal can be written as

U
Sie(t) = Z o, exp(j2m for,e(u)) exp(52m 87,0 (u)t)

u=1

x exp (—jmBrig(u)) (3)

where the frequency of the sinusoid exp(j2757 ¢(u)t) car-
ries information regarding target range, which can be easily
observed by doing a Fourier analysis of (3), the exponent

'Note, one pulse per LA is assumed for the sake of simplicity. However,
multiple pulses per LA can also be considered, in principle.



J27 fomi,0(w) is important for SAR processing because it traces
a target over the aperture, and the exponent jm37; (u)? is
the unwanted phase term, also known as residual video phase
(RVP), which can be removed via a deskewing process. Note,
the deskewing process essentially applies a frequency depen-
dent filter in order to remove the RVP which is proportional
to the delay (i.e., range) [28]. Applying deskewing on (3), we
can write,

sto(t) = F - {F{s1o(t)} exp(jmf?/B)}
U
~ > ay exp(j27 fori o(u)) exp(j2r AT e(u)t)  (4)
u=1
where f is the frequency parameter corresponding to ¢. The
range profile can be generated by taking the Fourier transform
of s;¢(t) and then using a linear transformation from the
frequency domain axis to the range domain axis [24], i.e.,

r10(r) = ]:{Sl,e(t)}b:g;g ®)

where r being the range variable with linear transformation,
r = fc/2B. Sampling the range domain at the Nyquist rate
means that the range resolution, A,., can be defined as, A, 2
¢/2B, and the range bin can be referenced as, r,, , for n, =
0,1,---, N, — 1, where, N, = Riax/A,. Now, let us focus
on scene variations along the azimuth, for a specific range bin.
From (5), we can represent the target scene reflectivities along
azimuth for the r,, th range bin by ;. (0), ie.,

Ly, (0) = {xlﬂ (an )

Note, we drop the subscript n,- from x;,,., (6) in the following.
The received signal along the azimuth can be considered as
a convolution between the antenna beam and the target scene
reflectivities at a given range bin [11]. If h(6) represents the
antenna beam of angular length 2¢ (i.e., the antenna beam
pattern is uniformly sampled over —¢ to +¢), then the signal
measured along the azimuth, for range r and scan step [, can
be written as

Y1 (8) = h(0) *x z1 - (0) + 1y (6) (7

where y; (6) is the measured signal and n; ,-(#) is additive
white Gaussian noise (AWGN) with element wise variance,
o2. The angular resolution of a radar is essentially a function
of its 3 dB beamwidth, i.e., O345. Let the azimuth domain
is sampled at an angular interval, 09 = 63qp/(, where ( is
a positive integer and its value depends on the required AR.
For very high AR, ¢ > 1. Then, we can represent i(f) as
an Nj, x 1 vector, h = (=), h(—p + 65), - - , h(+¢)]7,
where, N, = |2¢/dp] + 1. Due to physical limitations, the
radar is not able to take measurements at as fine an angular
sampling interval as dg. Therefore, let the angular interval for
measurements is represented as, Ay = £dp, where & > 1.
For a very coarse angular measurement interval, & > 1.
Then, we can represent y; -(6) as an Ny x 1 vector, y; , 2
[yl,r(_emax)7 yl,r(_emax + A9>7 e 7yl,r(+0max)]Hs where
Ny = [20max/Ng| + 1. Similar to h(6), x;,(8) can be repre-
sented as an N,, x 1 vector, x; . 2 [xm(fémax), zlvr(fémaer
89), 2 (H0max)] T, Where Orax = Oimax + (V) — 1)85/2

P’ (6)

0=—0Omax "

and N, = &Ny + Np — 1. Note, by introducing Ormax
in x;,, we make sure to account for all the contributing
targets within the radar beamwidth, for each measurement.
Finally, n;,(f) can be represented as an Ny x 1 vector,
ng, = [nl,r(_emax); nlﬂ‘(_emax + AQ)» T ;nl7r(+9max)]H
Thus, we can write (7) in the following discrete form.

