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Abstract 

Biomolecular simulation is increasingly central to understanding and designing biological molecules 

and their interactions. Detailed, physics-based simulation methods are demonstrating rapidly 

growing impact in areas as diverse as biocatalysis, drug delivery, biomaterials, biotechnology, and 

drug design. Simulations offer the potential of uniquely detailed, atomic-level insight into 

mechanisms, dynamics and processes, as well as increasingly accurate predictions of molecular 

properties. Simulations can now be used as computational assays of biological activity, e.g. in 

predictions of drug resistance. Methodological and algorithmic developments, combined with 

advances in computational hardware, are transforming the scope and range of calculations. 

Different types of methods are required for different types of problem. Accurate methods and 

extensive simulations promise quantitative comparison with experiments across biochemistry. 

Atomistic simulations can now access experimentally relevant timescales for large systems, leading 

to a fertile interplay of experiment and theory and offering unprecedented opportunities for 

validating and developing models. Coarse-grained methods allow studies on larger length- and 

timescales, and theoretical developments are bringing electronic structure calculations into new 

regimes. Multiscale methods are another key focus for development, combining different levels of 

theory to increase accuracy, aiming to connect chemical and molecular changes to macroscopic 

observables. In this review, we outline biomolecular simulation methods highlight examples of its 

application to investigate questions in biology. 

 

Graphical/Visual Abstract and Caption 

 

Biomolecular simulations reveal mechanisms, dynamics and interactions of biological molecules. 

Here, molecular dynamics simulation of the enzyme MalL reveal structural and dynamical changes in 

the protein during its catalytic cycle: these simulations allow calculation of the activation heat 

capacity which explains the optimum temperature of its catalytic activity 

 



Introduction 

Biomolecular simulations are now making significant contributions to a wide variety of problems in 

drug discovery, drug development, biocatalysis, biotechnology, nanotechnology, chemical biology, 

and medicine. Biomolecular simulation is a rapidly growing field in scale and impact, increasingly 

demonstrating its worth in understanding mechanisms and analysing activities, and contributing to 

the design of drugs and biocatalysts. Physics-based simulations complement experiments in building 

a molecular level understanding of biology: they can test hypotheses and interpret and analyse 

experimental data in terms of interactions at the atomic level. Different types of simulation 

techniques have been developed, which are applicable to a range of different problems in 

biomolecular science. Simulations have already shown their worth in helping to analyse how 

enzymes catalyse biochemical reactions, and how proteins adopt their functional structures e.g. 

within cell membranes. They contribute to the design of drugs and catalysts, and in understanding 

the molecular basis of disease. Simulations have played a key role in developing the conceptual 

framework now at the heart of biomolecular science, that is, the understanding that the way that 

biological molecules move and flex - their dynamics - is central to their function. Developing 

methods from chemical physics and computational science will open exciting new opportunities in 

biomolecular science, including in drug design and development, biotechnology and biocatalysis. 

With high performance computing resources, atomistic simulations of large systems are possible, 

e.g. large-scale simulations of biological machines such as the ribosome, proton pumps and motors, 

membrane receptor complexes and even whole viruses. Useful simulations of smaller systems can 

be carried out with desktop resources, thanks to developments allowing e.g. graphics processing 

units (GPUs) to be used. A particular challenge across the field is the integration of simulations 

across length and timescales: different types of simulation method are required for different types 

of problems.(Amaro & Mulholland, 2018) 

Biomolecular systems pose fundamental scientific challenges (e.g. protein folding, enzyme catalysis, 

gene regulation, disease mechanisms and antimicrobial resistance) and are at the heart of many 

advanced technological developments (drug discovery, biotechnology, biocatalysis, biomaterials and 

genetic engineering). Biomolecules, and biomolecular systems, are inherently complex and pose 

significant challenges in modelling. An essential underlying paradigm is the need to consider 

biomolecular ensembles, and their dynamics, rather than simply static biomolecular structures to 

understand and predict their behavior and properties. Simulations have been essential in developing 

this view, complementing experiments. X-ray crystallography is at the heart structural biology 

(Schröder, Levitt, & Brunger, 2010) but provides a static structure with limited dynamical 

information and usually in the non-physiological conditions of a low-temperature crystal.(Fraser et 

al., 2011) Nuclear magnetic resonance (NMR) reveals the heterogeneous structure of biomolecular 

systems and important details of dynamics,(Lindorff-Larsen, Best, DePristo, Dobson, & Vendruscolo, 

2005) but structures may be incompletely determined, limited to moderate sizes, and at high, non-

physiological concentrations. Cryo-electron microscopy is advancing rapidly, transforming the scope 

of structural biology by determining structures of larger systems at resolutions that approach atomic 

detail, and useful ensembles,(Bai, McMullan, & Scheres, 2015; Frank, 2002) without the need for 

crystals, but at cold, non-physiologically temperatures and typically lacking sufficient resolution to 

show dynamics. Biomolecular simulation complements these experimental techniques, e.g. by 

analysing the dynamics and conformational behaviour of proteins using experimentally determined 

structures as starting points, and analysing their interactions and mechanisms in atomic detail. 



Simulation can probe the short timescale, short length-scale regime which experiment struggles to 

reach and (given sufficient sampling) can directly provide ensembles, which can in turn be used to 

calculate the changes in free energy and thus the equilibrium properties (see section on 

Computation of Free Energy, Enthalpy and Entropy). There are two main techniques to sample 

biomolecular ensembles: molecular dynamics (MD) and Monte Carlo (MC) simulations. MD 

simulations involve solving Newton’s equations of motion (Alder & Wainwright, 1959; Martin 

Karplus & McCammon, 2002; McCammon, Gelin, & Karplus, 1977) whereas MC operates by 

accepting structures, generated by small moves, based on probability criteria.(Hastings, 1970; Li & 

Scheraga, 1987) A large number of biomolecular simulation software packages have been 

developed. Some widely used packages are presented in Table 1. 

 

Table 1 – Some examples of widely-used biomolecular simulation software packages 

Software Package Technique Website 

CHARMM(Brooks et al., 2009) 

 

 

MD 
charmm.org 

 

 

 

AMBER(Case et al., 2005) MD 
ambermd.org 

 

GROMACS(Van Der Spoel et al., 

2005) 
MD 

gromacs.org 

 

MCPRO(Jorgensen & Tirado–

Rives, 2005) 
MC 

cemcomco.com/BOSS_and_MCPRO_Distribution

125.html 

 
NAMD(Phillips et al., 2005) MD 

ks.uiuc.edu/Research/namd 

 

ProtoMS(Bodnarchuk et al., 

2017) 
MC 

protoms.org 

 

 

 

Desmond(Bowers et al., 2006) MD 
deshawresearch.com/resources_desmond.html 

 

OpenMM(Eastman et al., 2012) MD 
openmm.org 

 

 

 

GROMOS(Scott et al., 1999) MD 
gromos.net 

 

DLPoly(Todorov, Smith, 

Trachenko, & Dove, 2006) 
MD 

scd.stfc.ac.uk/Pages/DL_POLY-FAQs.aspx 

 

Sire(Woods, Mey, Calabro, & 

Michel, 2016) 
MC/MD siremol.org 

http://www.charmm.org/
http://www.ambermd.org/
http://www.gromacs.org/
http://www.cemcomco.com/BOSS_and_MCPRO_Distribution125.html
http://www.cemcomco.com/BOSS_and_MCPRO_Distribution125.html
http://www.ks.uiuc.edu/Research/namd
http://www.protoms.org/
http://www.deshawresearch.com/resources_desmond.html
http://www.openmm.org/
http://www.gromos.net/
http://www.scd.stfc.ac.uk/Pages/DL_POLY-FAQs.aspx
file:///C:/Users/physah/Desktop/mypapers/wires17/www.siremol.org


 

Owing to the vast energy landscapes of biomolecular systems and the often large energetic barriers 

between different states, the majority of these software packages have developed methods to 

expedite moving through configuration space (see section Enhanced Sampling). An accurate picture 

of the relevant configuration space also allows researchers to study transitions between different 

states and calculate kinetic properties (see section Measuring Molecular Timescales). MC and MD 

both require a potential function (force field) to model the interactions between atoms and calculate 

energy and forces from the atomic structure.(Levitt & Lifson, 1969; Lifson & Warshel, 1968) 

