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The cholesterol biosynthesis pathway has recently been shown to play an important role in the innate
immune response to viral infection with host protection occurring through a coordinate down regulation of
the enzymes catalysing each metabolic step. In contrast, statin based drugs, which form the principle
pharmaceutical agents for decreasing the activity of this pathway, target a single enzyme. Here, we build an
ordinary differential equation model of the cholesterol biosynthesis pathway in order to investigate how the

Keywords: two regulatory strategies impact upon the behaviour of the pathway. We employ a modest set of
g;ftleersnt:ﬁlology assumptions: that the pathway operates away from saturation, that each metabolite is involved in multiple
Regulation cellular interactions and that mRNA levels reflect enzyme concentrations. Using data taken from primary
Anti-viral bone marrow derived macrophage cells infected with murine cytomegalovirus or treated with IFNy, we

Statin show that, under these assumptions, coordinate down-regulation of enzyme activity imparts a graduated
reduction in flux along the pathway. In contrast, modelling a statin-like treatment that achieves the same
degree of down-regulation in cholesterol production, we show that this delivers a step change in flux along
the pathway. The graduated reduction mediated by physiological coordinate regulation of multiple enzymes
supports a mechanism that allows a greater level of specificity, altering cholesterol levels with less impact
upon interactions branching from the pathway, than pharmacological step reductions. We argue that
coordinate regulation is likely to show a long-term evolutionary advantage over single enzyme regulation.
Finally, the results from our models have implications for future pharmaceutical therapies intended to target
cholesterol production with greater specificity and fewer off target effects, suggesting that this can be
achieved by mimicking the coordinated down-regulation observed in immunological responses.

© 2012 Elsevier Masson SAS. All rights reserved.
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Cholesterol is central to a diverse range of cellular functions,
including membrane development and maintenance [1], lipid raft
formation and vesicular transport [2], steroid hormone synthesis
[3], neurological development [4], and oxysterol [5] and vitamin D
synthesis [6]. Recently, the cholesterol metabolism has been shown
to have an important role in host—pathogen interactions. It has
been documented to be perturbed in response to infection [7,8]
and, conversely, cholesterol and its associated metabolites have
been shown to alter inflammatory mediators [9,10].
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Cholesterol synthesis is one step in a pathway of metabolic
interactions that is subject to catalytic regulation [11] and evidence
suggests that this pathway is critical to the optimal growth of
a range of viruses and microbes including cytomegalovirus (CMV),
Hepatitis C (HCV), HIV, Japanese Encephalitis (JEV), West Nile
(WNV), Dengue (DENV), Measles viruses (MV), African Swine Fever
Virus (ASFV), Mycobacteria and Salmonella [7,8,12—19].

The cholesterol biosynthesis pathway itself comprises a sequence
of metabolic interactions that occur across several organelles, start-
ing with the processing of Acetyl-Coenzyme A (henceforth denoted
ACoA — see Supplementary section 1 for a list of all metabolite
abbreviations) in the mitochondria and ending with cholesterol
synthesis in the endoplasmic reticulum [20,21]. This pathway
branches in the peroxisome and endoplasmic reticulum into the
sterol arm and the non-sterol arms (prenylation and dolichylation),
the latter arms carrying flux away from the main sterol arm.

Coordinate transcriptional control of the enzymes of the
cholesterol biosynthesis pathway is mediated by SREBP2 and
feedback control occurs through regulation of SREBP2 transport.
The SCAP:SREBP2 complex is ordinarily chaperoned to the Golgi
complex where SREBP2 is cleaved, before it migrates to the nucleus
to activate the suite of enzymes associated with the pathway.
However, in the presence of relatively high concentrations of
intracellular cholesterol or side-chain hydroxylated cholesterol, in
particular 25-hydroxycholesterol, SCAP:SREBP2 is retained instead
in the endoplasmic reticulum. Retention of SCAP:SREBP2 acts to
down-regulate transcription of the enzymes acting on the pathway
until ordinary levels of cholesterol and its derivatives have been
restored. Hence, the pathway undergoes transcriptionally mediated
regulation through changes to enzyme concentrations [20].

Recently, we reported a modest, but statistically significant,
decrement in the concentrations of enzymes associated with the
cholesterol biosynthesis pathway, in response to both infection and
interferon treatment in macrophages. This was observed at the
transcriptional level and was shown to correlate with reduced
protein concentrations [12]. This decrement was found to be part of
the innate immune response, intended to suppress viral growth.
However, the mechanism through which such changes decrease
the activity of the cholesterol biosynthesis pathway is something
that has yet to be fully elucidated in the published literature.