Yir= GHXZ,T' + n; ., (8)
where H is the (§Ng — 1) x N, Toeplitz matrix, defined as

H T
h O(Nm—Nh,)

©))
O?NI—N;L) ht

depicts the convolution between antenna beam pattern and the
target scene, and G is an Ny x (§Ng — 1) selection matrix,
i.e, [G}ng,: = [I(gNg—l)}(fng—f—&-l),:s for ng = 0, 1, s ,Ng*]..
Here, we assume H to be the same for each scan step as well
as for each range bin. This assumption has been considered for
the sake of simplicity. However, variations in H with different
scanning steps can easily be accommodated in the model. Now,
for all range bins, we can modify (8) as

Y, = GHX; + N;
Y, 2

where Yi,0,¥1,8,, ,}’l,(N,,A,,—NT)],

A A
X, = [xo0XA, X (NA—N,)] and N =
M0,y A,, 0 (N,A,-N,)] are Np x N., N, x N,

and Ny x N, matrices, respectively.

III. FS-SAR METHODOLOGY

Our main goal is to use SAR concepts to enhance the AR
of an Auto-radar. However, Auto-radar functions as an FL-
SAR, most of the times. Therefore, standard SAR can make
only limited contributions to the AR enhancement. The FS-
SAR methodology increases SAR capabilities by scanning the
target scene at multiple LAs over the complete aperture. In
this section, we show how FS-SAR method can contribute
to the AR enhancement of an Auto-radar, by comparing its
composite antenna pattern with that of the standard SAR.

A. FL-SAR Antenna Pattern

Conceptually, a synthetic aperture is similar to a phased
antenna array, in that each point on the aperture can be
considered as an antenna element. However, the difference is
that all the elements are not activated at the same time and
the output of the synthetic array can be computed by adding
the individual contributions of each element. The synthetic
aperture comprises of the complete stretch of the synthetic
array. This is the case for an SL-SAR, i.e., the LA of the
radar is normal to the velocity of radar platform. For the FL-
SAR, the LA of the radar is not normal to the velocity of
the radar platform. Therefore, effective aperture is reduced
and this reduction is proportional to the LA. Figure 2 shows
the schematic of a SAR, where L is the total length of the
synthetic aperture with N; antenna elements of spacing A,
ie.,, L = N;A;. At an LA 6, the effective aperture is given



Aysin,

Fig. 2. (FL-)SAR: Synthetic antenna array for LA, 6.

as Lsin@,, and the element spacing amounts to A; sin 6,,. To
find the antenna pattern of the synthetic array for the 6,,th LA,
let a continuous signal exp(j2x ft) is transmitted from n;th
aperture element, for, n; = —(N; — 1)/2,--- ,(N; — 1)/2.
Given a single target scatterer at a distance r, and angle 6,
from the n;th aperture element, the composite received signal
of the synthetic antenna array can be written as

sg, (t) = Z exp{j2nf (t — 2r,/c+ 2n;A;sin 0, sin 6, /c)}
=C, Z exp{j2mn;A;sin b, sin 6, /\}
ny
., sin(2rNiA;sin 6, sin 6,/ \)
~ " N;sin(2wA; sin 6, sin 6, /\)
~ C, sinc(2mrN; A sin 6, sin 6,/ \)

(1)

where C,, = exp{j2nf(t — 2r,/c)}, and we use the approx-
imation, sin(p) =~ ¢, for small ©?>. We can see that (11)
generates a symmetric antenna pattern of an FL-SAR. The
angular resolution can then be determined by finding the angle
at which the sinc function produces a first null. This happens
when

A
5 = — 12
sin 6 2L sin 6, (12)
and the AR can be calculated as
A
AFL—SAR _ Ty ) 13
AR 2L sin 6, (13)

From (13), we can see that the effect of synthetic aperture is
maximum when radar functions as SL-SAR. However, in case
of FL-SAR, effective aperture decreases proportional to the
LA, ie., 0,,.

