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Abstract

Application of wood ash on forest and agricultwgails can provide nutrients and increase
soil pH, however, it changes the soil chemistrydigpand temporarily, often resulting in
reduced plant growth and potassium leaching. Biofrban woody materials are nutrient
poor and need nutrient enhancement prior to spiiegdion. In this study, spruce residues
were mixed with spruce/pine ash in different ra{@$0%) to produce biochar-ash
composites at 450°C. The biochar yield (ash-freshancreased by 80-90% with the
addition of 50% ash due to catalytic biochar folioratConsequently, nearly half the amount
of wood is needed to produce the same amount bff(ae) biochar. Mineral release was
moderated in the composites compared to pure asmomistrated by a lower electric
conductivity and % available K content (a facto2d-4.4 lower than in wood ash).
Furthermore, the % available chromium content, Winsca key potentially toxic element in
wood ash, decreased by a factor of 50-160. Sollagtiwn of biochar-ash composites
decreases the risk of Cr toxicity, salinity strasd leaching of K in soil substantially
compared to ash application. Biochar-ash compoarea novel product with vast

unexplored potential for use in forestry and adtice.
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thermogravimetric analysis; ICP-OES, inductivelypled plasma — optical emission

spectrometry

Total Word Count: 8140



33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

1 Introduction

Bioenergy is already the biggest contributor tcexeable energy generation in the EU, of
which solid biomass combustion makes up the maanesfEuropean Commission, 2017).
Furthermore, in the Fifth IPCC assessment repménergy generation with carbon dioxide
carbon capture and storage (BECCS) is mentioneckay technology for mitigation of
climate change and hence is likely to expand imtes- and mid-term future (IPCC, 2014).
Although biomass combustion produces renewableggnar contrast to e.g. wind or solar
power, it also creates ash as a by-product; woatbastion generates around 1% waste ash
which is mostly landfilled (Demeyer et al., 2001inkan, 2006). Therefore, in light of
sustainable resource use and to reduce dispodal oogestigating possible re-use options for

wood ash is a very important strategy to increhsestistainability of bioenergy generation.

Due to the high alkalinity of wood ash (pH 8.9-1)3t%an be applied to soil as liming agent
to increase the pH (Demeyer et al., 2001; Khanrsh €1994; Sano et al., 2013). Therefore, it
is well suited for reducing the Al and Mn toxicityacidic forest soils and to increase
availability of nutrients already present in s#ibfl et al., 1996; Nkana et al., 1998).
Additionally, in itself it is a good source of nigints and in particular, it can supply high

amounts of available potassium (K) (Demeyer e28Q1; Pitman, 2006).

The effects of wood ash on soil pH and nutriertustaf the soil, however, are only short-
lived due to the high solubility of K and Na oxidéydroxides and carbonates which leach
quickly (Ulery et al., 1993). Furthermore, the higlavailability, general salinity (high
electric conductivity (EC)) and high pH, change $slod chemistry rapidly which can result in
toxicity in plants and soil organisms and shifts@il microbial composition (Augusto et al.,
2008; Bang-Andreasen et al., 2017; Demeyer e2@0]; Etiegni et al., 1991b; Jagodzinski

et al., 2018; Qin et al., 2017; Staples and VarsR2@01). Therefore, means to create an ash-
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containing material which supplies nutrients in @encontrolled way makes the use of ash in
forestry and agriculture much more attractive dreddfore, reduces the amount of ash being

landfilled and closes the nutrient loops.

Charcoal applied to soil can improve nutrient rétenby increasing the cation exchange
capacity (CEC) and thus reduce nutrient leachipgd(ito et al., 2015). The use of charcoal
for environmental applications, such as the usmil) has been extensively studied in the
past 10 years and charcoal used for this purpagenierally referred to as biochar (Lehmann
and Joseph, 2015). In addition to increases inGB, biochar can have a high water
holding capacity, increase soil microbial abundaamoe have further beneficial effects (Li et

al., 2017; Masiello et al., 2015; Thies et al., 201

Charred biomass is already present in boreal feakst in high quantities from forest fires
and can comprise up to 40% of the total soil carfhieluca and Aplet, 2008). Therefore, the
addition of biochar to soils is not an unnaturéémaention and analyses of biochar produced
from uncontaminated feedstocks have shown miningarac contamination (Buss et al.,
2016a, 2015; Weidemann et al., 2017). Yet, biofiwan woody materials have low nutrient
contents (Buss et al., 2016b; Xu et al., 2017)rs®t nutrient enhancement prior to soil

application.