Typically, simple empirical ‘molecular mechanics’ (MM) forcefields are used. Electronic structure 

calculations on whole proteins are possible, but remain very computationally demanding: e.g. ab 

initio MD(Carloni, Rothlisberger, & Parrinello, 2002) will not be discussed here, as current 

methodology has not yet reached the lengthscales and timescales needed to routinely characterize 

large and complex biomolecular systems. The choice of an appropriate force field is one of the key 

ingredients in producing useful biomolecular simulations.(W. Wang, Donini, Reyes, & Kollman, 2001)  

 

A number of modern well-tested forcefields are available. Despite similar functional forms, the 

parameters they contain are often very different, but nevertheless provide good descriptions of 

biomolecular structure and dynamics.(David E Shaw et al., 2010) For very large systems, for which 

atom-based simulations are not feasible, it is possible to use a coarse grained approach, where 

multiple atoms are represented as single particles.(Riniker, Allison, & van Gunsteren, 2012) Coarse 

graining has proven particularly useful in studying membrane bilayers and their associated proteins 

(see section Coarse Graining and Membrane Simulation). The majority of forcefields employed 

today come from a set of well-established forcefield families. These include GROMOS,(Oostenbrink, 

Villa, Mark, & Van Gunsteren, 2004) MARTINI,(Marrink, Risselada, Yefimov, Tieleman, & De Vries, 

2007) CHARMM,(MacKerell Jr et al., 1998) AMBER,(J. Wang, Wolf, Caldwell, Kollman, & Case, 2004) 

and OPLS(Jorgensen, Maxwell, & Tirado-Rives, 1996). Up to date forcefields from each family can be 

found at the appropriate websites: GROMOS (gromos.net), MARTINI (cgmartini.nl), CHARMM 

(mackerell.umaryland.edu/charmm_ff.shtml), AMBER (ambermd.org/#ff), and OPLS 

(zarbi.chem.yale.edu/oplsaam.html). Note that it is important to distinguish between forcefields 

(which can be used with different biomolecular simulation programs) and simulation programs, 

which may have similar names (see Table 1). One of the limitations of classical force field based 

(MM) simulation is the inability to model electron rearrangements, for example in bond-breaking 

and bond–making, although force fields for reactions can be developed, and empirical valence bond 

methods also allow modelling of reactions). However, combining MM with quantum mechanics 

(QM) makes this possible (see section QM/MM and Enzyme Catalysis). Finally, simulation can reveal 

the important interactions between different types of biomolecules, such as proteins, DNA, RNA, 

and lipids (see section Nucleic Acid Structure and Recognition). This review will focus on some 

recent advances in biomolecular simulation and focus on the agreement between computed 

quantities and experimental observables. 

  

COMPUTATION OF FREE ENERGY, ENTHALPY AND ENTROPY  

http://www.gromos.net/
http://www.cgmartini.nl/
http://www.mackerell.umaryland.edu/charmm_ff.shtml
http://www.http/ambermd.org/#ff
http://www.zarbi.chem.yale.edu/oplsaam.html


A central quantity of biomolecular systems is the Gibbs free energy, 𝐺, because changes in free 

energy govern many important processes such as molecular recognition, self-assembly and chemical 

reactions. This single number encapsulates all the possible molecular configurations of a particular 

state of the system at a given temperature and pressure through its connection to the partition 

function. Whilst the free energy itself is not measured, the difference in free energy, ∆𝐺, between 

two different states of a system relates to the equilibrium constant which expresses the relative 

probability of the two states. A state with lower free energy is more probable because it has 

configurations that are more numerous, more stable, or both.  

 

There are two main classes of methods to calculate free energy from molecular simulation: one class 

computes ∆𝐺 and the other computes 𝐺; we refer to them, respectively, as difference and state 

methods. Difference methods evaluate ∆𝐺 from the probability ratio of two states. In principle, 

probability ratios can be evaluated directly from a molecular dynamics simulation. However, 

insufficient sampling using molecular dynamics alone usually necessitates enhanced-sampling 

methods (see section Enhanced Sampling) or unphysical short-cuts such as computational 

alchemy.(Michel & Essex, 2010) By perturbing atomic interactions, ∆𝐺 may be derived by measuring 

the overlap of configurations, as in the methods of exponential averaging,(Zwanzig, 1954) or the 

more efficient Bennett’s acceptance ratio,(Bennett, 1976) by numerically integrating the energy 

gradient from one state to another, such as thermodynamic integration,(Kirkwood, 1935) or by 

taking the exponential average of the work.(C. Jarzynski, 1997) State methods evaluate 𝐺 directly as 

in the case of implicit solvent theories such as Poisson-Boltzmann,(Baker, 2004) Generalised 

Born,(Still, Tempczyk, Hawley, & Hendrickson, 1990) 3D-RISM,(Beglov & Roux, 1995) or many 

surface-area based methods or scoring functions. Other state methods compute 𝐺 from the 

enthalpy, 𝐻, and entropy, 𝑆. 𝐻 can be computed from long timescale simulations using the average 

force field energy for a set of Boltzmann-weighted configurations. 𝑆, on the other hand, which is a 

measure of the total number of configurations of a system, is difficult to evaluate because of the 

intricate complexity of biomolecular systems, making entropy calculation an active area of research. 

Examples of methods to calculate 𝑆 from molecular simulations include cell theory,(Henchman, 

2007) inhomogeneous fluid solvation theory,(Lazaridis, 1998) mutual information expansion,(Killian, 

Kravitz, & Gilson, 2007) normal mode analysis,(Wilson, 1941) quasi-harmonic analysis,(M. Karplus & 

Kushick, 1981) and two-phase thermodynamic analysis.(Lin, Maiti, & Goddard III, 2010) A range of 

information may be used from simulation to calculate 𝑆, including coordinates, force constants, 

velocities or forces. These quantities may be considered independently or include correlations but at 

the cost of greater expense and complexity.  

 

Free energy methods offer widely differing pros and cons. Difference methods are well established 

with detailed protocols and widely available software. They are in principle exact, although 

convergence and sampling issues limit either their accuracy or the sizes of the perturbations to 

which they can be applied. A drawback is that they typically require the simulation of many 

‘intermediate’ states along a suitably chosen path connecting the two states of interest. 

Nevertheless, this demanding requirement of multiple simulations along the path is often amenable 

to parallelisation across multiple processors. Difference methods do not yield 𝐺, 𝐻 or 𝑆 directly, 

although 𝐺 can be extracted by perturbing to a reference state with an analytic value of 𝐺.(Tyka, 



Clarke, & Sessions, 2006) Assuming that ∆𝐻 and ∆𝑆 are not temperature dependent, they can be 

calculated from suitable temperature derivatives of ∆𝐺 or ensemble averages of potential energies 

but the latter suffer from slow convergence.(Peter, Oostenbrink, van Dorp, & van Gunsteren, 2004)  

 

By way of contrast, state methods only require a single simulation of the state of interest but still 

with convergence being a problem. Unlike experiment or difference methods, they can explain the 

value of 𝐺 directly not only in terms of 𝐻 and 𝑆, but also in relation to any specific part of the 

system. The main constraint on the widespread use of state methods is having theory with sufficient 

flexibility and accuracy to capture all the relevant degrees of freedom and correlations at every 

relevant length-scale. In the field of biomolecular simulations difference methods have been widely 

used to compute diverse physical quantities such as hydration free energies, partition coefficients, 

host-guest or protein-ligand binding free energies. Several recent potential energy function have 

been parameterised to reproduce the hydration free energies of small organic molecules with a 

mean unsigned error (MUE) under ca. 1 kcal mol−1.(Harder et al., 2016) The decomposition of free 

energy into group contributions is often contentious because it is not entirely rigorous. If one is only 

concerned with the equilibrium of a particular process as governed by ∆𝐺, then nothing more would 

be required. However, evaluation of ∆𝐻 and ∆𝑆 (or heat capacities)(Kamp et al., 2018) can provide 

further physical insight; in some cases (e.g. for some enzyme-catalysed reactions), ∆𝐻 and ∆𝑆 are 

themselves temperature dependence, in which case the heat capacity should also be considered. In 

protein-ligand binding, considerable effort is often spent in ascribing structural interpretations to 

variations in the entropic and enthalpic components.(Klebe, 2015) Molecules that bind with very 

similar ∆𝐺 may have very different values of ∆𝐻 and ∆𝑆, depending on whether the binding is due to 

the formation of a few strong interactions, to a gain in flexibility or to water release) elsewhere in 

the system, and due to the phenomenon of enthalpy-entropy compensation. Binding may be said to 

be enthalpy or entropy-driven, but free energy is always the overall driver. The further breakdown 

into 𝐻 and 𝑆 for each system and even finer into molecular components provide further insights into 

thermodynamic processes. For example, spatially resolved methods such as WaterMap,(Abel, Young, 