B. FS-SAR Antenna Pattern

In FS-SAR approach, we scan the target scene at mul-
tiple LAs for each aperture element. Figure 3 shows the
schematic for synthetic array with multiple LAs, parameterised
by 6. Following (11), we can write the composite signal
received at the synthetic array for multiple LAs 6,, for

Note, this approximation is used for the sake of compact representation
only. However, it is not imperative for the validity of the analysis.

Fig. 3. FS-SAR: Synthetic antenna array, with multiple LAs.

n=—(Ng—1)/2,--,(Ng— 1)/2, as
s(t) =Y sa,(t)

~ C, Z sinc(2w N} A sin 0,, sin 0,/ \) (14)

which also provides the symmetric composite antenna pattern
for FS-SAR method. Finding a closed form solution of (14) is
difficult. However, in order to find the Rayleigh beamwidth of
the composite antenna pattern, we make an approximation.
We can see from (11) that for each 6,,, the sinc function
produces a null when its argument equals 7. Following this
observation, we can assume that the sum of Ny sinc functions
would produce a null when the sum of their arguments equals
Ny, approximately, i.e.,

> 2aNy A sin 6y, sin 0, /A = Ny, (15)
From (15), Wencan see that the first null occurs when
sinf, = Mz]:\ii):\iml (16)
and the AR then takes the form
ARR A = zLTzNZile a7

By comparing (12) and (16), we can understand the basic
difference between the standard SAR and the FS-SAR ap-
proach. For an FL-SAR with an LA 6,,, the effective aperture is
given by Lsin 6, i.e., the aperture is decreased by an amount
proportional to the LA. Whereas, for FS-SAR approach, the
effective aperture is given by L) sin#,/Ny, the aperture
is decreased by an amount proportional to the mean of the
LAs. Thus, if the target is situated at the boresight of a very
low LA, then, coherently adding its reflectivities with returns
at slightly higher LAs, can basically increase the effective
aperture. Figure 4 shows the simulation results of FL-SAR
antenna pattern at different LAs and the composite antenna
pattern of FS-SAR approach. For FL-SAR, the beamwidth of
antenna pattern increases with decreasing LA. However, the
beamwidth of the antenna pattern with FS-SAR approach can
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be approximated with the mean of the beamwidths of the range
of LAs. Figure 4 also shows the approximate value of the
15¢ null for FS-SAR antenna pattern. Note that in Figure 4,
we have plotted a normalized version of the FS-SAR antenna
pattern. The effect of FS-SAR approach is not only in terms
of improvement in the effective aperture, but also in terms of
an increase in the composite antenna gain. Figure 5 shows
the antenna patterns with actual values of the antenna gains.
We can see that the FS-SAR approach exhibits higher antenna
gains which are proportional to the range of LAs. We also
mark the f34p points for all the cases. Here too, we can see
that the 3 dB beamwidth of the FS-SAR approach can be
approximated as the average of 3 dB beamwidths of FL-SAR
at different LAs.

IV. FS-SAR ALGORITHMS

In this section, we provide two algorithms to implement FS-
SAR methodology. Our approach is based on BP. Despite high
computational requirements of BP, its flexibility for different
SAR mode of operations makes it a feasible candidate for
generating image of an Auto-radar. In this section, we also
provide insights into reducing computational complexity of
our proposed algorithms.

