Aqueous-phase nitration of phenol by N2O5 and CINO2

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.atmosenv.2007.02.003

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Atmospheric Environment

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Aqueous phase nitration of phenol by N₂O₅ and ClNO₂

Mathew R. Heal¹*, Mark A. J. Harrison¹†, J. Neil Cape²

¹School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, U.K.
²Centre for Ecology & Hydrology, Edinburgh Research Station, Bush Estate, Penicuik, Midlothian, EH26 0QB, U.K.

*Contact author (postal address as above):
Email: m.heal@ed.ac.uk Tel: +44 (0)131 6504764 Fax: +44 (0)131 6506453

†Current address: Met Office, FitzRoy Road, Exeter, EX1 3PB, U.K.

Keywords: Tropospheric chemistry; heterogeneous chemistry; nitrosation; nitronium ion.

Abstract
Nitrophenols are present in the atmospheric gas phase and in cloud and rainwater. Their formation via aqueous-phase reactions of phenol with the nitronium ion, NO₂⁺, arising from N₂O₅ and ClNO₂ partitioning into the aqueous phase, has been proposed but not verified experimentally. Here we demonstrate for the first time that gaseous N₂O₅ and ClNO₂ partitioning into dilute aqueous
solutions of phenol yields 2- and 4-nitrophenol (and 4-nitrosophenol), but no dinitrophenol isomers. The rate of nitration does not vary significantly between 5 and 20 °C, presumably because of opposing temperature dependences in Henry’s law partitioning and reaction rate coefficients. The rate coefficient for reaction of NO$_2^+$ with phenol could not be directly quantified but is evidently large enough for this reaction to compete effectively with the reaction between NO$_2^+$ and water and to provide a feasible route to nitrophenol production in the atmosphere.

Introduction

Nitrophenols have been identified in the atmospheric gas phase and in cloud and rain water (see Harrison et al. (2005a) for a recent review). The predominant nitro-aromatic species reported are 2- and 4-nitrophenol and 2,4-dinitrophenol. These compounds originate almost entirely from the oxidation and nitration of benzene and phenol emitted to the atmosphere rather than by direct primary emission of the nitrophenols themselves. Aside from the role of these compounds in understanding the atmospheric oxidation of monoaromatic species, the formation of nitrophenols is a concern because of their phytotoxicity at low concentrations.

Chemical box modelling has shown that nitration reactions in the aqueous phase can be an important route to atmospheric nitrophenol formation because of the favourable partitioning of phenol into the aqueous phase and the faster rates of reaction in the aqueous phase compared with the gas phase (Harrison et al., 2005b). It is also likely that a proportion of the observed gas phase nitrophenol forms in the aqueous phase and partitions back into the gas phase. A number of atmospheric species have been verified experimentally to effect aqueous-phase nitration of phenol including the nitrate radical (NO$_3^-$) (Umschlag et al., 2002), nitrogen dioxide (NO$_2$) (Barletta et al.,
2000), nitrous acid (HONO) (Vione et al., 2004), and nitrate (NO$_3^-$) and nitrite (NO$_2^-$) ions in combination with UV irradiation (Vione et al., 2003). Two other potential atmospheric nitration reagents, N$_2$O$_5$ and ClNO$_2$, have also been proposed (Harrison et al., 2005a) but there have been no published studies investigating their nitrating capability with dilute aqueous solutions of phenol. N$_2$O$_5$ is an important atmospheric reservoir species for NO$_x$, particularly at night, and its reaction with sea-salt aerosols yields ClNO$_2$ (Behnke et al., 1997). In both cases the nitration electrophile is assumed to be the nitronium ion, NO$_2^+$, which has been shown experimentally to be a hydrolysis product of the parent compounds (Horn et al., 1994; Behnke et al., 1997). Although the Henry’s law solubilities of both N$_2$O$_5$ and ClNO$_2$ are low (values at 298 K of 2.1 M atm$^{-1}$ for N$_2$O$_5$, and 0.024 and 0.048 M atm$^{-1}$ for ClNO$_2$ (Sander, 1999)), their rapid solvation, and likely high reactivity of the resultant NO$_2^+$, increases substantially their effective solubility and likely importance as atmospheric nitrating reagents.