Farid, Berne, & Friesner, 2008) Grid Inhomogeneous Solvation Theory,(Nguyen, Young, & Gilson, 

2012) Solvaware,(David J. Huggins, 2014; D. J. Huggins, 2015, 2016), Grid Cell Theory,(Gerogiokas et 

al., 2014; Ross, Bruce Macdonald, Cave-Ayland, Cabedo Martinez, & Essex, 2017) and other 

techniques(Ross, Bodnarchuk, & Essex, 2015) can reveal the contributions of individual water 

molecules to the total Gibbs energy. However, the non-uniqueness of such decompositions means 

that care must be taken in their interpretation.  

Such methods are now being routinely applied in small molecule drug design.(Cole et al., 2017) 

However, errors should be expected to increase for more complex polyfunctional drug-like 

molecules. The accuracy of protein-ligand binding free energies is highly variable, but favourable 

cases across congeneric series also feature MUEs of ca. 1 kcal mol−1 for relative binding free energies, 

∆∆𝐺.(L. Wang et al., 2015) Hydration and host-guest binding ∆𝐻 and ∆𝑆 are typically computed less 

accurately than ∆𝐺 and show a more pronounced dependence on force field 

parameters.(Gerogiokas et al., 2014; Henriksen & Gilson, 2017) Overall, the accurate computation of 

∆𝐺 is an important predictive method in biomolecular simulation (and in molecular science 

generally), and decompositions can inform the design of tighter binding host-guest complexes or 

appropriate protein mutations, leading to practical applications in drug design(Irwin & Huggins, 

2018; Vukovic, Brennan, & Huggins, 2016) or nanotechnologies.  



 

MEASURING MOLECULAR TIMESCALES  

The kinetics of binding and unbinding  

Improvements in computer power and algorithmic advances over recent years(Aldeghi & Biggin, 

2016) mean that there is now genuine overlap between the timescale of key biologically interesting 

events and those events that can be simulated in a reasonable amount of time. However, events 

that are at the longer end of the simulation timescale (a few milliseconds and beyond) require 

access to large amounts of computer time (either supercomputer or cloud-based solutions). 

Methods to study biomolecular kinetics have been developed and applied to a variety of different 

biomolecular problems ranging from protein folding through to the kinetics of ligand-binding.(David 

E Shaw et al., 2010) The latter has received a lot of attention in recent years, as it has become clear 

that under in vivo conditions, binding events are sometimes far from equilibrium and consequently 

thermodynamics may not offer the best prediction of activity. In other words, the most important 

factor in determining may be the lifetime of the in-vivo drug-receptor interaction. Kinetic 

parameters such as kon and koff (the on- and off-rate constants for ligand binding, which may be 

better predictors of biological activity than binding affinity) can often be measured experimentally 

but obtaining these via computational methods is challenging because of the long timescales 

involved. In principle, they can be computed via ‘brute force’ simulations, though the timescales 

required for simulations multiple (un)binding events for large systems are very long and in general 

extremely challenging. More practical is the use of enhanced sampling methods. There have been a 

number of recent reviews of such methods.(Dickson, Tiwary, & Vashisth, 2017; Pang & Zhou, 2017) 

In this section we briefly cover some of the recent highlights in simulations of ligand binding and 

unbinding and discuss where future opportunities and directions might lie. 

 

Direct calculation of kinetics 

MD simulations can provide atomic resolution detail at a picosecond timescale and thus can provide 

physical insight into the way in which a ligand interacts with its receptor(Feixas, Lindert, Sinko, & 

McCammon, 2014). The timescale for many binding events is of the order of microseconds and this 

presents a problem for the timescale of typical unbiased MD simulations. A step-change occurred in 

2008 with the development of ANTON(D.E. Shaw et al., 2008), a purpose-built MD simulation 

computer that could produce millisecond-long simulations in a few weeks. In 2011, Shan et al(Shan 

et al., 2011) reported a study using unbiased MD simulations that examined how the cancer drug 

dasatinib, and the kinase inhibitor PP1, can not only correctly find the binding site of Src kinase, but 

adopt a conformation indistinguishable from the crystallographic pose. Dror et al. simulated binding 

of ligands to the β-adrenergic receptor 1 and 2. From 82 simulations ranging from 1 to 19 ms, they 

found that ligands entered the binding site via a metastable extracellular vestibule.(Dror et al., 2011) 

They have also applied this long timescale MD approach to ligand binding to muscarinic receptors, 

where the simulations suggested that tiotropium binds transiently to an allosteric site en route to 

the orthosteric binding pocket(Kruse et al., 2012). However, routine use of such hardware is not 

possible. An alternative approach is to use a cloud-based community resources. The GPUGRID.net 

project is a good example of how this can be utilised and was first demonstrated to examine the 

binding of benzamidine to trypsin(Ignasi Buch, Giorgino, & De Fabritiis, 2011; I. Buch, Harvey, 



Giorgino, Anderson, & De Fabritiis, 2010). This type of approach relies on being able to combine 

(typically) many hundreds of smaller simulations to build up enough statistics concerning the 

transitions between the many different states to reconstruct the full kinetic landscape. Fortunately, 

there is a well-developed framework for such reconstruction, namely Markov State Modelling 

(MSM). 

 

Markov-State Modelling 

Combining MD simulation with MSM has become a popular approach to shed light into molecular 

processes at timescales that are not accessible with single unbiased MD simulations. The use of this 

technique has found a broader use in the biomolecular simulation community thanks to software 

packages such as pyEMMA(Scherer et al., 2015) developed by the Noé group or 

MSMBuilder(Bowman, Beauchamp, Boxer, & Pande, 2009; Harrigan et al., 2017) developed by the 

Pande group. An MSM built from MD simulations is a model of the dynamics within a system and 

allows the analysis of key metastable states, thermodynamic and kinetic properties in a systematic 

manner. The key feature of an MSM is that it can recover the equilibrium distribution of states by 

simulating many short trajectories starting from different states, rather than having to simulate a 

single trajectory for such a long time that all states are sampled with equilibrium frequency. The 

approach has the key advantage that it is trivially parallelisable.  

 

There have been many examples of the use of MSMs for biomolecular systems(John D. Chodera & 

Noé, 2014; Malmstrom, Lee, Van Wart, & Amaro, 2014) and they have been developed and applied 

to a variety of different biological problems ranging from the modulation of protein 

dynamics(Shukla, Hernández, Weber, & Pande, 2015) and protein folding and unfolding(Sirur, De 

Sancho, & Best, 2016) through to the kinetics of ligand- and protein-binding(Zhou, Pantelopulos, 

Mukherjee, & Voelz, 2017). To illustrate the process in the context of ligand binding events, we focus 

on a study from Plattner and Noé(Plattner & Noe, 2015). In the study, they constructed an MSM 

based on a total simulation time of 149.1 µs of the trypsin/benzamidine system. The MSM allows the 

calculation of on and off rates and also the overall free energy of binding. For the latter they 

obtained a value of –6.05 ± 1.00 kcal/mol, which is in excellent agreement with the experimental 

value of –6.2 kcal/mol(Mares-Guia & Shaw, 1965). The estimated association constant of kon = 6.4 ± 

1.6 × 107 mol–1s–1 is higher than the experimental value of 2.9 × 107 mol-1s-1 and the dissociation 

constant is significantly overestimated with koff = 131 ± 109 × 102 s–1 compared to experiment (6 × 

102 s–1). The large error in the latter is due to poor sampling of dissociation events, whereas 

systematic errors are likely due to the force field parameters, which have been fitted to 

thermodynamic rather than kinetic data. Using transition path theory, binding pathways and 

mechanisms can be obtained from the MSM, revealing that the ligand binding process in this case is 

more complex that either a simple induced fit or conformational selection model, which has also 

been reported in other cases(S. Gu, Silva, Meng, Yue, & Huang, 2014; Silva, Bowman, Sosa-Peinado, 

& Huang, 2011). In fact, in the apo state trypsin has 6 metastable conformations with varying 

affinities to benzamidine (Fig. 1), which fits into the conformational selection picture. However, 

upon benzamidine binding the populations of this ensemble are shifted (Fig. 2) and one additional 

metastable configuration emerges, which can be attributed to ligand induced conformational 



plasticity and thus shows that both induced fit as well as conformational selection are needed to 

fully describe the ligand binding process in this case. 