A. Modified Back-Projection

We first introduce a modified version of BP. The basic

principle of BP is to project all the measurements from each
scanning step, on the aperture, back to the target location.
Thus, measurements corresponding to the target location from
all the scanning steps are coherently combined to generate a
composite response of the synthetic aperture®. To this end,
the measurements are upsampled via interpolation in order to
correspond to a finer location grid in range, and subsequently
integrated over the aperture to generate a SAR image. In our
case, along with range domain, we gain extra information from
the angular domain. Therefore, the interpolation can be done
both in the range as well as in the azimuth. This phenomenon
leads to the modification of the standard BP.
Let us represent Y; from (10) in its upsampled form, by means
of interpolation (in both range and azimuth) as, 1. . (Y;),
where, 1, ./ (-) denotes an upsampling function which inter-
polates a matrix by an order x along its rows and by an order
k' along its columns®. Note, we assume k = x/, in our case’.
Given the target scene in CCS, the reconstructed image via
modified BP (MBP) can be written as

'Y%IBP = ZZ[TI{,I{ (Yl)]G,ITU
0 1

where I, is the column index in 1 . (Y;) corresponding

(18)

to range 7;; = /(x; — 1)? 4 y3. Now, the following remarks

regarding image reconstruction via MBP in (18) are in order.

1) The measurements are upsampled via interpolation over
both the azimuth and the range domains.

2) Unlike traditional BP (where either the LA is fixed, i.e.,
for the case of Strip-SAR, or target range is fixed, i.e.,
for the case of Spot-SAR), the target information lies
both in the range and the LAs, which is exploited by
integrating over the aperture as well as over the angle.

3) Accumulation of back scattered energy over the angle
and the aperture domains results in enhanced AR and
better radar image reconstruction.

B. Compressed Sensing Based Back-Projection

The FS-SAR method generates target information over both
the aperture and the angular domains. Thus, the target response
can be greatly increased. The MBP algorithm is essentially an
MF operation in both the angle and the aperture domains. It
has the ability of capturing all of the target back-scattered
energy. However, it is not efficient in creating stark contrast
of reflectivity between neighbouring scatterers. To this end we
use CS, so that the radar image should consist of very bright
scatterers only, and the insignificant scatterers are suppressed.
Our approach here is to use CS for each step on the aperture
and then use standard BP to fulfil SAR processing.

Given the [th aperture step, we can apply CS over the azimuth

3Note, this is essentially a matched filtering operation in the aperture
domain.

“Note, interpolation by an order &, basically inserts 2% — 1 sample points
between the original samples, where the values of the newly interpolated
sample points depend upon the type of interpolation used.

STraditionally, an upsampling factor of £ = 2 can provide substantial gains.



for each range bin, or we can apply CS jointly for all the
range bins within the maximum range at /th aperture step. In
this paper, we choose the latter. In this manner we can exploit
target features for a wide range of scene targets. Let us rewrite
(10) in the following vectorised form.

v = [In, ® (GH)]x; + ny (19)
N—_ ——

1>

Ll

where y; = vec(Y)), x; = vec(X;) and n; = vec(IN;) are
NgN, x1, NN, x1 and NyN, x 1 vectors, respectively, and
® = [Iy ® (GH)] is an NyN, x N, N, joint measurement
matrix. Since Ng < N,, (19) is an under-determined system
of linear equations. Therefore, CS techniques can be helpful
in finding an estimate of x;. This is generally done by solving
the following optimisation problem (OP).

% = argmin |y, — ®xi[|; + A x| (20)
where A > 0. For (20) to provide a stable and unique solution,
the CS framework puts certain conditions on the measurement
matrix (i.e., ® in our case), in order to guarantee the unique-
ness and optimality of the sparse solution. One parameter of
these conditions (which is easily verifiable as well) is known as
mutual coherence (MC) [29]. MC is defined as the maximum
absolute value of the inner product of different columns of the
measurement matrix. It basically indicates the interdependence
of the columns. In general, a lower value of MC can provide
better results. Another parameter (which can be related to
MC) is known as restricted isometry property (RIP) [30]. A
measurement matrix (with unit normalised columns) is said to
satisfy RIP of order K, given dx € (0,1), if

