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Abstract

Phylogeographic approaches help uncover the imprint that spatial epidemiological processes leave
in the genomes of fast evolving viruses. Recent Bayesian inference methods that consider
phylogenetic diffusion of discretely and continuously distributed traits offer a unique opportunity
to explore genotypic and phenotypic evolution in greater detail. To provide a taste of the recent
advances in viral diffusion approaches, we highlight key findings arising at the intra-host, local
and global epidemiological scales. We also outline future areas of research and discuss how these
may contribute to a quantitative understanding of the phylodynamics of RNA viruses.

Introduction

The ever-rising flood of viral genetic data and continual advances in statistical inference are
fostering new opportunities for phylodynamic studies of infectious diseases. The central
premise of this discipline is that epidemic processes, such as viral population growth and
subdivision, leave a measurable imprint on the genome of viruses over the course of years,
months or even days [1,2]. In these rapidly evolving pathogens, sequence evolution is
occurring simultaneously with geographic dispersal; this interaction characterizes a spatial
phylodynamic process that can be recovered from genomic data using phylogeographic
analyses. Beyond a historical perspective on viral evolution, this discipline has the potential
to help predict the emergence of infectious diseases by identifying key reservoir species and
geographic areas from which new infections are likely to emerge and spread [3], and to
elucidate the impact of animal movement or human mobility on viral disease spread. Here,
we review recent advances in our understanding of the complex interplay between molecular
evolution and spatial dynamics of RNA viruses at different evolutionary scales. We
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highlight the role of state-of-the-art probabilistic methods that connect phylogenetic
inference to a statistical description of trait evolution in providing novel phylodynamic
insights. The studies we subsequently discuss serve as examples to illustrate emerging areas
of future research.

Reconstructing spatial dynamics through time

As a primary tool for gaining insight into the origins of viral lineages, phylogenetic
reconstruction has proven instrumental in molecular epidemiology [4]. Spatial processes are
naturally embedded in phylogenetic trees or genealogies as a record of transitions between
locations along each branch. In this sense, phylogeographic diffusion can be considered as a
process of trait evolution where the particular trait — in this case, geographic location, is
treated as an inherited property of the virus. The aim is then to estimate the ancestral
locations in a phylogenetic tree conditional on the observed locations of viral sequences
represented by the tips of the tree. Under this premise, a range of methods have been
developed that can be categorized according to the criterion they use to chose between
alternative hypotheses [5] and by the processes used to model how the traits change across
the tree. In particular, different processes need to be assumed for discretely distributed traits,
e.g. for viruses sampled from different countries or cities, and continuously distributed traits,
e.g. when latitude and longitude coordinates are used as spatial locations for viral samples
(Box 1).

Box 1
Viral diffusion in discrete space

Phylogeographic inference has primarily considered diffusion of discrete traits such as
spatial locations (e.g. Figure 1A) or body compartments, e.g. [12,48]. With analogy to the
general time-reversal nucleotide substitution model, stochastic diffusion processes are
modelled using continuous-time Markov chain (CTMC) (Figure 1D), which are fully
characterized by infinitesimal rate matrices that contain symmetrical instantaneous rates
of location exchange. A recent extension of this model accommodates asymmetrical
transitions among locations in the phylogeny [49], which can provide a more realistic
description of spatial dynamics in viral epidemics provided sufficient information is
available to inform the more complex parameterization.

Because all rates are generally not required to adequately explain the diffusion process,
the estimation procedure would gain efficiency through focusing on a limited set of well-
supported migration pathways [9]. The Bayesian phylogeographic framework
accomplishes this by using a Bayesian stochastic search variable selection (BSSVS)
procedure that allows rates to shrink to zero with some probability based on prior
specification. This naturally leads to a Bayes factor (BF) test [50] to identify significant
dispersal pathways by comparing the posterior to the prior odds that the transition rates
are non-zero [9]

Markov jumps and rewards

While none of the CTMC transitions between spatial locations in the phylogeny are
directly observed, recent advances in explicit calculation [51,52] enable computation of
the expected number of transitions (jumps) and waiting times in given locations
(rewards) (Figure 1D). These jumps and rewards are possible on a branch-by-branch
basis and can track specifically defined sets of transitions [53]. For example, it is often of
interest to count the expected number of transitions out of a source- or into a sink-
location.

Continuous diffusion models
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Model-based reconstructions of continuous-valued traits rely on a phylogenetic Brownian
motion process [10], the random walk model analogue for discrete state CTMCs (Figure
1F). In contrast to the discrete phylogeographic approach, where estimates of ancestral
locations are necessarily drawn from the set of sampled locations, Brownian diffusion
models allow to fully explore two-dimensional space [6,10] and deliver a more realistic
representation of the diffusion process, particularly for continuously distributed samples
(Figure 1C). Inspired by relaxed molecular clock models [54], several extensions to relax
the constant variance assumption of Brownian motion have been proposed, which permit
diffusion rates to vary through time according to different underlying rate change
processes.