 

Figure 1 - Example of a typical MSM, in this case, describing the apo state of trypsin (a) Structural 

features, equilibrium distribution and kinetics of six unbound (apo) protein conformations. 

Transitions between them occur at timescales on order of tens of microseconds. The three slowest 

relaxation timescales and their corresponding transition process are indicated (dashed lines). The 

circles have an area proportional to the equilibrium probability 𝜋i. Their respective free energy 

differences ∆Gb of binding a ligand to this conformation and the binding time tbind (mean first 

passage time to binding) are given. The arrows indicate the transition probabilities for direct 



transitions between the different states (see legend). The most important structural differences 

concerning ligand binding are shown in b–e, and the structures are classified with respect to these 

features by green/orange/red bullets in a. The structures are classified by the state of S1 or S1*: 

open (green circle with ‘1’ or ‘1*’), half-open (orange circle) or closed (red circle) and by the S1* 

pocket conformational switch: favourable for binding (green circle with ‘Sw’) or unfavourable for 

binding (red circle with ‘Sw’). Reproduced from(Plattner & Noe, 2015). 

 

 

 

Figure 2 - Trypsin conformations with benzamidine-bound and the binding mode of benzamidine. 

The seven conformational states shown are equal to the six apo states shown in Fig. 1, plus the 

yellow conformation that is only found with benzamidine-bound. The binding pocket conformation 

is defined by three loops: the yellow loop (residues 187–194) with Asp189, the green loop (residues 

215–221) with Trp215 and the orange loop (residues 225–230). The circles have an area proportional 

to the equilibrium probability of the respective conformation, given that benzamidine is bound, 𝜋i. 

Their respective relative free energies G = –kBT ln 𝜋i and the unbinding times tunbind (mean first 

passage time to unbinding) are given. The arrows indicate the transition probabilities for direct 



transitions between the different states. The binding mode (pocket 1 or 1*) is indicated by the green 

square with ‘1’ or ‘1. Reproduced from(Plattner & Noe, 2015). 

 

The MSM model(Plattner & Noe, 2015) suggests that binding of benzamidine to trypsin cannot 

simply be described as a two state process, because the model reveals that the slowest transitions 

are not due to the binding/unbinding process. The model also reveals how different trypsin 

conformations are accessed and stabilised in different ways. MSM studies such as the one above are 

starting to provide unique insight into binding events and thus far tend to indicate not only that 

multiple routes are possible, but also that key metastable binding sites exist en-route to the main 

binding site. Another key aspect that is likely to be explored further as more systems are examined is 

the role of water in the binding/unbinding events. This is an aspect that is currently quite poorly 

understood and may have important ramifications for drug design in the future. MSM models (and 

indeed the brute force simulation approaches) also give reassurance that the force fields currently 

used are actually quite reasonable and are capable of delivering results in good agreement with 

experiment as far as thermodynamics averages are concerned, although there is always room for 

improvement. Another key advantage of the MSM approach is that it can make use of different 

levels of representation (including atomic and coarse-grained) to make experimentally testable (via 

site-directed mutagenesis) hypotheses (see section Coarse Graining and Membrane Simulation).(J. 

D. Chodera & Noe, 2014) Two interesting studies applied MSM to biologically relevant, yet 

computationally demanding cases: an activation mechanism of a kinase(Shukla, Meng, Roux, & 

Pande, 2014) and protein-protein association.(Plattner, Doerr, De Fabritiis, & Noé, 2017) The authors 

of the former examined Src kinase whose aberrant behavior ultimately leads to cancer. Extensive 

simulations provided information on the kinetics of the activation mechanism, which agreed with 

experimental observations, and revealed several metastable transition states which show promise as 

drug targets. In the case of protein-protein association, the authors reproduced a number of 

structural, kinetic, and energetic features of the process for ribonuclease barnase and its inhibitor 

barstar indicating a range of possibilities for future studies of macromolecular association. 

 

In the future, models of biomolecular kinetics should be vastly improved by comparison with data 

from time-resolved crystallography.(Johansson, Stauch, Ishchenko, & Cherezov, 2017; Kupitz et al., 

2014; Tenboer et al., 2014) This technique allows us to monitor bimolecular processes across 

biologically relevant timescales. Knowledge of kinetic timescales and pathways will lead to improved 

and transferable models for biomolecular processes. 

 

ENHANCED SAMPLING 

Notwithstanding the progress made in computer architectures, specialised hardware for MD,(David 

E. Shaw et al., 2014) and the parallelisation of MD codes, the typical timescales that can be accessed 

by atomistic MD simulations are shorter than what is required for many biomolecular systems. This 

has stimulated the development of many enhanced sampling methods. Reviewing the plethora of 

enhanced sampling algorithms and their many applications to biomolecular systems is beyond the 

scope of this article.(Bernardi, Melo, & Schulten, 2015) Here, we will only focus on recent examples 



where enhanced sampling algorithms have been successfully used to explain complex biophysical 

phenomena and have been validated or combined with experiments.  

 

Enhanced sampling algorithms can broadly be categorised according to their dependence on 

collective variables (CVs) over which sampling is enhanced. Methods such as 

metadynamics,(Barducci, Bonomi, & Parrinello, 2011; Laio & Gervasio, 2008) umbrella 

sampling,(Torrie & Valleau, 1977) Jarzynski’s identity-based methods,(Christopher Jarzynski, 1997) 

steered MD,(Gullingsrud, Braun, & Schulten, 1999) and many other belong to the CV-based category. 

The CVs are functions of the system’s coordinates that approximate the reaction coordinate. 

Choosing a set of relevant CVs for the enhanced sampling methods is not always straightforward. 

However, experimental observables can be helpful in the selection process and they can even be 

used directly as CVs, as in the study of the G protein beta subunit 3 folding mechanism where NMR 

chemical shifts guided the bias-exchange metadynamics.(Granata, Camilloni, Vendruscolo, & Laio, 

2013) Recently, a CV-based algorithm (metadynamics) was successfully used to interpret the 

experiments and even point out some crystallographic artefacts in the activation mechanism of p38α 

MAP kinase.(Kuzmanic et al., 2017) Simulations showed that a large conformational change 

observed by X-ray crystallography is not triggered by the dual phosphorylation of the activation loop 

and can only be fully stabilised by binding of adenosine triphosphate (ATP) and a docking peptide. 

Further analyses confirmed that the X-ray structure is a product of an unfortunate binding of an 

atypically long His-tag to the peptide docking site.  

 

Enhanced sampling methods have also been applied in computer-aided drug discovery to investigate 

the mechanism of action of a newly developed inhibitor (named SSR) of the fibroblast growth factor 

receptor (FGFR).(Bono et al., 2013; Herbert et al., 2013) FGFR, a receptor tyrosine kinase, is a 

promising target for anticancer drug development as it is involved in a number of fundamental 

cellular processes, including blood vessel formation. SSR was discovered serendipitously through a 

high-throughput screening. Experiments indicated that SSR binds extracellularly to the D3 Ig-like 

domain, but X-ray crystallography and NMR failed to identify its binding site due to the partially 

disordered nature of the domain. Using a combination of metadynamics and parallel-tempering 

metadynamics(Bussi, Gervasio, Laio, & Parrinello, 2006) together with CVs describing both the 

binding process and the folding of the domain, the authors were able to observe the reversible 

binding of SSR to the D3 domain of FGFR. Interestingly, a conformational change that elongates a 

small α-helix in the D3 domain was needed to open a hidden binding pocket for SSR. The predicted 

binding mode was subsequently validated by mutagenesis and used to design more potent 

derivatives of SSR. 