Mixing of wood ash and wood-derived biochar, e.gdesfrom forest residues, could be a
very valuable proposition; the carbon providing g@hsoil improving effects and the ash
providing nutrients. Besides direct nutrient prauis(Chia et al., 2014), mineral-enriched
biochar can improve the plant nutrient use efficie(Blackwell et al., 2015; Lin et al.,
2013). Furthermore, enriched biochars can incréssearbon sequestration potential (lime,
clay, ash and manure-enrichment) (Mohammadi e2@1.6), the redox potential (Fe-

enrichment) (Pace et al., 2018) and the porosityiathar (Fe-clay-enrichment) (Rawal et
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al., 2016).There are two possible ways to produiceeral-enriched biochar; one option is to
mix the minerals and biochar after pyrolysis (BlaeK et al., 2015; Chia et al., 2014; Lin et
al., 2013); the other option is to mix the minenaith the biomass feedstock before pyrolysis

(as e.g. done in Pace et al., 2018 and Rawal, &(l6).

As wood ash contains high concentrations of K, B&and Mg (Pitman, 2006), which are
known to catalyse biochar formation and increasetar yield (Eom et al., 2012; Fuentes et
al., 2008; Nowakowski et al., 2007), mixing of biass feedstocks and wood ash prior to
pyrolysis could bring additional benefits. Howewier pur knowledge so far no study has
investigated the effects of wood ash-amendment pripyrolysis. There is a need to study

the effects of wood ash on biochar formation anthenproperties of the resulting biochar.

The research question that was addressed in tlig stas whether biochar-ash composites
have superior properties over pure biochar or paheapplication for forestry and
agriculture. In this study, spruce forestry resglamended with extra 0%, 5%, 10%, 20%
and 50% spruce/pine ash were pyrolysed at 450°Claachcterised for agronomically
relevant parameters (total/available nutrient apigmtially toxic elemental content, pH, EC).
Additionally, the influence of wood ash on pyrokysias investigated via thermogravimetric

analysis (TGA) and differential scanning calorime®SC).
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2 Materials and Methods

2.1 Feedstock preparation

A protocol for developing ash-enriched wood pelieés specifically developed for this

study. The aim was to blend wood ash and sprucel wexiduesHicea abies) to create a
composite material with high degree of contact leetwthe organic and mineral components
(to maximize potential catalytic reactions) thatilcbbe pyrolysed in a continuous pyrolysis
unit. Pelletizing ensured that the mixture remaihethogenous and density separation of the
two materials was avoided. Furthermore, pelletiangbles easy storage and handling of the

final biochar-ash composites.

The ash originated from a district heating plarBimea south of Skellefted in Sweden, and is
owned by Skellefted Kraft AB. It is a 2MW movingclimed grate (HOTAB) with a

Danstoker boiler (steam temperature 140°C, 4.2 Bab)end of pelletized spruce and pine
sawdust was used in the biomass boiler with a measture content of 6.7%, ash content of
0.3%, a bulk density of ~680 kg'land a heating value of ~20.3 MJ%dry matter. After
combustion, the ash is ejected via a screw to taowar in which fly ash and bottom ash

were mixed, and where samples were collected.

To fully incorporate the ash into the wood and sgjoently into the biochar, the spruce wood
was ground to a particle size of < 2 mm using adie (Philips HR 2810/A) and the wood
ash was sieved to < 0.5 mm. Different ash-to-spraties were prepared: 0%, 5%, 10%,
20% and 50% on dry-basis. A customised stainle=d-die with a 1-inch diameter was used
to produce pellets with 3 g dry weight. The respecamounts of spruce and wood ash were
mixed in polypropylene bags; 2 mL of water was allite better mixing, to avoid density
separation and to decrease dust formation. TwetselNere produced at a time in the die,

separated by a stainless-steel spacer. The dielased with a vice to ensure that the same
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amount of pressure was applied to all pellets efstlime treatment. Due to the higher density
of wood ash compared to spruce, increasing wood@stentrations increased the density of
the pellets. Hence, to ensure similar pressureitiadal spacers were added with increasing
wood ash concentration. The extra height of theeygaand the resulting densities of the

pellets are shown in SI Table 1.

Afterwards, the die was placed in an oven for gtalgllet formation through binding of the
materials. Different residence times and oven teatpees were tested to obtain stable
pellets, and 160°C for 1.5 h was selected and fmsgatoduction of 12-16 pellets with 3 g for

each of the five treatments.

For biochar yield comparison untreated spruce dglis with a diameter and height of 15 mm

were prepared as well.

2.2 Biochar production

2.2.1 Continuous auger reactor

Feedstock amounts of 36-45 g were pyrolysed irStage 1, auger reactor, pyrolysis unit of
the UK Biochar Research Centre. Details about tiiecan be found elsewhere (Buss et al.,
2016b). A highest treatment temperature (HTT) di“dbwas chosen to minimize the
availability of minerals present in the ash (Buisalg 2016a). A mean residence time in the
heated zone of 450°C of 20 min was used (corresptmndround 10 min at HTT) and a
nitrogen carrier gas flow rate of 1.5 L rfirThe biochar yield on dry basis and biochar yield
based on dry, ash-free basis (daf) (g daf biochgatdf feedstock) were calculated (ash

contents measured in TGA, see 2.3.1).