In this work, a flow of air containing N$_2$O$_5$ and ClNO$_2$ was bubbled through solutions of phenol and products analysed as a function of time. Product ratio and kinetic data are reported.

Experimental

A continuous flow of N$_2$O$_5$ in air was prepared by mixing flows of 4.5% O$_3$ in O$_2$ (75 mL min$^{-1}$) and 1% NO$_2$ in air (750 mL min$^{-1}$) at the entrance of a cylindrical reaction chamber of 50 cm length and 9 cm diameter. (Gas residence time in chamber ~4 min). The ClNO$_2$ was prepared by passing the outlet flow containing N$_2$O$_5$ over a 4 M NaCl solution for 30 s. Characterisation of both gases was undertaken qualitatively via FTIR spectroscopy (http://webbook.nist.gov/chemistry) and quantitatively by bubbling the gas flow through deionised
water and determining the yield of NO$_3^-$ (plus Cl$^-$ for ClNO$_2$) by ion chromatography. A slight excess of NO$_2$ was the only impurity, and conversion of N$_2$O$_5$ to ClNO$_2$ was stoichiometric.

The gas flow containing the nitrating gas was continuously bubbled through a frit into the bottom of a reaction vessel (27 cm depth, 4.5 cm internal diameter) containing phenol solution in the concentration range 10^{-4}-10^{-1} M. Both the flask and the incoming gas flow were surrounded by thermostatted coolant. Experiments were conducted at 5 and 20 °C and at pH 6 and 10 (the latter obtained using dilute Na$_2$CO$_3$). A known quantity of 5-methyl-2-nitrophenol was present in the phenol solution as an internal standard for product quantification. The whole process was carried out in the dark to eliminate photolytic degradation of nitrating reagents.

Products were extracted from the aqueous phase after different reaction times using Strata D-L solid-phase extraction tubes, pre-treated with methanol and water, and eluted with ethyl acetate. The products were separated and quantified by GC-ECD (HP 5890) using a 30 m ZB5 capillary column (0.32 mm id, 1.0 μm phase thickness) and a temperature programme of 140 °C for 40 min followed by ramping at 30 °C min$^{-1}$ to 230 °C for 5 min. Peak identity was also confirmed separately by GC-MS (HP 6890 with 5973 MSD).

Results and discussion

Products

In all experiments, 2- and 4-nitrophenol were the only nitrophenol products (Table 1). No 3-nitrophenol was observed. The absence of any dinitrophenol formation was confirmed for contact times in excess of 30 mins. Substantial proportions of 4-nitrosophenol were formed except at pH
10 with N$_2$O$_3$ as nitrating reagent. The observed product distributions did not vary with phenol concentration or duration of experiment. Neither did they vary with temperature. The product distributions reported in Table 1 are therefore averaged over these factors. 2-nitrophenol was the more abundant product of the two mononitrophenol isomers. Since 2-nitrophenol is the dominant product in experimental studies of gas phase nitration of phenol (Atkinson et al., 1992; Bolzacchini et al., 2001), any 4-nitrophenol measured in the atmosphere is presumed to result from condensed phase reactions, which these findings support.

For both nitrating reagents, considerably less 4-nitrosophenol was produced in the alkaline solution, indicating that nitration is more competitive than nitrosation at higher pH. Nitrosation reactions frequently accompany nitration reactions and are presumed to proceed in an analogous manner, but with NO$^+$ rather than NO$_2^+$ as the nucleophile. The nitrosation of phenol is thought to occur by reduction of NO$_2^+$ by phenol to generate NO$^+$ which itself attacks phenol (Sykes, 1986). The nitrosation occurs exclusively in the para position because NO$^+$ is a weaker electrophile than NO$_2^+$ and unable to overcome the steric hindrance at the ortho position caused by water molecules hydrogen-bonded to the hydroxyl group (Baer et al., 1970). This mechanism also accounts for the pH dependence of the nitrosation. Phenol is a weak acid ($pK_a = 10$) so at high pH the phenoxide ion is several orders of magnitude more prevalent than at pH 6. The negative charge on the phenoxide ion increases the reactivity of the aromatic ring towards ortho/para NO$_2^+$ substitution to form nitrophenols compared with the alternative reduction of NO$_2^+$ to NO$^+$ and subsequent nitrosophenol formation.