 

Another success story comes from a study of L99A variant of bacteriophage T4 lysozyme where a 

range of metadynamics techniques was used not only to accurately capture key conformational and 

thermodynamic features, but also to uncover a transient tunnel which seems to allow ligands to 

unbind.(Y. Wang, Papaleo, & Lindorff-Larsen, 2016) Successful applications are not limited to 

metadynamics, as shown by a recent study that employed extensive umbrella sampling MD to 



describe the molecular details of the energy conversion mechanism of the main rotary step in the 

synthesis cycle of F1-ATPase.(Czub, Wieczór, Prokopowicz, & Grubmüller, 2017) To achieve high 

efficiency and timely substrate binding and product release, this molecular motor requires tight 

coupling of its subunits. By using the rotation of the γ-shaft as the order parameter in umbrella 

sampling, the authors were able to give structural support to single-molecule experiments, 

reproduce experimental rate constants, and capture a metastable state, which according to several 

of its features, corresponds to the elusive ATP-waiting state. Umbrella sampling has also been used 

in a multiscale scheme to elucidate the mechanism of activation of influenza A M2 proton channel 

which plays an important role in the viral life cycle.(Liang et al., 2016) The channel becomes active in 

the low-pH environment through an interplay between Trp and His tetrads, the latter of which 

becomes protonated. The C-terminal amphipathic helix, whose role in the mechanism was 

somewhat unclear, was shown not to affect the proton conduction which is in agreement with 

electrophysiological results. 

 

When it comes to methods that are not directly based on geometric CVs, one of the approaches to 

enhance the sampling is to use a history-based potential that prevents the system from revisiting the 

previously explored conformations, such as local elevation technique (Huber, Torda, & van 

Gunsteren, 1994) or conformational flooding (Grubmuller, 1995) (the predecessors of 

metadynamics). Local elevation has been successfully combined with umbrella sampling (Hansen & 

Hünenberger, 2010) and used recently to build a conformational library for the construction of N- 

and O-glycan structures in glycoproteins (Turupcu & Oostenbrink, 2017). Temperature is also often 

used to enhance the sampling, as in the case of temperature replica exchange MD (T-REMD)(Sugita 

& Okamoto, 1999) and simulated tempering.(Marinari & Parisi, 1992) A recent application of REMD 

compared equilibrium populations of open and folded ring states for urotensin II and urotensin 

related protein, both of which are connected to various pathophysiologies.(Haensele et al., 2017) 

Obtained populations were in excellent agreement with experimental NMR chemical shifts and 

indicated that the different behaviour of the two proteins does not come from the ring 

conformation, but likely from their interaction with the G-protein coupled urotensin II receptor. 

Another notable example showed how to extract kinetic rates from REMD and demonstrated the 

method on alanine dipeptide and (un)folding of the neomycin RNA riboswitch.(Lukas S. Stelzl & 

Hummer, 2017) When it comes to simulated tempering, Pan et al.(Pan, Weinreich, Piana, & Shaw, 

2016) have recently compared the efficiency of the method against extremely long (millisecond) MD 

simulations in sampling of the reversible folding of BPTI and ubiquitin and showed that simulated 

tempering can achieve a consistent and substantial sampling speedup of up to an order of 

magnitude or more relative to the conventional MD.  

 

QM/MM MODELLING OF ENZYME REACTIONS  

The combination of quantum mechanics and molecular mechanics, usually indicated with QM/MM, 

is a popular approach to allow a (relatively small) part of the system to be treated with a quantum 

mechanical method, while the rest is treated using molecular mechanics (Figure 3). While electronic 

structure calculations are now possible on quite large systems using low-scaling methods and 

efficient codes,(Lever et al., 2014) QM/MM methods offer a combination of flexibility and speed that 



makes them attractive and practical. QM/MM methods allow calculation of electronic properties of 

(a small region in) biomolecular systems and are finding application in many areas of biomolecular 

science (e.g. in the calculation of spectroscopic properties,(Morzan et al., 2018) 

photochemistry,(Boulanger & Harvey, 2018) pKas, (Uddin, Choi, & Choi, 2013) and predictions of 

ligand binding affinities)(Steinmann, Olsson, & Ryde, 2018) and beyond (e.g. chemistry of solid-state 

materials),(Bernstein, Kermode, & Csanyi, 2009) but is particularly popular for the study of reactions 

(and interactions) in enzymes.(Senn & Thiel, 2009; Van der Kamp & Mulholland, 2013) A QM/MM 

method was first applied to an enzyme-catalysed reaction by Warshel & Levitt (1976) in their 

seminal study of the reaction mechanism of hen egg white lysozyme (Warshel & Levitt, 1976). The 

pioneers in this field, Warshel, Levitt and Karplus (Field, Bash, & Karplus, 1990), were awarded the 

Nobel Prize in Chemistry in 2013, recognising QM/MM methods as seminal in the development of 

multiscale modelling. Nowadays, over 100 research articles on QM/MM applied to enzymes are 

published each year,(Ranaghan & Mulholland, 2016) showing that QM/MM modelling of enzyme 

reactions has become and remains highly popular, which is helped by advances in readily available 

software (e.g. CHARMM, AMBER, ChemShell,(Sherwood, 2003) CPMD,(Hutter et al., 1995) 

Gaussian,(Frisch et al., 2016) Qsite(Friesner, 2004) and other packages). 

 

 

 

 

Figure 3 - Example of QM/MM modelling of an enzyme-catalysed reaction. The enzyme (ketosteroid 

isomerase) is divided into an MM region and a QM region. The transition state structure of the first 

proton transfer in the mechanism is shown.(van der Kamp, Chaudret, & Mulholland, 2013) 

 

 

Different approaches to perform QM/MM simulations exist. One can distinguish the additive 

approach (whereby the energy of the system is the sum of the QM energy of the QM region, the 

MM energy of the MM region and an interaction term) and a subtractive approach (whereby the 

energy of the system is obtained by the MM energy of the total system plus the QM energy of the 

QM region and minus the MM energy of the QM region; this is used in the ONIOM method (Vreven 

et al., 2006)). In both cases, the QM region should ideally be polarised by the MM region 

(electrostatic embedding). A third popular multi-scale approach for enzyme reaction modelling is to 



use a linear combination of the most important ionic and covalent resonance forms expected in the 

reaction, such as in the empirical valance bond (EVB) approach (Duarte, Amrein, Blaha-Nelson, & 

Kamerlin, 2015). EVB methods do not treat electrons explicitly, and so are relatively very fast; careful 

parameterization though is essential to develop each specific EVB model. 

 

Here, we focus applications that combine quantum mechanics and molecular mechanics for 

modelling reactions. For QM/MM calculations, choices must be made regarding the QM method and 

MM potential to use, how the system is partitioned (including treatment of covalent bonds at the 

boundary), how the model is constructed and what type of simulation will be performed (e.g. energy 

minimisation or molecular dynamics simulation). The choice of QM method is particularly important, 

as this will typically be the most time-consuming factor in the calculation; there is generally a trade-

off between accuracy and speed. In general, there are three main determinants of computational 

cost: (i) level of accuracy/complexity of the QM method, (ii) size of the QM region, and (iii) sampling 

of relevant conformations. For each enzyme system and problem of interest, the requirements for 

these three factors will differ. Far fewer QM energy evaluations are required for energy 

minimisation than molecular dynamics simulation. Potential energy profiles for enzyme reactions 

that result e.g. from a series of energy minimisations can therefore be performed with more 

demanding, more accurate QM methods; single-point ab initio energies from these structures can 

offer ‘chemical accuracy’, e.g. through local coupled-cluster ab initio QM methods(F. Claeyssens et 

al., 2006) or using coupled-cluster embedded in DFT for the QM region(Bennie et al., 2016). It must 

be noted, however, that for convergence of potential energy barriers, many different enzyme-

substrate conformations may be required.(Oláh, Mulholland, & Harvey, 2011; Ryde, 2017) Potential 

energy profiles can also be used to estimate free energy profiles by additional sampling of the MM 

region.(Claeyssens et al., 2005; Hu, Lu, & Yang, 2007; Rosta, Haranczyk, Chu, & Warshel, 2008; Sodt 

et al., 2015) 

 

Umbrella sampling molecular dynamics with lower-level QM/MM methods, using a few selected 

reaction coordinates, is widely used to calculate free energy surfaces for enzyme reactions (see 

Figure 4).  