2.2.2 Thermogravimetric analysis (TGA) - pyrolysis
Micro-pyrolysis was performed with a Mettler-ToledGA/DSCL1 to replicate the conditions

in the continuous unit (450°C HTT, 10 min RT at HBD°C min' heating rate) for accurate
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biochar yield determination. The pellets were ot ismaller pieces and ~40 mg was
pyrolysed in 150 pL crucibles. The analysis wadguered in triplicates. Differential
scanning calorimetry (DSC) curves were automagairived by the TGA. Mean + standard
deviation of biochar yield on dry basis and biochiald based on dry, ash-free basis (daf) (g

daf biochar / g daf feedstock) were calculated.

2.3 Biochar characterisation

The biochar from the auger reactor (Stage 1l) wasigd up using a mortar and pestle as
preparation for the following analysis. To enswgpresentative sampling, most of the
produced biochar was ground-up, mixed thoroughtysub-samples were taken. The

analyses were performed in triplicates if not staitherwise.

2.3.1 Proximate analysis

A Mettler-Toledo TGA/DSC1 was used to perform proate analysis (Buss and Masek,
2014) which distinguished between moisture, vaatilatter (VM), fixed carbon (FC) and
ash content. It used a temperature of 110°C fostu determination (in nitrogen), 900°C
in a nitrogen atmosphere to determine the volatgédter loss and introduced air at 900°C to

oxidize the stable carbon (fixed carbon) and thefection remained.

2.3.2 pH and electric conductivity (EC)
EC and pH were determined as recommended by tembattonal Biochar Initiative (IBI)
through biochar extraction with distilled water {Ravich et al., 2012). A solid-to-liquid ratio

of 1:20 was used and the samples were shaken ap&b06n an orbital shaker for 1.5 h.

The samples were analysed with a Hach HQ40d pertabter using a Hach conductivity

probe CDC 401 and the gel-filled pH-electrode HatA35-00.



168 2.3.3 Extractions and digestions

169 To determine the total content of potentially togiements (PTEs) and nutrients, modified
170 dry ashing was used to digest the biochars (ardsteeks) which was optimised for use on
171 biochar previously (Enders and Lehmann, 2012).mbethod combines dry ashing at 500°C
172 (also used for ash content determination, Tabigith) wet digestion using HN£and HO..

173 The original method was modified in two aspectpraviously explained (Buss et al., 2016b)

174 to increase the limit of detection.

175 The availability of elements in biochar was detered through extraction with 0.01 M CaCl
176  which has shown to correlate well with plant uptékeP and K (and B, Mn, Mo and Na) in a
177 study on biochar where typical soil extractantsen@mpared (Shepherd et al., 2017). 1.5 g
178 of biochar was extracted with 15 mL of 0.01 M Ca@l50 mL polypropylene centrifuge

179 tubes. Subsequently, the tubes were shaken orbéal@haker for 2 h at 150 rpm and were
180 filtered with Whatman No. 1 filter paper. Threerita with only 0.01 M CaGlwere included

181 in the procedure.

182 The digests/extracts were analysed via Inducti@aypled Plasma — Optical Emission
183 Spectrometry (ICP-OES) as described below. In amgithe % available of the total
184 elemental content and the propagated error usmggan (AV) and standard deviation (SD)

185 of the total (n = 3) and the CakHxtractable concentrations (n = 3) were calculated

186 2.3.4 Elemental analysis

187 The samples were filtered with Whatman No. 1 fdtend analysed via ICP-OES (Varian

188 Vista Pro). Calibration from 0.01 ppm to 25 ppm &ased and if outside the detection

189 range, the samples were diluted. The 1 ppm stanvdascadded as quality control after every
190 15 samples. More details on the ICP analysis dateegsing can be found elsewhere (Buss et

191 al., 2016h).
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2.4 Data processing and statistics

A regression line was fitted to the data from EGeaugements (dependent parameter) and
either the ash addition prior to pyrolysis or ticeual ash content in the biochar (independent

parameter) using Sigma plot (Version 13.0, Systéttwre Inc.).
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3 Results and Discussion

3.1 Biochar production

The biochar yield (dry basis) of ash-amended aidtfzed spruce wood increased with the
percentage of spruce/pine ash addition from 25168@6h addition) to 65.8% (50% ash
addition) (Table 1). This is expected due to thaitawh of minerals in the form of wood ash
which mostly remain in the pyrolysis solids and ¢eeimcrease the char yield. However, the
biochar yield based on the amount of dry, ash{de# biochar and feedstock also increased
with wood ash addition. The maximum daf biochatdyigas observed at the highest wood
ash addition (50%) with a relative increase in haocyield of 78.1% compared to pyrolysis
of pure spruce pellets (Table 1, Figure 1). Tolmowledge we report for the first time that

external wood ash addition can increase the dahhioyield.