L

1—-0x) <
=0 < e

(1+4dk) 2D
where K = ||x;]|0. In general terms, it means that the matrix
® preserves Euclidean length of x; and that every submatrix of
® with less than K columns acts like an orthonormal matrix.
The effect of these performance parameters generally boils
down to a relationship between the number of measurements
and the number of unknown nonzero elements to be estimated,
ie., K, for different measurement matrices, e.g., Gaussian,
Bernoulli and partial Fourier matrices [31]. A common char-
acteristic of these measurement matrices is some form of
randomness which makes sure that the elements in these
matrices are spread out, i.e., their values are not concentrated
on any specific location. In our case, the measurement matrix
corresponds to the measurements taken at uniform angular
interval Ay. In order to conform to the conditions of MC
and RIP, we can either, 7) take measurements at completely
random angular intervals, i.e., Ay is a random variable, or i7)
introduce jitter to the uniform sampling interval [32], i.e., the
angular sampling interval becomes Ay + ¥,,, where 9, is
an independent random variable for, ng = 0,1,--- , Ng — 1.
The choice between ¢) and ) depends on the possibility of
their implementation in hardware. However, generally, angular
samples are available for uniform intervals only. Some works,
e.g., [23], provide heuristic assessments for using uniform an-
gular samples to obtain reasonable performance results. In this

paper, we continue with the measurements obtained at uniform
angular intervals. However, it is clear that the availability of
better measurement matrices would only provide even better
results.

The OP in (20) is known as least absolute shrinkage and
selection operator (LASSO) [33]. Its basic characteristic is to
generate a sparse estimate of x;, where the order of sparsity is
determined by the parameter A\. However, LASSO is devoid of
exploiting any inherent structure in the elements of x;, other
than element wise sparsity. A road scene, generally, consists of
objects, e.g., cars, cycles, poles, etc., which have a continuum
of a reflective surface. In this backdrop, it is better to use
an OP which retrieves the correlations between consecutive
elements of x;. To this end, we propose to use fused LASSO
(F-LASSO) [34] for Auto-radar imaging. The F-LASSO OP
can be written as

%, = argmin ly; — ®xilly + Alxally + As IDxilly - (22)

where A is a fusion penalty parameter (nonzero and positive)
and D is the N, N, x N,N, fusion matrix, defined as

-1 +1 0 0 --- 0 0
o -1 41 0 --- O 0
D= oo (23)
0 0 0 O -1 +1
0 0 o 0 --- 0 +1

with the result that |[Dx; ||} = S22 |1 )] — X1 ||,
i.e., it relates to the difference of consecutive elements in
x;. Thus, F-LASSO penalises both the elements of x; as
well as their difference by an ¢;-norm. As a consequence,
the reconstructed signal is parsimonious but also exhibits
smooth transitions over its elements. This phenomenon leads
to enhanced AR as well as an improved radar image.

The cost function in OP (22) is convex, in principle. However,
for large-scale problems, iterative solvers are preferred. Since
the cost function in (22) is neither continuously differentiable,
nor separable in the elements of x;, we suggest to use an
alternating direction method of multipliers (ADMM) [35], [36]
based solver to estimate x; (i.e., X;) in (22). Now, let the
estimate X; is reshaped into an N, x [N,, matrix X,°. By using
Xl, the radar image can be reconstructed via CS based BP
(CBP) as

T = Z[Tl,n (X5, 1

(24)
. J J

where 1 0. is the row index and Im is the column index in 1y

(X;), corresponding to angle 6;; = arctan((z; — [)/y;) and

range r;;, respectively. Now, the following remarks regarding

image reconstruction via CBP in (24) are in order.

1) Upsampling via interpolation is done in the range do-
main, whereas upsampling in the azimuth domain might
be unnecessary since CS based reconstruction provides
ample upsampling itself.