 

 

Figure 4 - Illustration of a free energy surface obtained using QM/MM umbrella sampling along two 

reaction coordinates, with energy contours shown (values in kcal/mol). Here, the rate-limiting 

deacylation of the beta-lactamase inhibitor clavulanate by the beta-lactamase KPC-2 is shown, with 

QM/MM energies indicated on the surface plot.[cite] Active site structures of three states are 

depicted: the acyl-enzyme (AC), the transition state (TS) and the tetrahedral intermediate (TI). 

 

In recent years, several developments have allowed simulations of reactions with without the need 

to prescribe reaction coordinates in detail in advance. These include ‘string’ type methods, such as 

the nudged elastic band or finite temperature string methods. While these string type methods 

usually rely on information for both the reactant and product states, methods related to umbrella 

sampling to adaptively explore the free energy profile have recently become very popular, and 

metadynamics is now used in QM/MM calculations frequently.(Raich, Nin-Hill, Ardèvol, & Rovira, 

2016; Saitta & Saija, 2014) Both umbrella sampling and string type methods can be made more 

efficient(Zinovjev & Tuñón, 2017) by coupling them to replica exchange (see section Enhanced 

Sampling) within adjacent umbrella windows(Rosta, Nowotny, Yang, & Hummer, 2011) or 

metadynamics biases. Markov-chain based approaches have revolutionised how MD data is analysed 

(see section Measuring Molecular Timescales). These have now also been applied to QM/MM 

simulations, where dynamic information is now also available from the same data, both from biased 

and unbiased simulations. 

 

A key experimental observable to compare to in enzyme reaction modelling is a rate constant, 

ideally for individual reaction steps, but more usually the overall enzymic reaction rate constant or 

kcat, which, can be converted using transition-state-theory into a free-energy barrier for the overall 



enzyme reaction, ΔG‡ (Garcia-Viloca, Gao, Karplus, & Truhlar, 2004). Sampling of conformations (e.g. 

by umbrella sampling) is required for the calculation of an activation free energy. Close agreement 

(approaching ‘chemical accuracy’) with experimentally derived barriers can be achieved for some 

enzymes when high level ab initio QM methods are used in QM/MM calculations of 

energetics.(Frederik Claeyssens et al., 2006) Lower-level QM methods (which are considerably less 

computationally demanding) do not provide quantitatively accurate barriers, but can be sufficient 

for identifying likely mechanism, and e.g. predicting relative reactivity of different substrates, or 

mutant enzymes. A strength of the QM/MM approach lies in the ability to compare different 

possible reaction mechanisms or, for example, different enzyme variants, without parameterization 

required for the specific system. QM/MM calculations are now widely applied to biomolecular 

systems, but it is important to warn the unwary user that despite increasingly routine setup, it is 

certainly possible to obtain artefacts through a poor choice of QM region, for example, so additional 

care is required in modelling with these hybrid techniques. Applied appropriately, QM/MM 

calculations can provide useful predictions of mechanism and activity. QM/MM calculations have 

been helpful to provide information on reaction mechanisms as well as the reactivity of mutant or 

modified systems compared to wild-type. (Lopata et al., 2015; Nagy et al., 2016; Senn & Thiel, 2009; 

Van der Kamp & Mulholland, 2013) Such applications were modest in terms of their predictive 

power, and often were used to explain experimental data and add key details regarding which 

reaction mechanism corresponds best to the observed kinetic measurements. In more recent 

applications, QM/MM calculations have been used to help design desired changes in enzyme 

reactivity, e.g. for selectivity or enhanced activity (e.g. with non-native substrates or 

reactions)(Hediger, De Vico, et al., 2013; Hediger, Steinmann, De Vico, & Jensen, 2013; Świderek, 

Tuñón, Moliner, & Bertran, 2015). In addition, QM/MM simulations have also been used as a 

computational assay, e.g. for breakdown of β-lactam drugs by β-lactamases, showing the ability to 

distinguish between enzymes that act as carbapenemases and those that do not.(Chudyk et al., 

2014; Fritz, Alzate-Morales, Spencer, Mulholland, & van der Kamp, 2018) Time-resolved 

crystallography has the potential to determine structures of enzyme-bound reaction intermediates, 

which may be ideal starting points for QM/MM simulations, in developing atomically details models 

to connect with and explain biomolecular kinetics.(Olmos et al., 2018) QM/MM methods are also 

being usefully applied to study covalent inhibitors,(Callegari et al., 2018) which are of growing 

interest as drugs. QM/MM methods can also be coupled to other levels of simulation (e.g. atomistic 

and coarse-grained MD) to describe biochemical reactivity in multiscale schemes for tackling 

problems such as the prediction of drug metabolism.(Amaro & Mulholland, 2018; Lonsdale, Rouse, 

Sansom, & Mulholland, 2014) 

 

NUCLEIC ACID STRUCTURE AND RECOGNITION  

The DNA double helix is an iconic molecular structure that symbolises the scientific understanding of 

life. This widespread familiarity belies the difficulties of relating the sequence dependent structure 

and flexibility of the DNA biopolymer to biological function, which requires packing, regulation and 

control, as well as sequences that code for functional proteins. Here, we provide an overview of the 

most recent simulations of DNA that illustrate the multi-scale nature of molecular genetics. By 

focusing on connection to experiment, we highlight the difficulty of understanding DNA dynamics, as 

well as structure. We concentrate on DNA, rather than RNA, as for DNA the broadest range of 

length-scales are involved: from a few base pairs up to the scale of the entire genome (Figure 5). 



 

Figure 5 - The Hierarchical Structure of the Genome. Reproduced with permission from(Sexton & 

Cavalli) 

 

Three examples of DNA structures that have been studied using biomolecular simulation are shown 

in Figure 6 and discussed below. 

 



 

Figure 6 – Examples of the variety of DNA structures simulated atomistically. Left: A DNA-drug 

complex.(Harris, Gavathiotis, Searle, Orozco, & Laughton, 2001), centre: a supercoiled DNA micro-

circle,(Irobalieva et al., 2015) right: A DNA-protein complex.(Garton & Laughton, 2013) 

 

Atomistic Simulations of Linear Duplex DNA 

The majority of the simulations of the structure and dynamics of DNA at the atomistic level have 

been performed for short (<20 base pairs) DNA duplexes, due to the wealth of experimental 

information available in the Protein Data Base for such structures. For example, Pasi et al.,(Pasi et 

al., 2014) in a community-wide activity, have used simulations to catalogue the relationship between 

sequence and structure/flexibility for each of the 136 possible unique tetranucleotide base 

sequences. This reveals the remarkable richness, and heterogeneity, in the fine details of the 

structure and dynamics of double-stranded DNA – features which of course are vital to its biological 

roles. These community activities have benefitted the field of nucleic acid simulation by promoting a 

broad discussion of how such simulations can be validated and improved. The development of the 

new parmBSC1 force field for DNA(Ivani et al., 2016) produced ~140 µs MD simulations data 

covering the broad range of nucleic acid structures found in the PDB (including duplex, triplex, 

quadruplex and 3 and 4 way junctions). The BigNASim database(Hospital et al., 2016) provides 

access to the simulation trajectory and analysis data, and is designed to grow through interaction 

with the wider community. As well as saving time and valuable compute resources, such databases 

enable researchers to perform structural or dynamic analyses across multiple simulations, not just a 

single system (as is currently more common), which allows entirely new research questions to be 

addressed.  

 

The validation of atomistic simulations against experiments remains challenging, in part because it is 

difficult by experiment to obtain atomic level resolution of the dynamics of biological 

macromolecules. For linear DNA sequences of between 20 and 50 base pairs, experiments using 



pulsed electron-electron double resonance (PELDOR) have provided Angstrom level information 

about distances, orientations and dynamics, which have been compared with atomistic 

simulation.(Lukas S Stelzl, Erlenbach, Heinz, Prisner, & Hummer, 2017) Better quantitative 

agreement with the newer parmBSC1 and OL15 force fields were reported than for the older AMBER 

DNA force fields, reassuring the community that force fields are both accurate and improving. 

