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EXAMPLAR-BASED SPEECH WAVEFORM GENERATION FOR TEXT-TO-SPEECH

Cassia Valentini-Botinhao, Oliver Watts, Felipe Espic, Simon King

The Centre for Speech Technology Research, Edinburgh University, UK

ABSTRACT

This paper presents a hybrid text-to-speech framework that uses a
waveform generation method based on examplars of natural speech
waveform. These examplars are selected at synthesis time given
a sequence of acoustic features generated from text by a statistical
parametric speech synthesis model. In order to match the expected
degradation of these target synthesis features, the database of units is
constructed such that the units’ target representations are generated
from the same parametric model. We evaluate two variants of this
framework by modifying the size of the examplar: a small unit vari-
ant (where unit boundaries are determined by pitch mark location)
and a halfphone variant (where unit boundaries are determined by
subphone state forced alignment). We found that for a larger dataset
(around four hours of training data) the examplar-based waveform
generation variants are rated higher than the vocoder-based system.

Index Terms— Text-to-speech, vocoder, unit selection

1. INTRODUCTION

Hybrid text-to-speech (TTS) systems [1, 2, 3] were, until recent de-
velopments in direct waveform prediction [4, 5, 6], the state of the
art in natural-sounding speech synthesis and are still widely used
in commercial applications. By hybrid, we refer to systems that
produce speech from waveform unit selection and concatenation,
but that guide the selection of units with the output of an acoustic
model. In the past, hybrid approaches used hidden Markov model
(HMM)-based synthesis as the acoustic model [7, §4], while more
recently neural network based models have gained popularity [1, 2,
3]. In most hybrid systems, the units used for waveform generation
are relatively large and phonetically determined (diphones and half-
phones). To create a database of these units, such systems require a
dataset of phonetically transcribed and aligned speech. Alignment is
essential for the quality of these systems and when transcription is
incomplete, incorrect or simply not available, problems arise. More-
over, the use of larger units makes these systems more dependent on
larger datasets, where an appropriate amount of data coverage is ob-
tained. Finally, a waveform generation system that is unaware of the
symbolic content underlying the speech signal would in principle be
capable of exploiting databases of mixed dialect and languages.

To resolve these issues the current work proposes a hybrid TTS
that uses an examplar-based waveform generation method based on
smaller units which are determined without phonetic annotation.
This waveform generation system was first proposed in [8]; in this
paper we integrate it with a TTS acoustic model and present its half-
phone variant that was used in [9]. Similar small unit systems have
been proposed before, where units are determined without phonetic

Links to audio samples and code for recreating the systems described
here can be found at https://github.com/CSTR-Edinburgh/
snickery.

alignment – these have always been fixed 5ms frames of speech
[10, 11, 12, 13, 14]. Many of these approaches, however, rely on
phonetic identity to prune the unit search and reduce computational
expense. The work presented in [11, 12] is more similar to ours
as no phonetic annotation is assumed. Unlike any other approach,
however, we do not use any kind of dynamic programming for unit
selection: we find greedy search to be effective when using small
units. Furthermore, rather than setting a fixed unit size, we define
units according to pitch marks extracted from the speech signal.
One example of existing work where unit selection is done over
similarly-defined units is [15], although there the units selected
(glottal pulses) result in an excitation signal when concatenated,
which must then be filtered to impose the vocal tract response heard
in the final speech.

In the remainder of this paper we detail the proposed small unit
hybrid TTS system and its halfphone variant. Following this, we
present results of a listening test with vocoded speech and TTS en-
tries created using two different datasets.

2. PROPOSED TEXT-TO-SPEECH SYSTEM WITH
EXAMPLAR-BASED SPEECH WAVEFORM GENERATION

The proposed hybrid TTS framework is presented in Fig. 1. At syn-
thesis time a previously trained acoustic model generates a sequence
of target acoustic features from text. These features are used to
search for a sequence of unit indices. From these indices a sequence
of higher dimension acoustic features is created and used for wave-
form reconstruction. In this section we will summarise the waveform
generation method proposed in [8] that forms the basis of the hybrid
TTS framework proposed in this paper.