Although it is possible for NO$^+$ to be generated via sequential reaction of NO$_2$-dimer (i.e. N$_2$O$_4$) with water (R1-2),
\[
\begin{align*}
\text{N}_2\text{O}_4 (g) + \text{H}_2\text{O} & \rightarrow \text{HNO}_2 (l) + \text{NO}_3^- + \text{H}^+ \quad \text{(R1)} \\
\text{HNO}_2 (l) + \text{H}^+ & \rightarrow \text{H}_2\text{O} + \text{NO}^+ \quad \text{(R2)}
\end{align*}
\]

this route is ruled out for the following reasons: nearly all incoming NO\textsubscript{2} was converted to N\textsubscript{2}O\textsubscript{5} (and ClNO\textsubscript{2}) upstream of the reaction vessel containing phenol, and calculations showed that <1% of the unconverted NO\textsubscript{2} would exist as N\textsubscript{2}O\textsubscript{4}; the IR spectra of N\textsubscript{2}O\textsubscript{5} and ClNO\textsubscript{2} showed no evidence of N\textsubscript{2}O\textsubscript{4}; in separate experiments, passing only NO\textsubscript{2} through the phenol solution yielded no nitro- or nitrosophenols. All evidence therefore suggests that 4-nitrosophenol was produced by NO+ formed by the reaction of NO\textsubscript{2}+ with the phenol present in the liquid rather than by NO+ generated directly from N\textsubscript{2}O\textsubscript{4}.

Nitrosophenols are not generally reported in the atmospheric aqueous phase, although it is not clear the extent to which they have been specific target analytes in field measurements. The observation of 4-nitrosophenol in this work is in accord with Vione et al. (2004) who likewise observed 4-nitrososphenol alongside 2- and 4-nitrophenol in experiments with nitrous acid as a nitrating agent for phenol in aqueous solution. Since 4-nitrosophenol is susceptible to oxidation it is assumed that 4-nitrosophenol formed in atmospheric water ultimately undergoes oxidation to 4-nitrophenol by agents such as O\textsubscript{2}/O\textsubscript{3}/HO\textsubscript{2} etc. This reinforces the importance of the aqueous phase for 4-nitrophenol formation and is in accord with the observation that 4-nitrophenol is the dominant mononitrophenol isomer in the atmosphere.

Kinetics

The rate of total product formation in experiments using the most dilute phenol solutions (10-4 M) showed pseudo-first order reaction kinetics (Figure 1, top left) indicating that reaction under these conditions was limited by the amount of phenol present. In contrast, product formation was linear
with time at the highest phenol concentration (0.1 M) (Figure 1, bottom right), indicating that reaction was zero order with respect to phenol and limited by the rate of introduction of nitrating gas into the system. The same kinetic profiles were observed for each of the nitrophenol products individually.

The kinetic scheme shown in Figure 2 was postulated to describe the overall nitration process. The figure shows \(\text{N}_2\text{O}_5 \) as the nitrating reagent but dissociation of \(\text{ClNO}_2 \) to yield \(\text{NO}_2^+ \) (and Cl\(^-\)) is assumed to occur analogously. In these experiments, \(\text{NO}_2^+ \) is generated continuously by phase transfer of \(\text{N}_2\text{O}_5 \) from the gas to liquid surface (Henry’s Law partitioning), mixing of \(\text{N}_2\text{O}_5 \) between surface and bulk, and dissociation of \(\text{N}_2\text{O}_5 \) into \(\text{NO}_2^+ \) (and \(\text{NO}_3^- \) or Cl\(^-\)). The overall rate of \(\text{NO}_2^+ \) production in solution for a given set of experimental conditions can be assigned a constant flux, \(F \). The resulting \(\text{NO}_2^+ \) can react with either phenol (R3), with bimolecular rate coefficient, \(k_2 \), or with water (R4), with pseudo-first order rate coefficient \(k_w \).