Nevertheless, the bending and twisting motions detected as being the principal modes of flexibility 

of DNA were observed in simulations as long as 18 years ago,(Sherer, Harris, Soliva, Orozco, & 

Laughton, 1999) and have later been shown to persist even when simulations are extended up to 

microsecond timescales on the ANTON supercomputer.(Galindo-Murillo, Roe, & Cheatham III, 2014) 

While the agreement between PELDOR measurements and MD simulations are encouraging, the 

experiments need to be performed at very low temperatures (40K), which adds complexity to the 

interpretation of the results (compared to simulations at room temperature in aqueous solution). 

More generally, biophysical measurements made in different experimental conditions, over 

disparate time or length-scales or on molecular fragments of a far larger macromolecular complex 

can be difficult to reconcile with each other, and in a cellular context. In these situations, simulations 

can assist to bridge the gap between experimentally accessible regimes, and provide valuable insight 

and understanding. For example, atomistic MD simulations have been used to reconcile the 

differences in experimental DNA persistence length measurements from Atomic Force Microscopy 

(AFM) stretching experiments, which probe the mechanical response over very long sequences, and 

from small angle X-ray scattering (SAXS), which detected stretching motions over distances of <40 

base pairs. This analysis showed that the mechanical properties of DNA are different at the base pair 

level compared to the bulk, and that the cross-over occurs over around a helical turn.(Noy & 

Golestanian, 2012)  

 

Atomistic Simulations of Supercoiled DNA  

While short linear sequences of DNA are common in the PDB, in the cell they are non-existent, due 

to DNA degrading enzymes. Recent advances in high throughput sequencing have now made it 

possible to make an extensive genome wide profile of extrachromosomal circular DNAs (eccDNAs), 

which are an endogenous population of chromosome-derived circular DNA structures prevalent in 

repetitive DNA that codes for proteins with diverse isoforms, such as mucin and titin.(Shoura et al., 

2017) However, the biological function (if any) of eccDNAs, the protein-DNA complexes they form 

within cells, and the molecular mechanisms that produce them remain poorly understood. Circular 

DNA is also challenging to simulate, because the relatively long persistence length of DNA (50 nm or 

150 base pairs) requires DNA mini-circles that are over 200bp in size. Smaller circles are more 

difficult to synthesise biochemically, which places severe constraints on the biophysical tools that 

can be used to investigate them. An additional complexity of topologically closed DNA is that it can 

sustain supercoiling, where the biopolymer is over or under-twisted relative to the unrestrained 

linear sequence. This is highly biologically relevant, because DNA is usually maintained in a 

negatively supercoiled state by the action of DNA gyrase (in most prokaryotes), and subjected to 

large topological stresses during transcription and replication. Both the global nature of DNA 

supercoiling, and its transience make it impossible to study supercoiled DNA in the cell at atomistic 

resolution. However, the structure of supercoiled DNA mini-circles, which have a constrained 

structure relative to larger plasmids, has been characterised using cryo-electron tomography (cryo-



ET) for a biologically relevant range of superhelical densities.(Irobalieva et al., 2015) The images 

showed mini-circles adopting a surprisingly broad range of conformations, even within a single 

topoisomer. Complementary atomistic MD simulations also revealed supercoiled DNA to be highly 

dynamic, and provided structures sufficiently close in shape to the cryo-ET that they could be aligned 

to provide an atomistic interpretation of the measured electron density. For the most negatively 

supercoiled minicircles, good agreement was only obtained when the MD simulations had been run 

long enough for local complementary hydrogen bonds between the double strands to denature at 

the tips of loop apices, as has also been observed using coarse-grained simulations of far longer 

supercoiled DNA plectonemes (see section Coarse Graining and Membrane Simulation).(Matek, 

Ouldridge, Doye, & Louis, 2015) 

 

Simulations of DNA for Nanotechnology  

The last ten years has seen the rapid development of methods to build complex nanostructures by 

the self-assembly of carefully designed DNA oligonucleotides, so-called “DNA Origami”. While these 

structures may be imaged – e.g. by AFM or cryo electron microscopy (cryoEM) – details of their 

atomistic structure cannot be resolved. This is a significant drawback because, while the sequence-

based rules that are used in their design often work to the extent that the desired material is 

produced, in many cases the yield of the nanostructure is poor and purifying it from contaminants is 

difficult, if not impossible. A better understanding of the three-dimensional structure of the complex 

non-canonical multiway junctions that feature in these structures would lead to improved design 

methods. Recently Maffeo et al.(Maffeo, Yoo, & Aksimentiev, 2016) have reported the use of 

atomistic MD simulations to relax an idealised model of a 4.7 megadalton DNA Origami ‘pointer’ 

structure. The initial model, built using a simple rules-based approach which presumes, for example, 

that all DNA duplexes are completely regular and straight helical objects, was significantly at odds 

with the cryo-EM data on the same nanostructure. After 200 ns of carefully-controlled MD, the 

structure relaxed to a conformation that fitted the experimental data within experimental error. 

While optimising a pre-built model of such a nanostructure is now possible using standard atomistic 

simulation methods,(Maingi, Lelimousin, Howorka, & Sansom, 2015) these structures are too large 

for their de novo self-assembly to be simulated using the same approach. In response to this 

situation a number of ‘coarse-grained’ DNA models have developed. For example, Schreck et 

al.(Schreck, Romano, Zimmer, Louis, & Doye, 2016) have recently reported the simulation of the self-

assembly of a triangular prism DNA nanostructure using the OxDNA force field. As well as 

reproducing key details of the structure that were evident in cryo-TEM images (e.g. the twist in the 

prism, such that the top and bottom triangular faces are offset), the simulations allow the study of 

the process of assembly, including intermediate structures that are formed. Coarse-grained models 

also permit longer timescale simulations of assembled nanostructures. For example, Maingi et 

al(Maingi et al., 2017) have used the Martini force field to study the structure and interactions of a 

DNA nanopore spanning a lipid bilayer. The simulations give insights into how the nanopore inserts 

into the membrane, and how it selectively transports cations across it. DNA sequencing with 

nanopores (protein and synthetic) has been an active area of research within academia and industry 

for the last 10 years or so. The idea being that DNA is driven through a nanopore by an electric field. 

As it enters the constriction within the nanopore, it causes a partial blockage of the baseline current 

that is present for the unoccluded pore. Each one of the four DNA nucleotides gives a slightly 



different partial blockage, allowing the sequence to be determined. Atomistic simulations have 

provided vital details to improve the design of the nanopores used for sequencing. For example the 

energetic barriers to translocation for the different nucleotides have been calculated for different 

protein pores(Manara, Guy, Wallace, & Khalid, 2015) the mechanism of ssDNA translocation has 

been predicted(Guy, Piggot, & Khalid, 2012) and the importance of the directionality of the DNA has 

been determined.(Mathé, Aksimentiev, Nelson, Schulten, & Meller, 2005)  

 

Simulations of Protein-DNA Complexes  

Most biological functions of DNA are mediated by its interaction with proteins. This interaction may 

be sequence-specific or not. Simulations can help to analyse the origins of selectivity. For example, 

Garton et al.(Garton & Laughton, 2013) have used extensive MD simulations to study the interaction 

between telomeric repeat-binding factor 1 (TRF1) and its cognate DNA sequence. They find that the 

recognition involves a dynamic, ‘flickering’ set of interactions, at any instant in time these are 

insufficient to guarantee selectivity for one DNA sequence over others, but averaged over a matter 

of nanoseconds they are. Through this analysis the simulations were able to explain known relative 

binding affinities of TRF1 for different DNA sequences. It is a characteristic of such interactions that 

they frequently involve significant changes to the structure of the DNA – e.g. bending or twisting. 