We have sought to investigate this mechanism of regulation,
exploring the impact on flux that results from such enzyme
decrements. This problem is experimentally challenging, but trac-
table with computational methods.

Flux is the natural quantity to consider when studying metabolic
pathway function and flux studies have been employed both
theoretically [22,23] and experimentally [24,25]. The flux through
the pathway describes the stoichiometrically adjusted rate of
production of each metabolite and so captures whether and how the
production rate of the metabolites affect each other. Ultimately, the
final flux value in the pathway describes the rate of cholesterol
synthesis. Metabolic Control Analysis (MCA) and Flux Balance
Analysis (FBA) are two typical approaches to studying flux in
a pathway system. However, MCA approaches focus on the effects of
individual infinitesimal changes in enzyme activity rather than the
compound effects of multiple finite changes and FBA, in its standard
form, does not relate flux changes to substrate concentration
changes. As a result, they are inappropriate for our study in which
we validate the pathway model at the level of the substrate,
implement multiple finite enzyme decrements and model the
effects of chemical inhibition. We build an ordinary differential
equation (ODE), dynamical model of the sterol pathway using
Michaelis—Menten and mass action kinetics that incorporates
additional interactions to represent the consumption of metabolites
in non-sterol related processes. We demonstrate that multiple small

decreases in enzyme activity can suppress the flux through the main
cholesterol biosynthesis pathway. This suppression presents itself as
a graduated reduction when the profile of flux is considered.

Cholesterol levels have also been demonstrated to be an
important risk factor in cardiovascular disease [26,27] and their
control is an active area of research [28]. Current therapies involve
the use of statins to competitively inhibit the enzyme HMGCR
which is responsible for catalysis of the interaction transforming 3-
hydroxy-3-methyl-glutaryl Coenzyme A (HCoA) to Mevalonate (M).
However, the efficacy of such therapies is limited by drug toxicity
and off target effects [29—31]. Here, we show that statin treatment
regulates the flux through the pathway in a manner that is mark-
edly different to that following infection. The metabolic interaction
catalysed by HMGCR is significantly upstream of cholesterol
biosynthesis and we show that the impact of a statin-like treatment
is to suppress flux throughout most of the pathway. This impacts
significantly upon many of the metabolites upstream of cholesterol
and upon the non-sterol arms, thereby incurring off-target effects.
In contrast, because coordinate enzyme regulation leads to a grad-
uated reduction in flux along the pathway, it has a less dramatic
impact upon the branches upstream of cholesterol production.

This manuscript is organized as follows. In Section 2, we
describe the experimental and mathematical methods employed to
determine enzyme and metabolite levels in response to infection
and IFNy treatment and to model the pathway. In Section 2.1, we
describe the experimental method and in Sections 2.2 and 2.3, we
describe how the model was built, how the initial conditions were
defined and how the model was used to simulate pathway activity.
In Section 3, we present the results of using the model to study the
flux through the pathway, with Sections 3.1-3.4 describing the
validation of the model and the impact on the flux of the response
to IFNy treatment, to CMV infection and to statin intervention,
respectively. In Section 4, we discuss these results, their relation-
ship, the off-target effects and their implications for specific, tar-
geted regulatory strategies. In Section 5, we summarize our results.
Supplementary material in support of the results presented here is
available online.

2. Materials & methods
2.1. Experimental measurements

Enzyme levels were inferred from gene expression measure-
ments of bone-marrow derived macrophage cells in two time
course experiments, one in which cells were infected with murine
cytomegalovirus (mCMV) and one in which cells were treated with
IFNy. Measurements were taken at half hour intervals for 12 h using
Agilent microarray platforms and at 24 h for select members using
QPCR. Agreement between mRNA expression and protein concen-
trations was validated by quantitative western blotting for selected
members of the pathway [12].

Intracellular cholesterol concentration was determined enzy-
matically using the Amplex-Red cholesterol assay kit (Molecular
Probes) according to manufacturer recommendations. Briefly, cells
were washed with 1 ml ice cold PBS and then lyzed in 200 pl cold
Lipid buffer containing 0.5 M of potassium phosphate, pH 7.4,
0.25 mM cholic acid, and 0.5% triton X-100. Cell lysates were
sonicated on ice with three 10-s pulses at high intensity. 20 ul were
then used to determine protein concentration using a standard BSA
assay to normalize the protein concentration. For cholesterol
measurement, 20 ul of each sample were added to 80 pl assay
solution, which contained 300 uM Amplex Red reagent, 2 U per ml
HRP and 2 U per ml cholesterol oxidase, 0.1 M of potassium phos-
phate, pH 7.4, 0.05 mM cholic acid, and 0.1% triton X-100. After
preincubation for 30 min at 37 °C under light exclusion conditions,
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fluorescence was measured using excitation at 530 + 2.5 nm and
fluorescence detection at 590 + 2.5 nm with a Polarstar Optima
Multifunction Microplate Reader (BMG Labtech, UK). The values
were corrected from the background. The relative amount of free
cholesterol to the mock treated samples was calculated using the
manufacturer’s supplied standard curve.