Traditional waveform generation methods are parametric, i.e.
they reconstruct the speech waveform from a series of acoustic pa-
rameters, relying on models of how the speech signal can be math-
ematically described. Unlike these more traditional methods, an
examplar-based waveform generation method is non-parametric as
it recreates the waveform by concatenating waveforms segments de-
rived from a database of natural speech recordings.

As in the case of other examplar-based approaches, the proposed
method selects a sequence of speech segments under two types of
constraint: that each unit should be acoustically close to its target
(divergence is penalised with a target cost), and that the end of each
unit in the sequence should be acoustically similar to the start of the
following unit, so that they can be joined without audible artefacts
(implemented with a join cost). As mentioned in [8], the target and
join components of the combined cost can be regarded as measures
of fidelity and fluency respectively, the first scoring how faithfully
the desired message is encoded and the second, how fluently it is
rendered. In the following subsections we detail how the database of
natural speech waveform units is created and how to generate new
waveforms from this database.
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Fig. 1. Proposed hybrid TTS system with examplar-based waveform generation. The switch positions (top/bottom) refer to: switch I (vocoded
speech/TTS), switch II (statistical parametric TTS/hybrid TTS) and switch III (matched/unmatched training).

2.1. Database preparation

The process we refer to as database preparation, illustrated in the
bottom left corner of Fig. 1, entails two modules: unit building and
acoustic feature extraction.

2.1.1. Building units

A unit i is defined by three sets of acoustic representations: the target
ti, the join ji and the unit representation ui. The target and join
representations are the basis upon which a fourth representation is
created at synthesis time, the combined representation ci. This is
the representation used in the unit search module during synthesis.
The unit representation is used to reconstruct the waveform from the
sequence of unit indices returned by the database search.

2.1.2. Acoustic feature extraction

To obtain these sets of representations we extract a series of acous-
tic features from a corpus of (possibly transcribed) speech. We first
place pitchmarks at estimated instants of glottal closure in voiced
speech and at 5ms intervals elsewhere. We then extract spectral
features characterising the signal around each of these pitchmarks,
through a pitch-synchronous analysis. Following [8], the term frame
from now on denotes a pitchmark-centred acoustic feature vector.

2.2. Waveform generation

As shown in the bottom right corner of Fig. 1, the waveform genera-
tion process is composed of two modules: unit search and waveform
reconstruction.

2.2.1. Unit search

Given a database of units, synthesis proceeds as illustrated in Fig. 2.
The join and target representations of the units database is used to
create the combined representation. This process is illustrated on
the top of the Fig. 2, where we see the combined representation ci
for each unit i in the database. This is constructed by concatenating
the target representation of unit i ti with the join representation of
the (temporally) preceding unit ji−1 as follows:

ci = [jᵀ
i−1 tᵀi ]

ᵀ (1)

At synthesis time step t, the desired combined representation
c′t is prepared by concatenating the desired target vector t′t and a
history vector h. The desired target feature is obtained from a TTS
acoustic model (as shown in Fig. 1). The history vector is the join
representation of the unit preceding the previously chosen candidate
unit. This process is illustrated in the middle portion of Fig. 2. On
the assumption that any sequence to be synthesised will start with
silence, the history vector is initialised as the join representation of
a frame of acoustic silence.

Given the desired combined representation c′t and the set of
combined representations for each unit in the database, the index
st of the unit selected at time t is determined as:

st = argmin
i
D(ci, c′t) (2)

whereD(·, ·) denotes Euclidean distance. Once the st index is found
the history vector h is updated to jst , and search moves to the next
timestep t+1. The search is conducted greedly as a fixed decision is
made at each time step to find the nearest neighbour in the database.
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Fig. 2. The unit search module, adapted from [8].

We found that this simple search was sufficient as units are too short
to deviate from the target sequence in the course of a single unit [8].

2.2.2. Waveform reconstruction

As illustrated in the Fig. 1, the result of the unit search is a sequence
of indices which allow the retrieval of the portion of acoustics asso-
ciated with each selected unit st. In our implementation this is done
after search has finished, but as the search requires no lookahead, in
principle the concatenation can be done incrementally as search pro-
gresses. The streams in the unit representation are cross-faded and
waveform is reconstructed using MagPhase synthesis routine based
on pitch synchronous overlap-add [16].