\[
\text{NO}_2^+ + \text{phenol} \rightarrow \text{product} \quad \text{(R3)}
\]

\[
\text{NO}_2^+ (+ \text{H}_2\text{O}) \rightarrow \text{NO}_3^- + 2\text{H}^+ \quad \text{(R4)}
\]

This scheme leads to the following kinetic equation describing \(\text{NO}_2^+ \) concentration in solution,

\[
\frac{d[\text{NO}_2^+]}{dt} = F - k_w[\text{NO}_2^+] - k_2[\text{NO}_2^+][\text{phenol}] \quad \text{Eq.1}
\]

The parameter-fitting routine of the FACSIMILE software (http://www.mcpa-software.com/) was used to fit this kinetic scheme to the experimental data obtained at all four phenol concentrations simultaneously (for a given pH and nitrating reagent); thus, for example, a single fit used all the experimental data shown in Figure 1. The fitting parameters were \(F \), \(k_2 \) and \(k_w \). Since there was no significant difference in kinetics with temperature (for given other conditions), data at both 5 and
20 °C were used simultaneously. The lack of temperature dependence is likely the consequence of opposing factors: a negative temperature dependence in Henry’s Law partitioning and a positive temperature dependence in reaction rates.

It was not possible explicitly to fit all three parameters independently because the kinetic scheme is sensitive only to the ratio of the rate coefficients, \(k_2/k_w \). The value of this ratio obtained by fitting is insensitive to the value chosen for \(k_w \) over a few orders of magnitude. The fitted values obtained for \(F \) and \(k_2/k_w \) are shown in Table 2, and the set of modelled kinetic profiles obtained for the data in Figure 1 shown by the solid curves. The model fits to the data agree closely.

The values of the ratio \(k_2/k_w \) in Table 2 are consistent with the expectation that aromatic rings, particularly substituted rings, are more effective nucleophiles than water. Furthermore, the ratios of rate coefficients derived here for reaction between \(\text{NO}_2^+ \) and phenol or water are lower than the rate coefficient ratio of \(1 \times 10^4 \text{ M}^{-1} \) derived by Johnson and Margerum (1991) for reaction between \(\text{NO}_2^+ \) and \(\text{Cl}^- \) or water, again consistent with the expectation that \(\text{NO}_2^+ \) is less reactive towards phenol than \(\text{Cl}^- \) because of the formal attracting charges in the latter case.

In reality, the \(k_2 \) rate coefficient represents the combined reaction of \(\text{NO}_2^+ \) with both phenol and phenoxide anion, and the \(k_w \) rate coefficient represents the combined reaction of \(\text{NO}_2^+ \) with both \(\text{H}_2\text{O} \) and \(\text{OH}^- \). The contribution of each pair of reactions to their overall reaction cannot be explicitly quantified. However, the rate of product formation at the different pH values gives insight into the relative effects of basicity on reaction of \(\text{NO}_2^+ \) with “phenol” (the product route) or with “water” (non-product route). When phenol rather than \(\text{NO}_2^+ \) is the limiting reactant, product formation has an effective first-order rate coefficient \(Fk_2/k_w \). For both \(\text{N}_2\text{O}_5 \) and \(\text{ClNO}_2 \) as nitrating
reagent, the Fk_2/k_w data are greater at pH 10 than at pH 6, indicating that reaction of NO$_2^+$ with phenoxide is more significant to the NO$_2^+$ + “phenol” reaction than the reaction of NO$_2^+$ with OH$^-$ is to the NO$_2^+$ + “water” reaction. On the other hand, under the same limiting conditions, the product formation rate coefficient, at a given pH, does not differ much between N$_2$O$_5$ or ClNO$_2$ as the source of the nitrating electrophile.