For the measurement of metabolite concentration, an Agilent
high performance liquid chromatography (HPLC) system coupled
with an Applied Biosystem Triple Quadrupole/lon Trap mass
spectrometer (4000Qtrap) was used for quantification of individual
polar lipids (phospholipids and sphingolipids). Electrospray
ionization-based multiple reaction monitoring (MRM) transitions
were set up for the quantitative analysis of various polar lipids.
HPLC atmosphere chemical ionisation (APCI)/MS was carried out
for analysis of sterols [12].

2.2. Model construction

Because regulation and feedback occur through transcriptional
control of enzyme activity, we chose to model the impact of enzyme
activity on the pathway flux. This obviated the need to explicitly
consider SREBP2 mediated feedback in the pathway as any feedback
would be accounted for in our measurements of enzyme activity.
From the representations available in the KEGG pathway database
[11], we assembled the description of the pathway shown in Fig. 1A
(presented in SBGN notation [32]). From this description, we built
a deterministic model of the pathway in which catalysed metabolic
transitions were described with Michaelis—Menten kinetics and
autocatalysed metabolic transitions were described with mass
action kinetics. Metabolites play a role in a range of cellular
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processes and undergo degradation. To capture this, each metabolite
was also considered to be consumed in an interaction competing
with the main pathway, but at a rate lower than its consumption in
the main pathway. The competing reactions were modelled with
mass action kinetics (not shown in Fig. 1A).

Parameter values for the cholesterol biosynthesis pathway were
taken from the Brenda enzyme database [33]. Where parameters
were not known, they were approximated with the mean of the
corresponding known parameters. The mean values were
keat = 7.9x10% hr! and ky = 4.2 x 1072 mM. Normalized
enzyme levels were inferred from the microarray time courses
described above. To obtain an absolute scale for these measure-
ments, we assumed an average number of 5000 enzyme proteins
[34] in a region of the cell (the endoplasmic reticulum) of volume
107 1 [35-37]. This gave a concentration scale of
E = 8.3 x 104 mM which we took to correspond to the mean
normalized enzyme level measurement across both experiments
at the start of each time course (mean normalized
measurement = 1279.2). We subsequently transformed the
normalized expression levels to concentrations using this equiva-
lence and took expression levels to be commensurate with protein
levels following the validation described above.

From Supplementary section 2, we can see that, in the limit of
low substrate, a Michaelis—Menten interaction acts much like
a mass action interaction with a rate constant k = kcatE/km, where E
is the enzyme concentration. Using kea, km and E, this gave
k =156 h™! and we used this value as the rate constant for all the
autocatalysed, mass—action interactions in the main pathway.

In order for the behaviour of the cholesterol biosynthesis
pathway activity to dominate over the other dynamical effects, the

14-Lanosterol

| %
7
Z é MO hrs
% / #12 hrs
Experiment | Simulation = Experiment | Simulation
mCMV Infection IFNg Treatment
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%
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% 12 hrs
Experiment | Simulation Experiment = Simulation
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Cholesterol
y
é MO hrs
/ F112 hrs

Experiment | Simulation | Experiment | Simulation
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Fig. 1. A) The cholesterol pathway represented in SBGN notation, starting with the metabolites Acetyl-Coenzyme A (ACoA) and ending in cholesterol synthesis. B)—D) The
normalized concentrations of 14-lanosterol (B), zymosterol (C) and cholesterol (D) at 0 h (solid, black) and 12 h (diagonal stripes) after mCMV infection and after IFNy treatment. We
show results from experiment and simulation. Experimental measurements were normalized against measurements from a mock time course and simulated measurements were

normalized against the concentration at 0 h.
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competing interactions were taken to have mass action rate
constants two orders of magnitude smaller than the corresponding
mass action constants formed from the main pathway parameters.
Thus, for substrate i, consumed in a Michaelis—Menten interaction,
the corresponding mass action constant would be ki E} /ki, and we
assigned to the mass action constant of the competing interaction
the value ki Ej/(100ki,), where ki, and ki, are the turnover and
Michaelis—Menten constants of the Michaelis—Menten pathway
interaction consuming the metabolite and Eg is the enzyme
concentration at the start of the time course. Cholesterol was
assumed to be consumed at the same rate that it was created in
order to avoid accumulation.