2) Integration is done only over the aperture domain. Since
CS based reconstruction is in the angle domain, it

6Note, this is just a reverse operation of %; = vec(X;).



provides better alternative to MF operation, resulting in
sparse reconstruction.

3) By combining CS based reconstruction over the angle
domain with SAR processing, (24) guarantees enhanced
AR and a better Auto-radar image.

C. Computational Complexity

Our proposed algorithms essentially build upon BP. There-

fore, the computational complexity of our algorithms is pri-
marily determined by the implementation of BP. A number
of techniques have been proposed in the literature to reduce
the computational complexity of BP, e.g., [37]-[39]. In this
section we explain how these techniques can be used in
connection with our proposed algorithms to reduce the overall
computational complexity.
Let the target scene is represented by an N x N pixel
image/grid in CCS. Then, the computational complexity of
BP is equivalent to collecting the total number of operations
involved in finding the contribution of each image pixel in
every measurement of the target scene. In this respect, the
computational complexity of MBP can be written as

CMBP — O(NyN;N?) (25)

where O(-) denotes the order of complexity’. From (25) we
can see that the major source of computation is to back
project every measurement over the whole pixel grid. As
pointed out in [37], if a subset of measurements (where
the subset can be chosen based on the property of nearness
among measurements) is back projected on a Polar grid, we
can reduce the frequency of mapping the measurements to
the Cartesian grid. In our case, the angular measurements
at a particular aperture position, share a common point of
reference. Therefore, we can back project all of the angular
measurements on the Polar grid, in principle, and then map the
measurements to the Cartesian grid for a particular aperture
position.

Similar ideas can be utilised to reduce computational com-
plexity over the aperture domain as well. The basic principle
of all types of fast implementations of BP over the aperture
domain is as follows: Partition the aperture into small sub-
apertures, each subaperture corresponds to a coarse resolution
so requires low computational complexity, combine all the
subapertures into a final high resolution image. This aperture
partitioning and combining can either be of a single level
[37] or of multiple/hierarchical levels [38]. In the light of the
above discussion, the computational complexity of our MBP
algorithm can be generalized as

CMBP ~ O(log, (N;)N?) (26)

where log, (N;) is the number of hierarchical levels of the
aperture in fast implementation of BP and b is the factorisation
basis®.

For CBP, the computational complexity over the aperture is
the same as that of the MBP. However, in the angular domain,

"Note, here we have ignored the complexity of operations involved in
upsampling/interpolation
8Note, b = 3 has been found to be the optimal factorisation basis [40].

Amplitude [dB]

Angle [deg]

Fig. 6. Antenna Pattern.

the computational complexity depends upon the reconstruction
algorithm used to estimate x;. Most of the CS reconstruction
algorithms have cubic or quadratic order of complexity. How-
ever, iterative approaches can have computational complexity
lesser than quadratic. Nonetheless, CS based reconstruction
in CBP is carried out in the angle domain. Therefore, the
reconstructed image is automatically defined on a Polar grid.
Thus, the computational complexity of CBP can generally be

approximated to be similar to that of MBP, i.e., C°BF =~
CMBP

V. EXPERIMENTAL VERIFICATION

In this section, we provide the experimental verification
of our proposed algorithms and methodology via simulation
as well as real-data experiments. We consider an FMCW
monostatic radar operating at carrier frequency, fo = 150
GHz. We consider the radar signal bandwidth as, B = 6 GHz.
Therefore, the range resolution can be calculated as, A, = 2.5
cm.

A. Simulation

Following the radar specifications of [4], the 3 dB
beamwidth of the horn antenna (for the considered radar) can
be approximated as, 0345 =~ 2°. As is clear from Section
II, knowledge of the exact beam pattern is essential for AR
improvement, so we consider the beam pattern of a horn
antenna as described by [41], which can be related to a mixture
of Gaussian pdfs, i.e.,

B2(0) = 3 axexp(9 — jui)?/03) @7)
k

where variance 03 is set according to fs34p, and coefficients
ar and positions pj, are adjusted deterministically to emulate
the beam pattern suggested by [41]. Figure 6 shows such a
beam pattern that has been used in our simulations. Notice
the presence of sidelobes in the beam pattern. Their role can
be crucial in determining the success of any AR enhancement
methodology.