2.2.3. Generalisation to multiple frames

The generation modules described in the previous subsections han-
dle units of a single frame (a single epoch). According to our own
experiments this creates intelligible speech but results of higher qual-
ity can be obtained with slightly larger units. We will now describe
the changes made to the unit search module to allow for m-frame
unit sizes, where m > 1. This process is illustrated in Fig. 3 for
m=3. First, the combined representation ci is obtained as follows:

ci = [jᵀ
i−m tᵀi−m+1 . . . tᵀi ]

ᵀ (3)

This is done for every frame in the database. This means that most
frames will appear in m different combined representations (i.e. the
units overlap temporally).

The desired combined representation c′t at time t is then pre-
pared by concatenating the history vector h and desired target vec-
tors t′t−m+1 . . . t

′
t. At each synthesis step, the history vector is up-

dated to jts (as it was done for the one frame case). The time index
is then incremented from t to t + m. This means that contiguous
sections of speech consisting ofm frames are concatenated in a non-
overlapping fashion. The join part of the cost is calculated between
single frames of join representation features at unit boundaries.

?
?

?

Fig. 3. Generalisation to m-frames (m=3), from [8].

2.3. Acoustic representations

2.3.1. Choosing the target, join and unit representations

We define the target representation as the concatenation of two
streams of acoustic features: a one dimensional value correspond-
ing to the logarithm of fundamental frequency (logF0) and 60-
dimensional vector of mel-warped log magnitude spectrum extracted
pitch-synchronously by the MagPhase vocoder (mag) [16].

For the join representation four streams of acoustic features were
used. In addition to the two streams described above, we also include
two streams of phase features extracted by MagPhase (each repre-
sented by a 45-dimensional vector). We expect that the inclusion of
these two phase streams will yield a sequence of speech fragments
with less phase discontinuities.

The unit representation might consist of a fragment of time do-
main signal or some other perceptually transparent high-fidelity rep-
resentation of that signal. We defined it as the high dimensional
MagPhase representation (in contrast to the low-dimensional fea-
tures used for search), as this allows for not only high quality re-
construction but also the possibility of applying F0 manipulation
and spectral smoothing at joins. This representation includes: the
logF0, a 1025-dimensional mag feature vector and two vectors of
1025 dimension that encoding the phase information of the complex
spectrum.

2.3.2. Standardising the join and target representations

Prior to creating the join, target and combined representation, the
separate streams’ features are standardised and weighted. To stan-
dardise a stream of features we compute means over the whole
database per coefficient so that the standardised coefficients will
have zero mean. To scale all values within a stream a single standard
deviation value is calculated over the whole database and consider-
ing all coefficients. This allows for the preservation of the relative
dynamic range differences between coefficients within a stream,
which we assume are of perceptual importance. When computing
means and standard deviation of the logF0 stream we do not include
unvoiced frames. The logF0 values during unvoiced frames are
standardised separately by setting them to a negative constant value.
The magnitude of this was set by multiplying the feature’s standard
deviation by a constant factor.

2.3.3. Weighting the join and target representations

Features’ contributions to the selection costs defined in Eq. 2 can
be modified by weighting the features that compose the combined
representation c. We apply weights stream-by-stream rather than
coefficient-by-coefficient. The stream weighs in both target and join
representations have to sum to one. For the experiments reported
here within each representation stream weights were set the to the



same value. We then scale the join representation globally by a factor
α, where 0 < α < 1, and scale the target representation by 1−α. As
in other unit selection approaches, this allows us to strike the right
balance between fidelity and fluency.

2.4. The halfphone system

The halfphone variant shares some similarities with the small unit
system that we described so far, but the use of larger, phonetically
determined and variable length units means that there are consid-
erable differences. Notably, in order to determine unit boundaries,
the halfphone systems requires subphone state boundaries to be pro-
vided, i.e. phonetic transcriptions are required. Additionally, the
halfphone system uses a more conventional Viterbi search to select
a sequence of units.