A complete list of parameter values is shown in Supplementary
sections 3 and 4 and a complete list of normalized enzyme
measurements is shown in Supplementary sections 5 and 6.

2.3. Modelling strategy

Near saturation, small fluctuations in enzyme concentration
lead to small changes of Vpax in Michaelis—Menten interactions
(Vmax = kcat x enzyme concentration) and this, in turn, leads to
large changes in metabolite concentration. Hence, we would expect
the pathway to operate in a regime away from saturation where the
dynamics would be more stable and robust. Here, we assumed that
the pathway was operating away from saturation of the
Michaelis—Menten interactions.

We assumed a level of flux into the pathway ~2/3 rds of the
lowest Vihax value obtained across both time courses. From the
parameters and the enzyme concentrations at the start of each time
course, we calculated the concentrations of each metabolite that
would allow the pathway to continue in dynamic equilibrium if no
changes were observed in the enzyme concentrations (see
Supplementary section 7). The pathway was then numerically
integrated, allowing the enzyme concentrations to change in
accordance with the concentrations measured in the time course.
In the interval between time points, enzyme concentrations were
calculated through linear interpolation.

In each interaction of the pathway, the flux was defined and
calculated as the rate at which each metabolite is produced.
Because this pathway is stoichiometrically trivial, this allowed
a direct comparison between all interactions in the pathway.
Numerical integration of the gathway was conducted in a two step
process, with all the fluxes f (t) being calculated from metabolite
concentrations and then all the metabolite concentrations being
updated from the net fluxes. For a general interaction in the interior
of a sequential pathway the update rule took the form
m;(t + At) = m;(t) + (fi_1(t) — fi(t))At, where m; is the concentra-
tion of metabolite i. Modifications to this rule were required at
branch points in the pathway and at the start and end. In order to
determine a size for At, simulations were run in iterations, with
values for At progressively decreasing. Iterations continued until
a value for At was reaching at which the results stabilized with no
variation in the first four significant figures of the pathway output.
This determined the At size.

3. Results
3.1. Model validation

Our first step was to assess the quality of the model by testing
whether it behaved in a manner consistent with the observed
underlying biology. We did this by comparing the concentrations of
three metabolites that cover the pathway at 12 h following immune
challenge.

In Fig. 1B—D, we see normalized metabolite concentrations at
0 and 12 h following mCMV infection or following IFNy treatment,
from both experiment and simulation. Experimentally determined
concentrations were normalized against the mock treatment time
course; computationally determined concentrations were
normalized against the concentration calculated at the start of the
time course, determined as part of the initial conditions (see
Section 2.3).

From a comparison of the experimental and the computation-
ally determined values, we can see that the behaviour of the model
is in qualitative agreement with the experimentally observed
response of the macrophage cells to mCMV infection and IFNy
treatment. This agreement becomes even clearer if we consider the
values at 0, 12 and 24 h post infection or post treatment
(Supplementary Fig. 1). This gives us confidence that the model can
be used to address questions surrounding the relationship between
changes in enzyme levels, metabolite concentrations and flux.

3.2. In response to IFNYy treatment, the flux through the cholesterol
biosynthesis pathway is significantly suppressed in a graduated
manner

It is not known how coordinate enzyme control impacts upon
flux through the pathway and cholesterol biosynthesis. Thus, we
first chose to assess the response of the pathway to the enzyme
time courses measured following IFNy treatment.

We simulated the pathway activity by taking the measurements
from the microarray time course of macrophage cells following
IFNy treatment to represent enzyme concentrations (we have
previously shown good correlation between mRNA concentrations
and enzyme levels [12]). Fig. 2A shows the resulting profile of flux
along the pathway and how this profile develops over the 12 h. For
presentational purposes, we numbered the interactions with 1
representing the input flux and 17 representing cholesterol
synthesis (for the full numbering, see Supplementary section 12).
The pathway forks at Zymosterol with flux split down both forks.
Cholesterol synthesis occurs on both forks and for presentational
simplicity, we omitted the details of each fork, but retained the
cholesterol synthesis rate, calculated as the sum of the synthesis
rates from each fork.

From Fig. 2A, we can see that the profile of flux is relatively
constant across the pathway at the point of treatment, but that, as
time advances, the flux along the pathway becomes suppressed,
leading to a much reduced rate of cholesterol synthesis at 12 h post
treatment.