Visualization tools

Bayesian inference of spatiotemporal dynamics incorporating phylogenetic and mapping
uncertainty produces high-dimensional estimates that require dedicated visual
summaries. Software to convert phylogenies annotated with divergence time and spatial
estimates to keyhole markup language (KML), compatible with virtual globe software
like Google Earth (earth.google.com) or GIS programs has recently been released ([55];
www.phylogeography.org). Figure 2 provides an example of such a visualization in
Google Earth and Cartographica (http://www.macgis.com/).

Although the simplicity of parsimony reconstruction of discrete locations states at the
internal nodes of the tree has been most appealing in viral epidemiology, probabilistic, and
in particular Bayesian, statistical frameworks have recently been gaining ground due to their
flexibility in hypothesis testing and the ready integration of ecological information [6,7].
Recent advances in Bayesian inference methods are focused on directly linking patterns of
genetic diversity to ecological processes, including changes in population size and
substructure through time, allowing simultaneous insights into the spatial, temporal and
demographic dynamics of rapidly evolving pathogen populations [8-10]. We refer to Box 1
for a brief account on how Bayesian models of phylogenetic diffusion in discrete or
continuous space constitute the spatial component of the integrated statistical framework in
the BEAST software package [8]. In the next section, we also allude to other applications of
phylogenetic diffusion models.

Viral diffusion at the intrahost level

Arguably the smallest biological scale for investigating viral evolutionary processes is
provided by intrahost samples, in particular for viruses that cause chronic infections such as
human immunodeficiency virus type-1 (HIV-1) [11,12] and Hepatitis C virus (HCV) [13].

In this environment, spatial structure arises from infection of different body compartments,
organs, tissues or cells characterized by specific receptors [14,15]. The extent to which viral
diversity is compartmentalized [13,16-20] and how easily viruses migrate between different
organs or tissues [12,21,22] are some of the evolutionary questions with important medical
implications that are being addressed using phylogeographic approaches at the intrahost
scale. One illustrative example explored viral migration among viral subpopulations
localized in distinct brain compartments of a single patient to suggest a model for the
neuropathogenesis of AIDS [12].

To our knowledge, phylogenetic diffusion of continuous viral traits within hosts has not
been considered to date. However, longitudinal analysis of continuously-valued phenotypic
data including, e.g. replicative capacity [23] or antigenic information [24,25] would be
amenable to such approaches and may further advance our understanding of intrahost viral
dynamics.

Curr Opin Virol. Author manuscript; available in PMC 2012 November 1.
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Current approaches to study compartmentalization frequently arrive at inconsistent findings
between individual patients and sensitivity seems to decrease with increasing differences in
the rates of nucleotide substitution between compartments [26]. The typically high variance
of within-host evolutionary parameter estimates further complicates such studies. Similar to
nucleotide substitution, molecular clock and demographic inference [27], inference of
spatial diffusion may strongly benefit from hierarchical phylogenetic model (HPM)
extensions that pool information across patients while still permitting patient-specific
differences. Bayesian HPMs are particularly useful when data from a patient is sparse and,
by introducing fixed effects, differences among patient groups can be rigorously tested
[27,28].

Endemic and epidemic scales of spatial dispersal

At the interhost level, the choice for a discrete or continuous phylogeographic diffusion
approach may depend on the sampling scheme and the question under investigation. If
multiple sequences are available for a limited number of locations (Figure 1A), or if the
spatial distribution of the samples is amenable to discretization into a limited set of locations
(Figure 1B), a flexible continuous-time Markov chain (CTMC) model can be applied (Viral
diffusion in discrete space, Box 1, Figure 1D and E). Such models are almost universally
employed to model sequence evolution and efficient algorithms exist for computing the
probability of data under these. Although the discrete phylogeographic model comes at a
price of making an abstraction of geography, ecological or geographical information can still
be used to inform the CTMC parameters, and different parameterizations representing
distinct spatial hypotheses can be tested against each other. This strategy has, for example,
been employed to identify road distances as a predictor of dog rabies dispersal in North
Africa [29] and long-distance swine flows as a major disseminator of human-origin H1
influenza in the US swine population [30]. Stochastic mapping techniques complement this
discrete approach by providing estimates of location state transitions throughout the
evolutionary history (Markov jumps and rewards, Box 1).

Phylogeographic inference based on diffusion models (such as Brownian motion) in two-
dimensional space can yield more realistic reconstructions of spatial history because they
allow ancestral viruses to reside at any location in a continuous geographical landscape
(Continuous diffusion models, Box 1, Figure 1C and Figure 1F), but they are restricted by
the assumption of constant rates of dispersal through time and space. Variable diffusion
rates have recently been accommodated, but such relaxed Brownian processes might still be
more applicable to wildlife [10] (Figure 2) or plant viruses [31] than to human pathogens,
which are often dispersed within complex, and far ranging, host mobility networks [32]. For
human viruses, Brownian-like processes may only be tenable on limited observational
scales, such as a single country for locally circulating HIV-1 variants [33]. Estimates for a
restricted area also avoid large-scale spatial heterogeneity, but the first steps to incorporate
landscape heterogeneity explicitly are being made.