During database preparation, we define halfphones units using a
five-state per phone HMM alignment. Two types of halfphone units
are possible: left and right halfphones. We assign the speech seg-
ment corresponding to the first two states as one halfphone (the left
halfphone of this phone), and the speech corresponding to the last
three states as another halfphone (the right). The same join acoustic
streams used for the small unit system were also used by the half-
phone system. The halfphone unit’s target representation is extended
by appending the duration of the unit. Standardisation and weight-
ing are performed in the same way. In this system, however, frame-
level features must be mapped to representations at the rate of the
halfphone. To obtain halfphone target representations of fixed size
we select three frames from the halfphone frame sequence. The first
and last are simply the first and last frames in a given halfphone. The
middle frame is not equidistant between those start and end points.
Rather, its position is chosen in relation to subphone state bound-
aries determined during forced alignment, in the expectation that this
will provide a more acoustically meaningful point of reference. In
practice, we use the last frame of state one as the left halfphone’s
middle point and the last frame of state four for the right halfphone’s
midpoint. To obtain the join representation we store frames of join
acoustic streams of the start and end of each halfphone. For the unit
representation we store references to the start and end samples of the
time domain signal. Finally, as well as this numerical data, we store
the symbolic phonetic identity of each unit: its quinphone identity
and whether it is the left or right halfphone in the phone.

At waveform generation time the input to the unit search mod-
ule consists of phonetic identities, predicted timings and predicted
acoustic features which are used to create acoustic ‘targets’ for unit
selection. Concatenation and normalisation of streams is done as in
training, using means and standard deviations computed on the train-
ing corpus. The halfphones are then resampled in time to a fixed
length, consistent with the representations of units in the training
database. Viterbi search of the unit database is carried out. We limit
the search space by considering a limited number of candidates γ at
each time step. We filtered them according to phonetic type by first
taking all units from the database whose quinphone context matches
that of the target unit, if any, then do the same for successively more
limited contexts: triphone, diphone, and context-independent half-
phone, until the desired number of candidates has been selected. In
the case of diphone, the direction of context considered depends on
whether the target to be matched is the left or right half of a phone.
Unit search is treated as a weighted finite-state transducer problem:
the target cost is imposed by WFST T and the join cost by J . The
composition of these produces a WFST whose productions are con-
strained by both types of cost. The least-penalised path through it
is found, corresponding to a sequence of units from the database,

Table 1. Experimental conditions.

Speech Method Details and tools
N natural - -
V-MP vocoded parametric MagPhase [16]
V-ES vocoded examplar (small unit) Snickery [8]
T-MP TTS parametric Merlin [21] + MagPhase [16]
T-MS TTS unit selection Multisyn [18]
T-EH TTS hybrid (halfphone) Merlin [21] + Snickery [8]
T-ES TTS hybrid (small unit) Merlin [21] + Snickery [8]

whose associated waveform fragments can then be concatenated. At
unit concatenation time, the time domain signal corresponding to
each halfphone is retrieved and analysed on-the-fly with MagPhase.
Following the procedure described in [17], units’ spectral represen-
tations are then cross-faded in the MagPhase domain, and F0 trajec-
tories are smoothed before the final speech waveform is synthesised.

3. EXPERIMENTS

We performed a listening experiment to evaluate the conditions dis-
played in Table 1. There are three types of speech material in this
experiment: natural speech (N), vocoded speech (the ‘V-’ entries)
and TTS (the ‘T-’ entries). In the following subsections we will de-
tail the databases that were used and how each entry was created.

3.1. Databases

We used two datasets for this experiment. Each dataset contained
recordings of read speech from a professional voice talent made in
quiet conditions (a semi-anechoid room). The speech material in
both datasets have been sampled at 48kHz. Dataset 1 (D1) is made
of recordings of a male native speaker of Southern English while the
other dataset 2 (D2), contains recordings of a female native speaker
of Scottish English. The datasets also differ in terms of their size:
D1 contains 83 minutes of audio (1h20min; 2004 sentences) while
D2 has 238 minutes (4hrs; 4318 sentences) – around 2.8 times larger.