In order to explore the down-regulation in pathway activity
further, we examined the cross sections taken at 0 and 12 h post
treatment. The resulting profiles are shown in Fig. 2B. At the point
of treatment (0 h), we can see that the pathway undergoes a very
modest reduction in flux along its length, attributable to the flux
lost through the interactions competing for each metabolite.
However, as a result of the coordinate down regulation of enzyme
activity across the time course, this modest reduction is dramati-
cally amplified.

This profile of flux reduction along the pathway can be consid-
ered in terms of (a) dominant interactions, in which the flux
reduces significantly and (b) non-dominant interactions, in which
the flux reduces more modestly. From Fig. 2B, we can see that the
dominant interaction is Squalene-2,30xidosqualene (henceforth
Squa-230x). In order to further explore the degree of suppression
in pathway flux that takes place in the non-dominant interactions,
we investigated the profile of flux leading up to Squa synthesis and
from Squa to 3-keto-4-methyl-zymosterol (henceforth 3k4m),
normalizing the flux values against the flux through the first
interaction in the sequence. The flux profiles are shown in Fig. 2C
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Fig. 2. The flux through the cholesterol biosynthesis pathway following treatment with IFNy. A) The development of the flux through the pathway in simulation is shown from 0 to
12 h following treatment. Interactions are numbered from 1 (the input flux) to 17 (cholesterol production). For the full numbering, see Supplementary section 12. At 0 h, the flux
through the pathway is relatively constant. However, by 12 h the flux has been significantly suppressed along the pathway. B) The profile of flux through the pathway at 0 and 12 h
following treatment. These profiles represent cross sections of the surface shown in A). The flux is dramatically reduced in the first 12 h. Interactions can be classified as dominant
(Squa-230x) and non-dominant (the remainder) depending on their degree of impact on the pathway flux. C) The flux through the non-dominant interactions between
ACoA—HCoA and FPP-Squa, normalized against the flux through the ACoOA—HCoA interaction. The flux through these non-dominant interactions is suppressed more modestly than
in the dominant interactions. D) The flux through the non-dominant interactions between Squa-230x and 4MZC-3K4M normalized against the flux through Squa-230x. The flux
through these non-dominant interactions is suppressed more modestly than in the dominant interactions.

and D, respectively. In both Fig. 2C and D, we can see that the flux
through the sequence of interactions is significantly suppressed
after 12 h.

3.3. In response to mCMV infection, the flux through the cholesterol
biosynthesis pathway shows some suppression in a graduated
manner

Ligand activation of the IFNy gamma receptor by the IFNy
cytokine is involved in immune activation of macrophages. To
compare modulation of the pathway in response to IFNy with its
modulation in response to infection, we next modelled the
pathway activity using the time course recorded in response to
mCMV infection. Fig. 3A shows the resulting profile of flux along
the pathway and how this profile developed over time. As in Fig. 2,
we numbered the interactions with 1 representing the input flux
and 17 representing cholesterol synthesis (see Supplementary
section 12). Because the pathway forks at Zymosterol, we omitted
the details of the flux along each fork, but retained the cholesterol
synthesis rate, calculated as the sum of the synthesis rates on each
fork.

The profile of flux in Fig. 3A is relatively constant across the
pathway at the moment of infection, but as time increases, the flux
along the pathway reduces, leading to a suppressed pathway and
a much reduced rate of cholesterol synthesis. To analyse this
response further, we again took cross sections from this surface at
0 and 12 h post infection. In Fig. 3B, we can see that there is
a modest reduction in flux at the point of treatment (0 h) and that
this is amplified as a result of the response to treatment.

As mentioned previously, the profile of flux reduction along the
pathway can be considered in terms of interactions that make
a dominant contribution to flux reduction and those that make
a non-dominant contribution. Interestingly, we see that the

distribution of dominant interactions is distinct from the distribu-
tion seen in the response to IFNy treatment. Here, the dominant
interactions are ACOA—HCoA and Squa-230x. In order to explore
further the regulation of flux through the non-dominant interac-
tions, we examined the flux profiles between dominant interac-
tions, normalizing the flux through each sequence against the flux
through the first interaction in the sequence. The results can be
seen in Fig. 3C and D. In the first of these profiles, it is clear that the
flux at 12 h post infection is similar to that at infection, but that
some modest reduction does occur towards the end of the
sequence as a result of the enzyme regulation. In the second profile,
the flux profile clearly does not alter significantly between 0 h and
12 h post infection.

3.4. Under statin-like intervention, the pathway acquires a step
reduction in flux

From Figs. 2 and 3, we can see that the pathway has the ability to
respond to perturbation throughout its length. We chose to
compare these flux profiles to that which is likely to be obtained
when statin-like inhibitors that target the HMGCR enzyme are
introduced into the pathway.