We consider the target scene as a grid, i.e., consisting of cells,
in the CCS. A target may occupy a number of cells (i.e., an
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Fig. 7. Auto-radar measurement path.

extended target). We consider the size of these cells equal
to the range resolution in both axes. For the simulation, we
assume the target scene to be an area of 2 x 10 m?. The radar
moves along the z-axis at y = 0. However, this movement
pattern is just for the sake of presentation and does not limit
the proposed methods. Figure 7 shows the radar path. Over the
aperture, we consider N; = 5 aperture steps with the distance
of A; =5 cm between consecutive steps. Due to the FS-SAR
methodology, the target area which is visited by radar more
than other areas, acquires higher back-scattered energy. This
can be seen in Figure 7 by areas lit up with higher intensity.
We consider 0,,,x = 7°. Therefore, the radar scans from —7°
to +7°, with angular steps, Ay = 0.2°. Maximum range for
each scan is limited to, Ry.x = 9 m.

We set up a target scene which exhibits the nature of a typical
road scene, i.e., consisting of extended targets. We consider
eight target objects. Each target spans 5 x 3 group of cells.
The distance between the objects along z-axis (which can be
related to the range in our case), consists of two cells, i.e,
5 cm. The distance between the objects along y-axis (which
can be related to the azimuth in our case), consists of ten
cells, i.e., 25 cm. Figure 8 shows the target scene. We generate
measurements of the target scene according to (7). We assume
AWGN for an SNR of 10 dB. The SNR is defined in terms
of (19) as

|13
N, QN r0 2’

We generate measurements for every LA at every aperture
step. However, we represent them collectively in Figure 9,
superimposed on each other. We can see that the objects
are distinguishable in the range domain, primarily because of
the fine range resolution of the radar. However, the azimuth
domain cannot resolve the target objects.

Figure 10 shows the result of reconstructing the image via
MBP. In comparison to unprocessed measurements, the image
constructed via MBP is better. The target objects in the
azimuth domain are not strikingly apart. However, we can
see a border distinguishing the objects. Figure 11 shows the
reconstructed image via CBP. We see better results than MBP.

SNR = (28)
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Fig. 8. Target Scene in the CCS.

Each object has been reconstructed in its entirety. Target
objects are clearly distinguishable both in the range as well
as in the azimuth domain. The image is also free from any
specular artefacts. Note that for CBP, we chose iterative solvers
to estimate x; in (22). The tuning parameters A and Ay can
be chosen via a cross validation procedure [42]. For the sake
of comparison, we also construct the image with OMP. Note,
OMP essentially solves an fp-norm (constrained) OP, instead
of an /;-norm (unconstrained) OP in (20). Figure 12 shows
the reconstructed image. We can see that our proposed CBP
approach performs much better than OMP. This is because of
the inherent properties of the F-LASSO, i.e., to preserve target
features as well as create parsimony in the solution.

B. Real Data

In this section, we apply our proposed algorithms on the
real data obtained via the FS-SAR methodology in controlled
laboratory conditions, as an illustration. We consider two
trolleys, separated by a certain distance, as our targets which
is akin to two cars side-by-side. The size of a trolley equals
(approx.) 1 x 0.5 x 0.55 (length x width x height) m3. We
consider two values for separation, i.e., 15 cm and 5 cm. Figure
13 shows the targets. It also shows a center line which provides
a trajectory of the radar movement, i.e., the radar moves along
this line. We can see that the targets are offset from this center
line. We consider an offset angle of 5° from the centre of the
synthetic aperture. In order to create a synthetic aperture, we
use a rail, as shown in Figure 14. The radar moves over this
rail and scans the scene at different positions over the aperture.
The length of the rail is L = 1.8 m and the distance of the
target centre from the start of the center line is 8.6 m. We take
aperture samples at 2.5 cm, with N; = 73 samples in total.
At each step on the aperture, the radar scans the target scene
from —10° to +20° at angular steps Ay = 0.25°. Figure 15
provides a schematic of this scenario.