3.2. Proposed systems and baselines

We evaluate the proposed examplar-based small unit waveform gen-
eration system (the ‘-ES’ entries) against three different baselines.
One based on the MagPhase waveform generation component, with
a vocoder variant (V-MP) and TTS variant (T-MP). The other two
baselines are examplar-based TTS systems. A hybrid one, based
on halfphone variant described in the previous section (T-EH) and
a pure unit-selection TTS system created with the Multisyn tool (T-
MS). The Multisyn baseline was constructed following the standard
recipe provided by the Multisyn module [18] in the Festival toolkit
[19].

We used Reaper [20] to obtain pitch marks and log scale fun-
damental frequency values (lf0) and MagPhase [16] to retrieve the
following pitch synchronous parameters: 60 magnitude (mag) and
90 phase components - 45 of the so-called real and 45 imaginary
(imag) features. During unvoiced segments these parameters were
extracted at a fixed rate of 5ms.

3.2.1. Parametric TTS system

To create the TTS models we used the Merlin toolkit [21]. For the
D1 data, 1943 sentences were used for training and 61 for valida-



Table 2. Average distortion values of target training features.

Feature Metric D1 D2
magnitude MSE (dB) 7.26 7.68

F0 MSE (Hz) 9.17 27.20
F0 Correlation 0.81 0.83

V/UV Decision error (%) 0.03 0.04

Table 3. Statistics of units selected for the test set.

D1 D2
voiced unit size (ms) 47.71 58.18

unvoiced unit size (ms) 3.00 6.00
number of joints per second 21.30 15.60

tion, while for D2, 4217 and 101 sentences were used respectively.
The models of both voices were trained using the same architecture:
six layers of 1024 ‘tanh’ units each. For training, we used 0.002
learning rate, a batch size of 256, 25 epochs and stochastic gradient
descent as the optimiser. The learning rate and optimiser were var-
ied in order to find the best parameter for each dataset. We used as
output features the following acoustic streams: mag, real, imag, in-
terpolated lf0 and vuv (voicing decision derived from lf0). As input
we used 601 linguistic features derived from text plus 9 position and
duration features. The duration features were extracted from state
aligned labels during training and predicted from text at synthesis
time using a duration model. The duration model trained for each
dataset had the same architecture and training configuration as the
acoustic model, apart from the batch size of 64. The same 601 lin-
guistic features were used as input and as output 5 duration features
were used following the standard recipe in [21].

Table 2 shows the average distortion of the target feature streams
generated by the SPSS model. This was calculated per frame over
the training and validation sentences. The reference used were
acoustic features extracted from natural speech. We can see that the
models are relatively comparable in terms of magnitude spectrum
errors but that fundamental frequency mean square errors were much
higher for system D2.

3.2.2. Proposed hybrid TTS systems

To create the target representation of the database of units for the
proposed hybrid systems we synthesised the training and validation
sentences using natural speech duration and the linguistic features as
the input to the trained TTS acoustic model. The generated acoustic
features created from these models were used to compose the tar-
get features that describe each unit so that at training and synthesis
time the conditions are matched. The join and unit representations
used were extracted from natural speech, as shown in Fig.1. The
database preparation process resulted in a database with approxi-
mately 760,000 units for D1 and 2,910,000 units for D2.

To fine tune the proposed hybrid systems we synthesized 19 new
sentences (taken from the phonetically balanced Harvard set [22])
using a selection of different settings. Conditions were compared
pairwise and the best condition was chosen for the evaluation. This
process did not take more than ten minutes per voice. The different
settings were created by varying two parameters. For the halfphone
voices, we varied the join cost weight α (from 0.5 to 0.9, with steps
of 0.1) and the number of candidates for pre-selection γ (from 30 to
70, with steps of 10). For the small unit voices, both α (from 0.1 to
0.5, step of 0.1) and unit size m (from 4 to 12 epochs, steps of 2)
were varied. The final selected parameters for the small unit systems
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Fig. 4. Boxplot of listening test scores for conditions created using
database D1 (top) and database D2 (bottom).

were: m=6 and α=0.2 for D1; and m=12 and α=0.2 for D2. For
the halfphone systems the D1 voice was constructed with γ=50 and
α=0.7, while the D2 system, γ=70 and α=0.7.