The daf biochar yield of the treatment amended 2@% wood ash was lower than expected
(27.9% daf) compared with the biochar yields frdma dther treatments pyrolysed in the
auger reactor (Table 1, Figure 1). The pellettef20% (and 50%) treatment were brittle
after pyrolysis and although all twelve pelletsIdooe recovered from the continuous
pyrolysis unit, most likely small pieces broke wffich affected the biochar yield. Therefore,
for accurate yield determination, to confirm theukts and to investigate the underlying

mechanism the samples were also pyrolysed in a inGéplicates.

In the TGA, the daf biochar yields were slightlwier than in the auger reactor (Table 1),
probably due to reduced secondary biochar formagealting from reduced particle size and
a lower residence time of vapours trapped withenghrticles (Antal and Grgnli, 2003). But
generally, the yields were in a similar range aoniing the yield increases caused by wood
ash addition as observed in the auger reactor (&ifu In the TGA 50% ash addition

resulted in a daf biochar yield increase of 89.8%# (Figure 1, Sl Table 2).

11
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The DSC curves derived from pyrolysis at 450°Chie TGA clearly show a reduction of the
endothermic peak with wood ash addition (Figuraalso described when biomass was
impregnated with individual minerals, such as psitas acetate (Fuentes et al., 2008). The
10% ash treatment resulted in the highest exotlegoerak which decreased with higher ash
addition and 50% ash-amended spruce showed thesti@nergy flow per mg of material. It

is also apparent that the exothermic peak shiftsltaver temperature with a higher addition
of wood ash. The catalytic effects of individualheals during pyrolysis are well established
in the literature (Eom et al., 2012; Fuentes et28l08; Nowakowski et al., 2007) but here we
were able to demonstrate that wood ash can hawathe effect. This is based on catalytic

processes which lower the activation energy neéale@actions to take place.

To our knowledge, we documented for the first-tionechar yield increases as a result of the
amendment of woody biomass with wood ash. A kely sias the pelletizing which ensured a
homogenous distribution of the externally addediaghe pellets and allowed efficient
reactions between the mineral and organic phaseségpiently, catalysis effects between
wood ash and biomass (spruce) took place whichtbddke biochar yield. As a result, wood
ash addition improved the conversion efficiencgfuce to biochar significantly; 80-90%
less spruce was needed to yield the same amoyasiofiree) biochar, and thus brings major

economic and environmental advantages.

12



238 3.2 Key biochar properties related to soil amendment use

239 3.2.1 Electric conductivity (EC) and pH

240 Spruce/pine ash addition elevated the EC of owhais substantially (Table 1). In soil, the
241 EC increases linearly with the dose of wood asHiegdmpn (Bang-Andreasen et al., 2017). In
242  contrast, Figure 3 shows an exponential increaggCofvith ash content in the five biochars
243  and the wood ash sample. Pure wood ash had an E82660+380 uS ci 4.8 times and

244  11.2 higher than the EC in the biochar sample aegmdth 50% and 20% ash, respectively,
245 highlighting biochar’s immense sorption capacityhil& pure ash releases most of its

246 minerals immediately, biochar can buffer this rekeand hence reduce the EC of the biochar-
247 ash composites drastically. This is an importamdifig for the application of biochar-ash

248 composites.

249 Increasing contents of wood ash in biochar alsceased the pH of the composite. Pure
250 wood ash was highly alkaline with a pH of 12.75k[Eal), comparable to the pH of ashes
251 reported elsewhere (Someshwar, 1996). The pH dfittehar amended with 50% wood ash
252  prior to pyrolysis was 0.7 pH units lower. A direcmparison of the pH values as done for
253 the EC in Figure 3 is not possible because theqaitess a logarithmic scale, but these

254  results clearly show that biochar can buffer thea&@ pH effects of wood ash.

255 Increasing soil pH is important for forest soilstlagy are predominantly acidic. However,
256 due to the rapid changes in soil pH and soil ECosepl by wood ash (Ulery et al., 1993;
257 Williams et al., 1996), over application, whichults in phytotoxicity (Etiegni et al., 1991b;
258 Jagodzinski et al., 2018; Staples and Van Reed))20@ shifts in microbial composition
259 (Bang-Andreasen et al., 2017) happens readily.efbes, the ability of biochar to buffer the
260 release of minerals from ash, and associated Bodma EC effects, is invaluable in creating

261 a safe and more effective biochar-ash productdduatstill increase the pH but in a more

13
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controlled way and over a longer period of timefdiiow-up studies the liming performance
of biochar-ash composites should be directly coexgbarith pure wood ash and lime.

3.2.2 Nutrients

The wood ash sample contained around 25% Ca, 48%dyig, 3% Mn and 1.4% P (Table

2) which is similar to wood ash reported elsewl{gteegni et al., 1991a). Due to the
comparatively low temperature treatment (450°Cjrients did not evaporate during
pyrolysis and the total nutrient concentrationthim ash-amended biochars were proportional

to their wood ash additions.