Fig. 4A shows the profile of flux obtained in the unperturbed
pathway and the profiles at 12 h following IFNy treatment and
mCMV infection. Fig. 4A also shows the profile of flux obtained
when the statin-like inhibitor is introduced with a concentration
sufficient to suppress cholesterol production to the mean of the
production rates for IFNy treatment and mCMV infection at 12 h.
Here we can see that the profile takes a very different form,
impacting dramatically upon the interactions upstream of Squa.
The profile corresponding to statin-like inhibition is less graduated
than in the physiological responses both in terms of the dominant
interactions and the non-dominant interactions, and such a flat
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Fig. 3. The flux through the cholesterol biosynthesis pathway following infection with mCMV. A) The development of the flux through the pathway in simulation is shown from 0 to
12 h post infection. Interactions are numbered from 1 (the input flux) to 17 (cholesterol production). For the full numbering, see Supplementary section 12. At 0 h, the flux through
the pathway is relatively constant. However, by 12 h the flux has been significantly suppressed along the pathway. B) The profile of flux through the pathway at 0 h and 12 h post
infection. These profiles represent cross sections of the surface shown in A). The flux is dramatically reduced in the first 12 h following infection. Interactions can be classified as
dominant (ACoA—HCoA and Squa-230x) and non-dominant (the remainder) depending on their degree of impact on the pathway flux. C) The flux through the non-dominant
interactions between ACoA—HCoA and FPP-Squa, normalized against the flux through the ACOA—HCoA interaction. The flux through these non-dominant interactions shows
a mild suppression towards the end of the sequence. D) The flux through the non-dominant interactions between Squa-230x and 4MZC-3K4M normalized against the flux through
Squa-230x. The flux through these non-dominant interactions shows no suppression between 0 and 12 h.

profile arises because the single HMGCR inhibited interaction takes
the entire regulatory burden of reducing the flux along the pathway
with the other interactions contributing no more flux reduction
than in the unperturbed case.

4. Discussion

Figs. 2—4 give us insight into how the cholesterol biosynthesis
pathway operates and its various modes of regulation. Fig. 2 shows
that, in response to IFNy treatment, the pathway undergoes
areduction in flux that is mediated by both the dominant and non-
dominant interactions. The distribution of flux at the point of [FNy
treatment shows a very mild reduction along the pathway. This is
attributable to the flux lost through the off-pathway, competing
interactions. However, at 12 h post treatment, we can see that the
flux becomes significantly suppressed along the pathway due to the
coordinate enzyme reduction. This occurs because a reduction in
the enzyme concentration in an interaction has the effect of
decreasing the rate of the interaction. This, in turn, increases the
proportion of flux shunted through the off-pathway interaction
competing for the same metabolite. At 12 h post treatment, we can
see that most of the interactions on the pathway play a suppressive
role. This implies that, for most of the metabolites, there is an
increase in the proportion of flux shunted through the off-pathway
interactions, if flux conservation is to be maintained.

In Fig. 3, we can see that the pathway also undergoes a reduction in
flux in response to mCMV infection. In this case, the reduction is
mediated mostly by the dominant interactions with very few non-
dominant interactions contributing to the suppression of flux
between 0 and 12 h post infection. Here, we infer that the coordinate
enzyme control leads to anincreased proportion of flux being shunted
through the off-pathway interactions that compete for metabolites
with the dominant interactions. However, we see little suppression of
flux through the non-dominant interactions between 0 and 12 h post

infection, implying that the proportion of flux being shunted through
the off-pathway interactions, competing for the same metabolites,
stays approximately the same as at the point of infection.

In Fig. 4A, we see that a statin-like pharmaceutical intervention
comparable to the immune-led responses introduces a profile of
flux with a significantly different shape to that of the immune led
response. A statin-like intervention leads to a step down in flux
towards the start of the pathway with the result that the flux
passing through many of the interactions in the upper half of the
pathway is significantly lower than the levels observed in immune-
led responses. We can infer that a statin-like intervention shunts
a significantly increased proportion of flux through the off-pathway
interaction competing for HCoA. In the remaining interactions, no
significant change in the proportion of flux passing through the
main pathway interactions occurs.