We first measured the antenna pattern of the radar since its
accurate measurement is essential for the azimuth processing.
Figure 16 shows the measured antenna pattern with 0345 ~
1.3°. Note, Table I provides the complete specifications of
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the 150 GHz radar. Then, we took the scene measurements.
Figures 17 and 18 show the measured scenes when radar
is closest to the targets over the aperture, for an inter-target
separation of 15 cm and 5 cm, respectively. Note, we do not get
any reflections from the middle walls of the trolleys. Therefore,
the azimuth refinement concerns the recognition of corners of
the trolley. We focus on the front corners of the trolleys facing
each other, highlighted by a dotted ellipse. We can see from
figures 17 and 18 that front corners are not distinguishable.
Also, the radar image has missed substantial details of the
trolley. In contrast, the image reconstructed via MBP as shown
by figures 19 and 20, provides a better recognition of the
corners of the trolleys, i.e., the separating grooves are better
pronounced. Also, substantial details of the trolleys have been
captured. Note, in our setting, the slant range from the aperture
center to the center of targets is approximately 7 m. With
03qp = 1.3°, this amounts to AR of over 15 cm. From 20, we
can see that by using MBP, we have been able to enhance
AR almost by a factor of 3. Figures 21 and 22 show the
results of recosntructing the image via CBP. We can see that
the performance of CBP is even better than MBP. Thus, we can
say that our proposed methods can provide significant gains
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TABLE I
SPECIFICATIONS OF 150 GHZ RADAR

Modulation FMCW

Frequency Range 145 — 151 GHz

Transmit Bandwidh (B) 6 GHz

Chirp Duration (") 1.2 ms

Sampling Frequency 5 MHz

Angular Step (Ag) 0.25°

Range Resolution (A,) 0.025 m

3 dB Beamwidth (034B) 1.3°

to enhance AR and improve imaging of an FS-SAR.

Note, Figures 19-22 essentially provide a qualitative analysis
of the FS-SAR methodology. However, a quantitative analysis
of this methodology can be obtained by plotting (17) for
different angular ranges of the scan. Figure 23 provides such
an analysis for varying ranges. Since our experimental set up
falls in the angular range 6,, € [0°,15°], we can see that at a
10 m range, the AR of FS-SAR is (approx.) 4 — 5 cm, which
is matched by the performance of our algorithms. Therefore,
the performance of FS-SAR methodology is consistent both
qualitatively as well quantitatively.



Fig. 13. Target Scene.

Fig. 14. Radar and the Rail.

VI. CONCLUSIONS

In this paper, we have presented signal processing tech-
niques to deliver Auto-radar imaging with improved angular
resolution. We have used frequency modulated continuous
wave signalling for a THz radar. We have proposed an FS-
SAR methodology. We have shown that FS-SAR methodol-
ogy causes an improvement in the effective aperture and an
increase in the composite antenna gain. Thus, it results in the
enhancement of angular resolution. We have proposed two
algorithms, namely, modified back-projection and compressed
sensing based back-projection, in order to capitalise on the
gains of the FS-SAR technique. Both algorithms provide
improved imaging. However, the latter has an edge over
the former because it exploits the sparsity of the scene.
The computational complexity of our proposed algorithms
can also be easily managed. Results of simulation and real-
data experiments prove the validity of our proposed methods.
Future work consists of applying the proposed methods for
imaging the moving targets in the presence of clutter.
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