Magnesium (Mg) and manganese (Mn) were largely aitehle (Table 2, Sl Table 3), as
previously reported for various combustion woodeasin Sano et al. (Sano et al., 2013). The
calcium (Ca) availability was not measured in dudyg as the extraction was performed with
CaClb. Other studies reported low Ca availability in drstion ashes (Nieminen et al.,

2005).

The availability of phosphorus (P) was very lowbmth, wood ash and biochar, below the
limit of detection in most cases (0.26 mg'kgTable 2). Phosphorus in wood ash and biochar
is bound predominantly in unavailable forms, engcalcium phosphates (Liang et al., 2017;
Sano et al., 2013; Steenari et al., 1999; Uchiraiyé Hiradate, 2014). However, in Erich and
Ohno, the plant stimulating effect of wood ash ddug attributed to increases in plant P
supply (Erich and Ohno, 1992). In addition, elevgtihe soil pH of acidic soils can increase
the availability of P already present in soil; tdeal soil pH for maximum P availability is
6.0-6.5 (Blume et al., 2016) and therefore additbalkaline biochar (such as the biochar-
ash composite) can have an indirect positive etiagtlant P supply. Overall, the potential

supply of P in biochar-ash composites to plantsis@eore investigation.
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Potassium (K), was highly available in wood ash8594.3% of the total content was
available which is similar to Khanna et al. (Khamnal., 1994) where 68% of K was water-
extractable and Sano et al. (Sano et al., 2013)evi5-103.8% of K was water-extractable.
Incorporation of wood ash into spruce wood and egbent pelletizing and pyrolysis at

450°C reduced the percentage of available K to ~itifhe 5%, 10% and 20% ash-amended
treatments which is a reduction by a factor of4.4{Figure 4, S| Table 3). The K

availability increased in the 50% ash amendmegdéb which is still less than half of the
availability in the pure ash treatment. The biochafaces capable of retaining nutrients were
most likely saturated and hence the K availabitigreased in the 50% ash-amended biochars

compared to the 20% amended ones.

Many studies concluded that no long-term K ferditian effects can be expected when pure
wood ash is applied to soils (Kahl et al., 199 et al., 2013; Ulery et al., 1993; Williams
et al., 1996) and even phytotoxic effects are fpbsslue to the high K availability (Etiegni et
al., 1991b). With the use of wood ash in biochastead of instant leaching of K, we can
expect a more moderate supply of K initially anddien to long-term effects. This is a
significant and novel finding that makes the uskiothar-ash much more attractive for

fertilization than the use of pure wood ash.

3.2.3 Potentially toxic elements (PTES)

Pure wood ash exceeded several threshold valuéstédiPTEs for biochar and other soil
amendments, while the unpyrolysed spruce wood dliccrceed any of the threshold values
(Table 3, Sl Table 4). Cadmium (Cd) and chromium) @Ze of particular concern as, e.g. the
premium biochar threshold limit values for applicatof biochar to soil (EBC, 2012) were
exceeded 4-fold and 7-fold by the ash, respectividlg concentrations of Cu, Ni and Zn in
wood ash were just above limit values as well. SRk values are not atypical. Compared
to average PTE concentrations in 26 wood asheg3&smg kg, Cd 5.0 mg kg, Cr 39.0

15
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mg kg*, Cu 75.3 mg kg, Mo 14.0 mg kg, Ni 23.5 mg kd and Zn 443 mg K§

(Someshwar, 1996), in our study only the Cr conitemtood ash was slightly higher, but still
well within range reported in other studies (16-81@ kg") (Pohlandt-Schwandt, 1999). The
origin of Cr can be both, contamination of the fgedk, but also the furnace steel (Buss et
al., 2016b; Sano et al., 2013). As expected, tBé &6h-amended biochar exceeded the Cd
and Cr threshold values and some of the threstallees for Cu and Ni (Table 3). The 20%
ash treatment was just above the total Cd condentrand was still 3-fold higher than the

limit for Cr in premium biochar (EBC, 2012).

In the German Federal Soil Protection Ordinane, tinreshold values for available PTEs,
based on a salt extraction (1 M MHD3) similar to the one applied in our study (0.01 M
CaClb) have been reported for protection of plant groarid crop quality. None of the
threshold values were exceeded by our wood ashbiactars (Table 3) (apart from Zn by
pure spruce wood). This clearly demonstrates tigyatf ash and biochars to sorb PTEs

strongly and efficiently.