If we consider the flux profiles shown in Fig. 4A, we see that the
introduction of a statin-like inhibitor steps down the flux at the
interaction HCoA-M and that this has consequences for many of the
interactions downstream of HCoA-M. In the upper regions of the
pathway, the level of flux after the introduction of a statin-like
inhibitor is well below that achieved in immune-led responses.
This is particularly significant for the interactions that consume and
produce Isopentyl-PP (IsPP) and Farnesyl-PP (FPP) as these
metabolites are also consumed in the prenylation and dolichylation
non-sterol arms that fork from the main sterol pathway [20,21].
Hence, the difference in profiles between statin-like intervention
and the immune-led regulation is likely to have significant conse-
quences for these non-sterol arms due to the difference in flux
passing through the branch point in the pathway. Off target effects
are known to be a particular concern for statin based treatments
[29—31] and the difference in flux profiles may provide a clue as to
why this is the case.

If we consider the profiles of flux associated with coordinate
enzyme regulation and with single enzyme regulation, it is clear that
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Fig. 4. A) The effect of a statin-like inhibitor on pathway activity. The profile of flux at
0 and 12 h following mCMV infection and IFNy treatment together with the profile of
flux in an unperturbed cell following the introduction of a statin-like inhibitor which
targets the enzyme HMGCR. The effect of a statin-like inhibitor is to step down the flux
through the interactions catalysed by HMGCR. This impacts upon the pathway
significantly upstream of the point of cholesterol synthesis and creates a flux profile
dramatically different to that which arises from the biological response to mCMV
infection or IFNy treatment. B) The profile of flux achieved along the pathway when
inhibitor concentrations are chosen so that each interaction contributes equally to the
regulation of flux (inhibitor levels listed in Supplementary section 9).

the coordinate regulation provides a more robust strategy for regu-
lating the pathway. Single enzyme regulation offers no protection
against metabolite surges occurring downstream of the regulated
interaction. Therefore, distributing flux reduction over multiple
interactions, rather than a single interaction, protects the regulatory
mechanism from cellular perturbations. The regulation of the
cholesterol biosynthesis pathway by IFNy has been shown to be part
of an antiviral response and a distributed flux reduction also increases
the difficulty for a pathogen to manipulate the pathway to proviral
effect. For these reasons, it is likely that coordinate control has
enjoyed a selective advantage in the evolution of immune regulation.

From Figs. 2 and 3, we can see that all the interactions have the
potential to play a regulatory role. Therefore, an important question
to ask is whether a combination of inhibitors can be chosen such
that the flux reduction is distributed evenly throughout the
pathway. Such a regulatory structure would be optimally robust.
This could be achieved through control at the transcriptional level,
tuning SREBP2 activity, or at the enzyme level using pharmaceu-
tical inhibition or miRNA induced degradation. Such an arrange-
ment can be achieved in the models described above by using the
combination of inhibitors with levels described in Supplementary
section 9. The resulting flux profile is shown in Fig. 4B. Here, the
inhibitor concentrations have been chosen so that, for each
metabolite, the proportion of flux shunted down the off-pathway
interaction to flux continuing down the main pathway is exactly
the same. In addition to the superior robustness of such a distrib-
uted regulation, this profile of flux would also show greater spec-
ificity than a stepped, statin-like treatment as the upstream
interactions would be significantly less flux suppressed, reducing
the impact on off-pathway interactions. It is possible to speculate
that a regulatory arrangement that targets a single interaction
towards the end of the pathway would demonstrate even greater
specificity to cholesterol as it would create a flux profile in which
the flux remains at unregulated levels for most of the pathway, but
steps down immediately before the point of cholesterol synthesis.

However, such a regulatory structure would not enjoy the robust-
ness of multiple interaction regulation. The improved specificity
and robustness that comes with multiple interaction regulation
suggests that future pharmacological therapies may be able to act
more efficiently and with fewer side effects, if they are designed
either to mimic the physiological response of IFNy treatment or to
create a distributed regulation of flux comparable to Fig. 4B.

Further interesting detail can be observed when we allow our
simulations to run up to 24 h post infection or post IFNy treatment. At
24 h we had access to only a limited number of QPCR measurements
for a subset of the enzymes on the pathway, so to provide values for
the unmeasured enzymes at 24 h, we assumed that the concentration
did not change from the 12 h time point. From Supplementary Fig. 1,
we can see that qualitative agreement between our simulated
metabolite levels and the measured values improves in the 12—24 h
window, further supporting the use of this model to explore the
dynamics of the cholesterol biosynthesis pathway. Exploring the flux
profiles at 24 h post IFNy treatment and post mCMV infection
(Supplementary Figs. 2 and 3, respectively), we can see that there is
a difference in the relative timing of the flux suppression. In mCMV
infection, pathway flux is suppressed at 12 h post infection and
continues to be further suppressed over the 12—24 h interval
However, in response to IFNy treatment, we see that the pathway
starts to recover its pretreated profile of flux in the 12—24 h window.
The simplest explanation for this difference would be that there is an
inherent delay between mCMV infection and the induction of IFNy
signalling within cell populations. This would predict that running
the mCMV infection experiments for a longer duration would yield
enzyme expression measurements that would lead to a rise in
pathway flux similar to that observed in IFNy treatment. Although at
12 h post mCMV infection there was little evidence of the non-
dominant interactions contributing to pathway regulation, it is also
worth noting that, at 24 h post mCMV infection, the non-dominant
interactions start to show a modest suppression of flux comparable
to that seen in the 0—12 h window following IFNy treatment. This
further supports the idea that the two profiles are related.