Table 3 shows the average unit size observed in the test set. As
units are defined by a multiple of the pitch period, the size of voiced
units is inversely proportional to the underlying F0 of that segment.
For this reason the average unit size for D2 (female speaker) is only
1.2 times bigger than D1 even though the m value chosen for that
voice was twice as big. For unvoiced segments, the unit are defined
as m times 5ms, i.e. unvoiced units in D2 are twice as long as D1
units. This explains why the number of joins made per second (ex-
cluding natural joins and silence) was higher for the D1 entry.

3.3. Listening experiment design

We created a MUSHRA-style test [23] with 22 screens. On each
screen participants could play the audio sample produced by differ-
ent systems for the same sentence as many times they wished. They
were asked to rate the quality of the samples from 0 (bad) to 100 (ex-
cellent). The screens in the first half of the experiment were made of
samples from D1, while the second half contained samples from D2.
The first screen in each half was used for training. A different sen-
tence was used for each screen such that across every four listeners,
40 different sentences were used for each voice. Natural speech (N)
was included on each screen so that participants would have a qual-
ity reference and to check if participants paid sufficient attention to
score it as 100 (as instructed). We recruited 22 native English speak-
ers. One participant was excluded as they rated N less than 100% in
at least 20% of screens for both voices. We excluded around 11% of
screens where listeners did not give N the highest score.



3.4. Results

We present the boxplot of the results in Fig. 4. Median and mean
values of each distribution of scores are presented with solid and
dashed lines. As a significance test we used a Mann-Whitney U
test, at a p-value of 0.05, and with Holm Bonferroni correction. All
systems were perceived to be significantly different from each other
except T-MS and T-ES for the D2.

As illustrated in Fig. 4, among the vocoded entries V-MP ob-
tained the highest mean scores for both datasets, followed by the
proposed small unit system (V-ES). These results are in agreement
with those obtained in [8].

For the TTS entries results vary considerably depending on the
dataset. For D1 (the male speaker smaller dataset), the vocoder-
based voice T-MP was rated highest followed by T-ES, T-MS and
T-EH. For the D2 (the larger female speaker dataset), results are the
opposite: the higher score is obtained by T-EH, followed by T-MS,
T-ES and T-MP.

3.5. Discussions

The final quality of a voice produced by any hybrid TTS system
will depend on the quality of both the acoustic model and the unit-
selection module. The results obtained by T-MP gives us an indica-
tion of the quality of the underlying acoustic model for each dataset.
If we assume we can compare results across datasets (tentatively, as
no anchors were used in the test), we find that the T-MP system is
rated much lower when trained with D2 – even though more train-
ing data was available, a result that was also found in [16] using the
same datasets and partially supported by results in Table 2. The im-
provements observed for this dataset when using the hybrid systems
(T-ES and T-EH) could reflect two things: the benefit of having a
larger amount of units to choose from (the D2 database is 3.8 times
bigger than D1) and the benefit of using a waveform generation mod-
ule that can compensate for imperfect acoustic targets.

In terms of understanding what type of unit results in higher
quality, what we observed is that even though the performance of the
halfphone system (T-EH) was better in the D2 case, it varied greatly
by dataset. This could indicate that this system is more dependent
on data coverage, as we expect of a system built with larger units.
More experiments are required to determine whether more (possibly
untranscribed) data can improve the performance of T-ES, particu-
larly for D1, and to determine whether the benefits observed for D2
were mainly the result of the greater amount of available units.

4. CONCLUSIONS

We presented a hybrid text-to-speech system based on an unit-
selection waveform generation method. This method utilises units
defined by acoustics only, not relying on phonetic transcription or
alignment. In order to preserve perceptually relevant segments,
the unit size is defined by multiples of pitch marks. To guide unit
selection at synthesis time we use the output of a neural network
based TTS acoustic model. We conducted an evaluation compar-
ing this system with a halfphone variant and with a system where
waveforms are reconstructed with a deterministic vocoder. Results
varied according to the dataset. For a larger dataset of a female
speaker’s speech the halfphone variant was preferred, while for the
other dataset it was the vocoder-based system.
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