In the German Ordinance, no threshold value ekist€r and the percentage available (0.01
M CaClb-extractable) of the total elemental content in dash was high for Cr with 8%
(Figure 4, Sl Table 5). Cr is released readily fwood ash (Demeyer et al., 2001) and
therefore, high Cr availability is a frequent prainl in combustion ash, in particular Cr (VI)
which is the oxidation state that demonstratesdrighability and availability in alkaline
environments such as wood ash provides (Kabataierit011; Pohlandt-Schwandt, 1999;
Sano et al., 2013). While Cr (lll) is essential &amimals and humans, Cr (VI) is toxic to
plants, animals and humans (Kabata-Pendias, 2@Hlamdt-Schwandt, 1999). Therefore, Cr
possess a high risk to soils when wood ash is usagriculture or even when landfilled

(Pohlandt-Schwandt, 1999).
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The incorporation of wood ash into spruce and comea into biochar reduced the
availability of Cr drastically from 8.00 £ 0.25%uje ash) to 0.05 + 0.00% (20% ash biochar)
- 0.15 + 0.01% (5% ash biochar) which is a reduchy a factor of 54-160 (Figure 4, Sl

Table 5). Substantially reduced Cr availabilitydifferent types of biomass after pyrolysis
was also observed in other studies (Buss et d6&0-arrell et al., 2013). However, here we
showed that even externally added Cr in the formvadd ash which is not already
incorporated into the plant structure is efficignthmobilised. This mitigates a typical

problem of wood ash for soil application, high @aitability.
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3.3 Environmental and agronomic benefits of biochar-ash

composites

In this study, we demonstrated that the produciath application of wood-ash-enhanced

biochar to soil has multiple benefits over purechiar or pure wood ash application.

Wood ash application can result in significant gfemin soil solution chemistry as the soil
exchange sites are not able to buffer the high tdations. However, blending of wood ash
with wood, pelletizing and subsequent conversioa mochar effectively moderates the
release of cations and reduces the EC and avaHlasignificantly compared to pure wood
ash. Therefore, adverse effects in soil due to bajimity are less likely. Indeed, post-
production mixing of biochar and ash and applicatm plants reduced ash-related
phytotoxicity (Saletnik et al., 2016). Althoughdhs different from the application of
composite materials as proposed in our study, skeoficomposites is likely to be even more
effective due to the close contact of biochar astd &urthermore, our results show reduced
availability and leaching of K which should resialta higher plant K use efficiency. The
availability of Cr, a key contaminant in wood ashegirastically reduced in biochar-ash

composites, minimising the risk for adverse pldfeats. These are significant new findings.

Generally, biochar can improve the cation exchamagacity, water holding capacity and
structure of the soil, both, in the short and loagn (Glaser et al., 2002; Lehmann and
Joseph, 2015; Li et al., 2017) and pelletised aosthowed to be particularly beneficial.
Pelletised biochar applied in 14 thimcreased the plant available water content artdrwa
retention in soil (Andrenelli et al., 2016). Petfl@hade from biochar and wood flour applied
to growing media in 25% also increased the plarienavailability (Dumroese et al., 2011).
Moreover, pelletising of biochar reduced the reteafsfine particles, and hence increased the
carbon sequestration potential of biochar and @sed the health risk due to dust formation

during biochar application (Maienza et al., 200 expect that our biochar-ash composite
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has similar effects, which will be the focus ofléeV-up studies. Overall, the incorporation of
ash into pelletised biochar-ash composites makastutperior product compared to

application of pure ash as it also adds a (stafald)on fraction (biochar).

There are also multiple benefits of using bioch&lr-eomposites over the production and use
of biochar from pure woody biomass. First, the barcyield increases and therefore, less
biomass is needed to produce the same amountafdsiorlhis has economic and
environmental benefits; less GG releasedand more carbon is available to be sequestered

in the ground as biochar. Secondly, the biochautsent loaded, with K, Ca, Mg and P.

In practise, uncontaminated ash from biomass tso#dad parts of the unburned wood (or saw
dust from timber industry or forestry residues) bammixed and pelletized with existing
pelletizing equipment. Subsequently, the pelletstoapyrolysed at relatively low
temperatures (450-500°C) to create a nutrientdsiobhar with high surface functionality
(decreasing surface functionality with higher pysi$ temperatures (Gai et al., 2014)). The
biochar-ash pellets can be easily spread on f¢westgricultural) soils with on-site

conversion and minimal transportation, closingrib&ient loop.

Wood ash provides the nutrients, such as K, MgRCand micronutrients, while the organic
part of the biochar buffers and moderates the enttrelease, hence, increases the nutrient
use efficiency and brings further soil benefits €Lial., 2017). In addition, charging this
biochar-ash composite with sources of availabl@dldcreate a highly functional product

for improvement of soil properties and fertilizatid he use of the biochar-ash composites as
fertilizer brings an immediate financial incenti@ed improves environmental sustainability,

while long-term positive effects are expected frawil improvements of biochar.
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4 Conclusion