The flux profiles shown in Figs. 2A and 3A and in Supplementary
Figs. 2A and 3A exhibit interesting features. The broad trend is
towards pathway suppression. However, there are points at which
the flux exceeds unperturbed levels and where the flux downstream
exceeds the flux into the pathway. This may be attributable, at least
in part, to technical noise in the time course microarray measure-
ments. However, we cannot rule out that this is biological. Points
where the flux consuming a metabolite exceeds the flux producing it
correspond to a reduction in the concentration of a metabolite (data
not shown). In Figs. 2B and 3B, we see that there is arise in flux at the
3K4M—4MZ interaction. In our simulations, this corresponded to
a reduction in the concentration of 3K4M (data not shown).

Making quantitative predictions of pathway function requires
a comprehensive set of high confidence parameters. Without such
a parameter set, we are restricted to qualitative observations.
Despite the importance of the cholesterol biosynthesis pathway to
innate immunity and cardiovascular health and despite its value to
industry as the target pathway of the statin class of drugs, we can
see from the Table in Supplementary section 3 that the parame-
terization of this pathway is largely incomplete. This is a surprising
result. The lack of a rigorous parameterization impedes studies of
pathway behaviour and the development of more advanced
scientific and therapeutic interventions. The incomplete nature of
the parameterization led us to use estimates for the unknown
parameters and this has implications for the flux profiles we ob-
tained in simulations. The particular arrangement of dominant
interactions and non-dominant interactions, for example, is
parameter dependent and we can see from Supplementary section
3 that the two interactions identified as playing a dominant role in
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flux reduction (ACoA—HCoA and Squa-230x) are those with the
lowest turnover (kca¢) values. Accurate predictions of the precise
arrangement of dominant and non-dominant interactions require
a complete, high confidence parameter set. However, under the
assumptions made in the model, it is a parameter independent
result that all the interactions can contribute a modulation of flux.
The coordinate down-regulation of enzyme activity has been
demonstrated to be an innate, immune, anti-viral response to
mCMV infection mediated by IFNy, rather than a pathogenic
intervention [12] and so it would appear that flux reduction is also
part of the innate immune response. The cholesterol biosynthesis
pathway has been demonstrated to be critical to the optimal viral
infection of a further range of viruses (Hepatitis C (HCV), HIV,
Japanese Encephalitis (JEV), West Nile (WNV), Dengue (DENV),
Measles viruses (MV) and African Swine Fever Viruses (ASFV)
[7,8,12—16,19]). Since the flux suppression is in response to IFNy,
a general immunological cytokine, it is possible that such a flux
suppression might be part of a general antiviral response.

5. Conclusion

Here, we have shown, with a simple dynamical model, that the
coordinate down-regulation of the enzymes in the cholesterol
biosynthesis pathway in macrophages, observed in response to
mCMV infection and IFNy treatment, leads to a graduated reduc-
tion in flux along the pathway that can be considered in terms of
dominant interactions that significantly suppress the flux and non-
dominant interactions that make modest, but not insignificant
contributions to flux suppression. The model was built using
a combination of Michaelis—Menten and mass action interactions
and was validated using experimental measurements of metabolite
concentrations at a range of time points. Our result suggests that all
the interactions in the pathway could be candidate intervention
points for future therapeutic strategies.

We were able to compare the impact on flux of coordinate
regulation which acts to regulate multiple interactions to the
impact of statin-like inhibitors which regulate a single enzyme.
This allowed us to explore the advantages of multiple interaction
regulation over single enzyme regulation. The graduated profile
generated by coordinate regulation enjoys greater robustness and
greater specificity and we highlight the importance of this for the
prenylation and dolichylation non-sterol arms that fork from the
cholesterol biosynthesis pathway. We suggest that such multiple
interaction regulation could be exploited in future pharmaceutical
therapies in order to improve their efficacy and specificity, perhaps
mimicking the regulation of the pathway observed in immuno-
logical responses.
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