The distinct nature and scope of discrete and continuous phylogeographic inference has
elegantly been illustrated by a combined strategy to examine dengue spatial dynamics in
Vietnam [34]. Based on a large set of complete genomes, this study first demonstrated
independently circulating clades using a discrete approach that also considered neighbouring
countries. Markov jump estimates between different locations pinpointed urban areas as
main sources of viral shedding [34]. Brownian diffusion models were subsequently used to
demonstrate different dispersion rates in rural and urban areas, suggesting key differences in
the epidemiological dynamics in the distinct ecological settings. The ability to quantify
dispersal rates is an interesting feature, but the estimates are contingent on the surface area
under investigation. A geographically wider sampling for the same epidemic will
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undoubtedly yield faster diffusion rates than a geographically more restricted sampling, so
these estimates find most of their use in comparative analyses on the same scale (e.g. for
different viral variants [33]).

Among RNA viruses, arguably most phylogeographic efforts have been invested in
characterizing influenza spread, from the emergence of new variants in bird [9,35,36]
(Figure 2), swine [30] and human [37] populations to the dissemination of drug resistant
variants [38] and the local [39] or global seasonal dynamics [40,41] of human lineages.
Nevertheless considerable debate exists regarding the contribution of different mobility
patterns to human influenza spread, e.g. human workflows [42] versus airline travel [43,44]
for interregional-influenza spread in the US. At the global scale, source-sink dynamics
govern seasonal influenza but the exact source population has also been disputed [40,41].
Finally, while air transportation is the most obvious predictor for global influenza spread,
and this has been extensively exploited in modelling efforts, its contribution remains to be
formally tested. To all these questions, model-based phylogeographic analyses can
potentially provide insightful answers if applied to a comprehensive sample of viruses
through time. In addition to genetic data, antigenic information has also been exploited to
infer spatial dynamics of influenza [41]. We note that continuous diffusion models may
provide a natural framework for studying antigenic evolution, which is inherently associated
with genetic history. Discrete approaches to study the history of cross-species transmission
further demonstrate the generality of phylogenetic diffusion models [45,46], and also risk
group dynamics [47] may be within the scope of their application.

Concluding remarks and future areas of research

Recent phylogeographic developments are complementing the phylodynamic framework by
providing means to statistically identify viral origins and reservoirs of genetic diversity,
while setting the groundwork for quantitative studies on how and to what extent ecological
features shape pathogen genetic diversity. The flexible nature of phylogenetic diffusion
models allows virologists and epidemiologists to examine genotypic and phenotypic
evolution both within and between hosts. Finally, we envisage that future extensions, such
as a hybrid approach in which discrete phenotypic traits can act as predictors on the rate of
diffusion in continuous space, will further advance our understanding of viral epidemic and
evolutionary processes.
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Figure 1.

Hypothetical scenario for discretely and continuously distributed samples on the same
geographical scale (top) and modeling assumptions underlying the discrete and continuous
phylogeographic approaches (bottom). The choice of the phylogeographic approach depends
on whether the sampling scheme is amenable to discretization or not. For example, if
sequences are drawn from a single city in each country or if only the country of sampling is
known (panel A; k represents the number of sequences available for each state or location), a
discrete diffusion model may be preferred, although such sampling does not necessarily
preclude the application of a continuous diffusion model. Intermediate scenarios may be
treated either way (panel B). In this case, the choice may more depend on the objectives of
the analysis (see Box 1). Phylogeographic inference for sequences drawn from unique
locations that are continuously distributed over this geographic area and for which
administrative borders do not offer a realistic discretization (panel C) will have to resort to
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continuous diffusion models. To illustrate the assumptions underlying for the discrete
model, we consider a graphical representation of a four-state CTMC path (panel D). All
possible transitions from state i to state j are color-labeled according to the end state j
(diffusion to a location) within a time interval, although other arbitrary labels can be
consider to build different counting processes [52,53]. Conditioning on the observed
locations at the tips of a rooted phylogeny, CTMCs model the instantaneous locations along
each branch of a tree [9,56,57] to infer the ancestral states at the internal nodes (panel E).
Continuous diffusion approaches are based in Brownian diffusion models and can account
for variability on the branch dispersal rates [10]. We consider a simulation of a Brownian
diffusion process, in which the lines represent branches of the tree projected on a two
dimensional arbitrary map (panel F). In this case, only diffusion pathways for the tips are
shown.
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Figure 2.

Spatio-temporal reconstruction of avian influenza H5N1 spread in Eurasia. Both panels
represent a maximum clade credibility (MCC) tree summarized from a relaxed random walk
analysis of previously analyzed H5N1 hemagglutinin sequences [9,36]. The MCC is
projected in Google Earth (A) and Cartographica (B) respectively. In panel A, the heights of
the branches reflect elapsed time relative to the most recent date of sampling and the
gradient red-white indicates older-recent branching events; the map is based on satellite
images available in Google Earth (http://earth.google.com). In panel B, transparent polygons
indicate the 95% uncertainty intervals around the ancestral locations for the sampled viruses
and gradient red-blue indicates recent-older rate of dispersal. The continuous
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phylogeographic analysis of the HSN1 epidemic corroborates the Chinese province of
Guangdong as the hotspot of viral diversity [9,36].
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