Expansion in the bioenergy sector makes it necg$sdnd a use for nutrient-rich wood ash
that can potentially cause detrimental soil effeldisre we present a strategy to address this
problem: mixing of wood ash with woody forestryideses and pyrolysis at relatively low
temperature. This results in a product which whkege the soil solution less rapidly than
wood ash but for a longer time. It provides nutiseand changes the pH in a more controlled
way and demonstrates a significantly reduced aviail@r concentration. This study clearly
demonstrates that biochar-ash composites are venyiging as organo-mineral fertilizers,

opening a new field of research and applicationdimmass ash in a circular economy.
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Table 1: Proximate analysis, biochar yields, pH eledtric conductivity (EC) of feedstock and biocheoduced in the auger reactor. Mean and
one standard deviation for the proximate analysts 8) are reported and single values for the l@ogteld. The ash content was determined at
500°C and 900°C in air. PSC, pyrolysed spruce dglig; PPS, pelletised and pyrolysed spruce; NAapplicable; % change, % change
compared to the unamended biochar (PPS 0% 450°C).

ash 500°C ash 900°C volatile matter fixed carbon ar gfeld pH EC
% dry % dry % daf % daf % dry % daf biochar/ dafde us cnt
% change
wood ash 93.€ £ 0.3 84.4 0.7 80.6 3.7 19.2+ 3.7 NA NA NA 12.75 +0.04 | 132501380
spruce 0.z+0.2 0.9 +0.2 83.3 +0.5 16.7+ 0.5 NA NA NA 10.09 +0.06 37.8+0.7
PSC 0% 450°C 0.6 £0.2 3.1 +05 23.9 +0.3 76.1£0.3 25.6 25.0 NA 8.78 .30 59.8 #12.9
PPS 0% 450°C 0.7+ 04 2.0 £0.3 20.0 +0.6 80.C+ 0.6 24.0 23.7 0.0 8.86 &.05 53.0#.1
PPS 5% 450°C 16.£ £ 0.5 17.2 £0.7 22.3 +0.1 77.1£0.1 314 275 16.1 10.43&07 276 +1
PPS 10% 450°C 25¢+ 14 23.1 +2.3 24.0 +0.5 76.C£ 0.5 35.3 29.5 24.7 10.63@04 444 19
PPS 20% 450°C 42.7 + 3.3 42.9 +0.9 32.5 +0.0 67.£+£ 0.0 40.4 27.9 17.9 11.60@08 1185 #15
PPS 50% 450°C 68.7+ 1.0 62.1 £0.7 47.8 £0.5 52.2+ 0.5 65.8 42.1 78.1 12.07&03 2765 21
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592 Table 2: Total and 0.01 M Cag@dxtractable concentrations of nutrients in biostaard feedstocks as mean and one SD (n = 3). Gualy t
593 concentration of Ca determined. PSC, pyrolysedcgpeylinders; PPS, pelletised and pyrolysed spruce.

K

Mg Mn B Ca
available
wood ash mgk§ 232004660 <23 < 0.009 <32 <0.26
spruce mg kg 154122 77.78.05 51.94.92 <3.2 1.72 = 1.17
PSC 0% 450°C mg Kg 17220 35.55.72 3.049.26 <3.2 136 = 0.23
PPS 0% 450°C mg Kg 17012 4.529.89 2.839.24 <3.2 111 = 0.30
PPS 5% 450°C mg Kg 665+19 1165.56 0.6098.06 <3.2 0.34 = 0.15
PPS 10% 450°C mg Kg 1070461 10243.64 < 0.009 <3.2 <0.26
PPS 20% 450°C mg Kg 209022 80.64.25 1.0896.08 <3.2 <0.26
PPS 50% 450°C mg Kg 5170427 <23 0.2620.16 <3.2 <0.26
total
wood ash mgky 38900553 536009898 32700¥51 2486.79 13700 * 230 254000 = 5150
spruce mg kg 85.8421.9 68.781.7 43.220.9 <718 13.2 + 6.51 390 = 169
PSC 0% 450°C mg kg 541+186 162405 145#1.5 <71.8 <10.3 1490 =+ 716
PPS 0% 450°C mg Kg 6704115 17784.9 186%0.4 <718 152 + 7 1850 =+ 631
PPS 5% 450°C mg Kg 4749210 8690448 5520283 33.52.28 1980 == 112 43000 =+ 2170
PPS 10% 450°C mg Kg 7876221 13600%94 8790400 60.18.21 3000 * 132 68600 =+ 3260
PPS 20% 450°C mgKg 14400646 230002890 125002660 12743.8 5080 =+ 513 129000 = 16200
PPS 50% 450°C mgKg 216004150 36600F¥74 20100833 2238.16 11400 =+ 213 206000 = 4090
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598

599

Table 3: Total and 0.01 M Cagxtractable concentrations of PTEs in biocharsfaadstocks as mean and one standard deviatioi3nAs

comparison, the following threshold values are ftb German Federal Soil Protection Ordinance fotgation of plant growth and crop
quality based on NHNOs-extractions: As 0.4 mg Kg Cd 0.1 mg kg, Cu 1 mg kg, Ni 1.5 mg k&', Pb 0.1 mg kd, Zn 2 mg kg (German