There is no previous published investigation of the rate coefficient, k_2, for reaction between phenol and NO$_2^+$. There has also only been one published value for the rate coefficient for reaction between NO$_2^+$ with water (Behnke et al., 1997), which was determined indirectly. These workers derived a value of 15.1 M$^{-1}$ for the ratio of the rate coefficients for reaction of NO$_2^+$ with Cl$^-$ or with water (with the latter expressed in pseudo-first order dimension), and used modelling to try and constrain values for the two rate coefficients individually. They derived $k_w = 4.9 \times 10^9$ s$^{-1}$.

Subsequent literature consistently refers back to the Behnke et al. (1997) ratio of rate coefficients for NO$_2^+$ reaction with Cl$^-$ or H$_2$O as the source for k_w, although Frenzel et al. (1998) (same group) derived a slightly modified value of $k_w = 1.7 \times 10^9$ s$^{-1}$. Applying this latter value of k_w to the ratio of rate coefficients determined in this work gives the estimates for the rate coefficient for NO$_2^+$ with phenol in the final column of Table 2. Clearly these values ($\sim 10^{12}$ M$^{-1}$ s$^{-1}$) are unfeasibly large when compared with a maximum value of $\sim 10^{10}$ M$^{-1}$ s$^{-1}$ that can be estimated for a diffusion-limited rate coefficient in water at 298 K (Atkins, 2006). The value of k_w derived by Benhke et al. (1997) is therefore called into question. In fact, the value of 15.1 M$^{-1}$ reported by Benhke et al. (1997) for the ratio of rate coefficients for reaction of NO$_2^+$ with Cl$^-$ or with H$_2$O is orders of magnitude smaller than the value of 1×10^4 M$^{-1}$ reported by Johnson and Margerum (1991), a discrepancy that Behnke et al. (1997) could not resolve. The Behnke et al. (1997) ratio also appears small in comparison with the expected relative nucleophilic reactivities of Cl$^-$ and H$_2$O.
An interpretation of the above is that the true k_w for the pseudo-first order reaction between NO$_2^+$ and H$_2$O is smaller than the \sim109 s$^{-1}$ quoted above. This would make the value for k_2 smaller by the same factor. The deduction of a lower k_w is also entirely consistent with the expectation from nucleophile/electrophile arguments discussed above that the rate coefficient for reaction between NO$_2^+$ and phenol lies between that for reaction with Cl$^-$ and H$_2$O. (As an aside, our data are also consistent with the view of Behnke et al. (1997) that the ratio of NO$_2^+$ rate coefficient with OH$^-$ or H$_2$O cannot be as large as estimated by Johnson and Margerum (1991) otherwise the former rate coefficient would dominate reaction at pH 6 as well as pH 10).

Regardless of the uncertainty in deriving an absolute value for the rate coefficient of NO$_2^+$ with phenol, it is evident that this rate coefficient is sufficiently competitive against other loss processes for NO$_2^+$ in aqueous solution (i.e. reaction with H$_2$O and/or OH$^-$) readily to yield observable nitrophenol products.

Conclusions

The capacity for N$_2$O$_5$ and ClNO$_2$ to yield 2- and 4-nitrophenol and 4-nitrosophenol from a dilute aqueous solution of phenol has been demonstrated. There is no dinitrophenol production under these conditions. The overall nitration process has no observed temperature dependence between 5 and 20 °C. Although the rate coefficient for reaction between NO$_2^+$ and phenol could not be directly quantified, it is evidently large enough for this reaction to compete effectively with the reaction between NO$_2^+$ and water. The findings demonstrate that N$_2$O$_5$ and ClNO$_2$ are viable nitrating agents for nitrophenol production in the atmosphere aqueous phase.
Acknowledgements

MAJH was supported by a studentship from the UK EPSRC and CASE funding from the NERC Centre for Ecology & Hydrology.
References

Behnke, W., George, C., Scheer, V., Zetzsch, C., 1997. Production and decay of ClNO$_2$ from the reaction of gaseous N$_2$O$_5$ with NaCl solution: Bulk and aerosol experiments. Journal Of Geophysical Research 102, 3795-3804.