Federal Soil Protection and Contaminated Sitesr@rdie, 1999). PSC, pyrolysed spruce cylinders; pélietised and pyrolysed spruce.
As Cd Co Cr Cu Hg Mo Ni Pb Zn
available
wood ash mg k§<0.13 <0.12 <0.01 42.¢+1.25<0.004 <0.87 2.83+0.08 0.05+0.01<0.12 0.6(+0.05
spruce mg kg < 0.13 <0.12 0.01+0.002 0.01+0.00  0.0%:0.02< 0.87 < 0.46 0.03+0.01< 0.12 4.2¢+0.25
PSC 0% 450°C mg Kg< 0.13 <0.12 <0.01 < 0.00: 0.02t0.01<0.87<0.46  <0.009 <0.12 0.12+0.03
PPS 0% 450°C mg Kg< 0.13 <0.12 <0.01 < 0.00: <0.004 <0.87<0.46 0.05+0.01< 0.12 0.5+0.10
PPS 5% 450°C mg Kg< 0.13 <0.12 <0.01 0.140.00<0.004 <0.87<0.46 <0.009 <0.12 <0.07
PPS 10% 450°C mg Kg< 0.13 <0.12 <0.01 0.1¢+0.00<0.004 <0.87<0.46 <0.009 <0.12 <0.07
PPS 20% 450°C mg Kg< 0.13 <0.12 <0.01 0.1:0.00 0.020.00<0.87<0.46 <0.009 <0.12 <0.07
PPS 50% 450°C mg Kg< 0.13 <0.12 <0.01 0.2(+0.01 0.1#0.02<0.87<0.46 <0.009 <0.12 <0.07
total
wood ash mg Ky 5.77#0.32 4.04+0.07 11.3%1.25 5376.38 1422.72<30.6 32.7+0.07 49.0+0.11 33.5+0.54 37%+5.78
spruce mg kg < 1.20 0.02+0.02< 0.21 0.76£0.18  1.1%0.40<30.6<11.2 <0.10 <1.41 4.21+1.56
PSC 0% 450°C mg Kg< 1.20 0.02+0.02< 0.21 <0.1¢ 2.94:0.75< 30.6 < 11.2 0.38+0.08 0.63+0.44 17.6+7.81
PPS 0% 450°C mg Kg< 1.20 0.07£0.03< 0.21 2.5440.85 36.211.1<30.6<11.2 5.65+2.49 3.17+0.33 40.5+40.8
PPS 5% 450°C mg Kg< 1.20 0.31#0.02 2.31+0.12 91.¢45.48 33.@4.41<30.6<11.2 14.9+2.36 6.60+0.67 101+5.20
PPS 10% 450°C mg Kg< 1.20 0.39+0.04 3.26x0.14 14:46.94 42.20.76<30.6<11.2 22.1#0.39 9.06+0.23 141+2.25
PPS 20% 450°C mg Kg 2.94t0.79 1.75+0.21 4.59+0.23 226¢+16.6 69.26.23< 30.6< 11.2 26.8+2.16 9.80+0.33 19z+13.1
PPS 50% 450°C mg Kg 3.70t0.37 3.22+0.09 6.52+0.15 35:#8.82  1020.56< 30.6< 11.2 38.8+1.00 17.8+0.47 275+4.27
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Figure 1: Effect of wood ash addition on biochaldgi(in % dry, ash-free biochar / dry, ash-
free feedstock) compared to the unamended comtal performed in a TGA (n = 3) and the

auger reactor (n = 1). No standard deviation shiogne for auger reactor, raw values can be
found in Table 1 and SI Table 2.
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Figure 2: DSC curve from pyrolysis of spruce in@ATat 450°C with different percentages

of wood ash additions. Initial stages of moistemoval at 110°C not shown, starting with

heating phase at 90°C rffimeating, followed by an isothermal phase at 450tG-10 min.
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Figure 3: Relationship between electric conductifiC) in biochar/pure wood ash with ash
content in the materials. Ash contents determinad GA through combustion in air at

900°C (wood ash with ~16% residual carbon). An egmiial curve of type y = a *ewas
fitted to the data. Mean EC values with standardad®n of duplicate analyses are shown.
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Figure 4: Elemental availability of K and Cr as 20DM CaC} extractable of the total
elemental content in 450°C biochar with varying eshtents (%) and in pure wood ash.
PPS, pelletised and pyrolysed spruce 450°C.
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Highlights

- Wood ash was mixed with pine wood and pyrolysed to create biochar-ash composites
- Biochar yield on ash-free basis was increased by 80-90% with 50% wood ash addition
- The percentage available of the total Cr content decreased by a factor of 50-160

-  TheEC and available K content of the biochar was also significantly reduced

- Biochar-ash composites are very promising organo-mineral fertilisers