Table 1. Observed product distributions (mean ± 1 sd of triplicates) for different nitration reagents and aqueous pH.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>pH</th>
<th>2-nitrophenol / %</th>
<th>4-nitrophenol / %</th>
<th>4-nitrosophenol / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂O₅</td>
<td>6</td>
<td>14 ± 5</td>
<td>6 ± 5</td>
<td>80 ± 7</td>
</tr>
<tr>
<td>N₂O₅</td>
<td>10</td>
<td>61 ± 10</td>
<td>39 ± 10</td>
<td>0</td>
</tr>
<tr>
<td>ClNO₂</td>
<td>6</td>
<td>10 ± 5</td>
<td>10 ± 7</td>
<td>80 ± 12</td>
</tr>
<tr>
<td>ClNO₂</td>
<td>10</td>
<td>32 ± 13</td>
<td>19 ± 2</td>
<td>49 ± 14</td>
</tr>
</tbody>
</table>

Table 2. Results of FACSIMILE fits to experimental kinetic profiles. Data at 5 and 20 °C were combined. Values for F and k_2/k_w are independently determined. Values for k_2 are calculated from k_2/k_w using $k_w = 1.7 \times 10^9$ s⁻¹ (see text).

<table>
<thead>
<tr>
<th>Reagent</th>
<th>pH</th>
<th>Fk_2/k_w / s⁻¹</th>
<th>F / M s⁻¹</th>
<th>k_2/k_w / M⁻¹</th>
<th>k_2 / M⁻¹ s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂O₅</td>
<td>6</td>
<td>1.5 × 10⁻³</td>
<td>4.6 × 10⁻⁶</td>
<td>330</td>
<td>0.6 × 10¹²</td>
</tr>
<tr>
<td>N₂O₅</td>
<td>10</td>
<td>3.8 × 10⁻³</td>
<td>2.5 × 10⁻⁶</td>
<td>1500</td>
<td>2.5 × 10¹²</td>
</tr>
<tr>
<td>ClNO₂</td>
<td>6</td>
<td>2.1 × 10⁻³</td>
<td>3.3 × 10⁻⁶</td>
<td>640</td>
<td>1 × 10¹²</td>
</tr>
<tr>
<td>ClNO₂</td>
<td>10</td>
<td>4.5 × 10⁻³</td>
<td>9.9 × 10⁻⁶</td>
<td>450</td>
<td>0.8 × 10¹²</td>
</tr>
</tbody>
</table>
Figure 1. Total product concentration with time for nitrination with N_2O_5, at pH 10, of phenol solutions of concentration 10^{-4} M (top left), 10^{-3} M (top right), 10^{-2} M (bottom left) and 10^{-1} M (bottom right). Open and closed symbols are experimental data obtained at 5 and 20°C, respectively. Error bars (\pm 1 sd of triplicates) are shown for illustration on two sets of data only. The solid lines are kinetic model fits to all data simultaneously (see text).

Figure 2: Schematic illustrating the phase transfer of N_2O_5 followed by dissociation to NO_2^+ which can then react with either water or with phenol (PH) to yield nitrated products (NP).

$$
\begin{align*}
\text{N}_2\text{O}_5^{(g)} & \rightleftharpoons \text{N}_2\text{O}_5^{(aq)} \\
\text{N}_2\text{O}_5^{(aq)} & \rightarrow \text{NO}_3^- + \text{NO}_2^+ \\
\text{NO}_3^- + \text{NO}_2^+ \text{PH} & \rightarrow \text{NP} + \text{H}^+ \\
\text{H}_2\text{O} & \rightarrow 2\text{H}^+ + \text{NO}_3^-
\end{align*}
$$