This has led to much investigation as to whether sequence-specific DNA-protein recognition comes 

about through the specificity of interactions made between the protein and particular bases in the 

DNA sequence, or indirectly through the particular ability of the correct DNA sequence to adopt the 

structure optimal for these interactions. In other words, analysing the process of induced fit is very 

important. Recently, Etheve et al.(Etheve, Martin, & Lavery, 2016) have studied three examples of 

protein-DNA complexes in which the proportion of ‘direct’ (via interaction) versus ‘indirect’ (via 

deformation) readout was predicted to vary. The authors find that this is indeed the case, and show 

good agreement with experimental data on sequence selectivity. Interestingly there are added 

subtleties – for example, some complexes may adopt a number of alterative low-energy states, each 

of which has a difference balance between direct and indirect readout. The simulations also suggest 

that in some cases, and perhaps not unexpectedly, ions can play a significant role in mediating the 

interactions between the highly charged DNA species and the protein.  

 

Chromatin and Beyond  

The advent of new biophysical and chemical tools are switching the focus of DNA structural biology 

from individual protein-DNA complexes up to the nuclear level. The chromosome capture 

technologies, which use cross-linking and sequencing to map inter-chromosomal contacts, rely on 

simulation as an inherent part of the data analysis process, (Bascom & Schlick, 2017) in an analogous 

manner to the use of distance restraints in NMR structure refinement at the atomistic level. In these 

calculations, chromatin (or the prokaryotic equivalent) is represented as a simple polymer chain. 

Putative 3D structures of the chromosomes are then iteratively refined until sufficiently good 

agreement with the experimental data is achieved. This combined experimental/computational 

approach has shown that the nuclear material is decomposed into topologically associated domains 

(TADS), which can bring activators on distal sites into close proximity, and which appear to be vital to 

genome regulation and stability. For E. coli, it has been possible to gather sufficient experimental 



information to build a hierarchical structural model in which all 4.6 Mbp of DNA in the bacterial 

chromosome were resolved at the single nucleotide level. Such models provide contact probabilities 

for distant promoters within the 3D chromosome, the physical environment surrounding a particular 

sequence of interest and the distribution and position of regions of empty space within the highly 

packed DNA, which has implications for the ability of large macromolecules such as ribosomes to 

access the interior of the chromosome.(Hacker, Li, & Elcock, 2017)  

 

MEMBRANE SIMULATIONS AND COARSE GRAINING  

Simulation studies of biological membranes and membrane proteins have a long history of 

complementarity to ongoing experimental studies. The systems are challenging to study at the 

molecular level using experimental methods alone, and thus simulations have played a key role in 

facilitating interpretation of the experimental observables. For example, experimental studies of the 

E. coli outer membrane protein A (OmpA) gave some initially puzzling results; the X-ray structure of 

the protein revealed that the interior of OmpA did not have a continuous channel extending from 

one mouth of the protein to the other, yet electrophysiology experiments showed a conductance for 

the protein (see Figure 7). Molecular modelling and MD simulations revealed amino acid 

rearrangement within the lining of the protein, resulted in an 'open' pore with dimensions that 

closely matched those predicted by the conductance data.(Bond, Faraldo-Gómez, & Sansom, 2002) 

The simulation hypothesis of side-chain rearrangement was subsequently confirmed by NMR 

studies.(Hong, Szabo, & Tamm, 2006) This study showed the utility of simulations in rationalizing 

two apparently conflicting experimental results.  

 

 

Figure 7 - The outer membrane protein OmpA is shown in its dimeric form in red and blue. Braun's 

lipoprotein, which is covalently bound to peptidoglycan is shown in orange. Peptidoglycan is shown 



in green. The lipids of the outer membrane of E. coli are shown in grey and red.(Samsudin, Boags, 

Piggot, & Khalid, 2017) 

 

 

In the following we discuss two areas in which membrane simulations have seen tremendous growth 

in the last five years or so, the membrane envelopes of bacteria and viruses. Bacteria can be divided 

into two categories according to the architectures of their cell envelopes. Gram-positive bacteria 

have a single membrane and a thick peptidoglycan cell wall, whereas Gram-negative bacteria have a 

thin cell wall separating two membranes. The two membranes of Gram-negative bacteria differ in 

their lipid compositions, the inner membrane is composed of phospholipids in both leaflets, in 

contrast the outer membrane is asymmetric; it contains phospholipids in the inner leaflet, but the 

larger, more complex lipopolysaccharide molecules in the outer leaflet. Experimental and 

computational studies have traditionally approximated both membranes as symmetric phospholipid 

bilayers. These studies have provided numerous insights into the structure-dynamics-function 

relationships of the proteins embedded within the membranes. For example a study of 

lipopolysaccharide (LPS) transport proteins D and E (LptD and LptE) from S. typhimurium and S. 

flexneri using mutagenesis, functional assays and molecular dynamics simulations proposed that a 

luminal gate composed of two luminal loops opens up to allow insertion of oligosaccharide and O-

antigen regions of LPS into the outer leaflet.(Y. Gu et al., 2015) The simulations revealed the role of 

key cysteine residues in these loops; when in the reduced form and unable to form disulfide bridges 

to a third nearby loop, the gate was observed to close, in contrast in the presence of the disulfide 

bond, the gate remained open. In mutagenesis studies deletion of either of the loops resulted in cell 

death. A more recent study of the LptD/E complex from a different bacterial species; P. aeruginosa, 

in which the protein was simulated in its native LPS-containing membrane environment provided 

further support for the luminal gate mechanism.(Botos et al., 2016) 

 

The first reported LPS-containing model of the outer membrane was developed with the Amber95 

force field by Straatsma,(Lins & Straatsma, 2001) this was followed a few years later by models for 

CHARMM(Wu et al., 2013) and GROMOS.(Piggot, Holdbrook, & Khalid, 2011) One of the difficulties 

in developing parameters for membranes containing LPS is that experimental data for these systems 

is much scarcer than data for phospholipids, making validation of the molecular models difficult. 

Having said that, the three models mentioned show quantitative agreement with acyl chain 

deuterium order parameters obtained from NMR experiments and also reproduce the phase 

behaviour of these complex lipids.(Wu et al., 2013) A recent example of simulations and experiment 

in agreement with each in highlighting the importance of divalent cations for cross-linking LPS 

headgroups was reported by Clifton et al.(Clifton et al., 2015) Given the complexity of the LPS 

molecule and its slow rate of diffusion (an order of magnitude slower than phospholipids) even 

equilibration of systems containing these molecules is computationally very demanding and 

consequently it has only been in the last 6 or 7 years that simulations of such LPS-containing 

membranes have become widespread. These models are enabling the use of simulation to 

complement experimental data in identifying specific protein-lipid interactions.(J. Lee, Patel, 

Kucharska, Tamm, & Im, 2017) Progress in the development of atomistic models has made it 

possible to carry out computational studies of all components of the cell envelope of Gram-negative 



bacteria and such studies are now beginning to emerge.(Ortiz-Suarez, Samsudin, Piggot, Bond, & 

Khalid, 2016; Samsudin, Ortiz-Suarez, Piggot, Bond, & Khalid, 2016) In the future these models and 

simulation studies are likely to play a major role in our understanding of the interaction of antibiotics 

with the cell envelopes that protect bacterial cells. 

 

Large scale molecular dynamics simulations have also been used to explore the membranes of a 

number of enveloped viruses, providing both mechanistic insights into virus biology, and exemplars 

of very large scale simulations of biological membrane assemblies.(Reddy & Sansom, 2016a) One of 

the first simulation studies of the membrane envelope of a virus was of the immature HIV-1 virion by 

Ayton and Voth.(Ayton & Voth, 2010) In this landmark study, a combination of electron 

cryotomography data and both atomistic and coarse-grained simulations were used to identify 

potential mutations that may disrupt or modify the assembly process of the Gag polyprotein lattice 

in the immature HIV-1 virion. The simulations employed an iterative multiscale approach in which 

multiple coarse-grain parameters were explored in critical regions, with the aim of identifying the 

interactions that are critical to maintaining the experimentally observed structure of the virion. 

Subsequently the CG simulation data were used in an inverse fashion to guide all-atom MD 

simulations of select regions in order to refine the CG model. Simulation of a complete virion 

envelope has been possible for the influenza A virion,(Reddy et al., 2015) combining X-ray structures 

and transmembrane (TM) domain models for the hemagglutinin (HA) and neuraminidase (NA) 

proteins, an NMR structure for the TM domain of the M2 protein, and a reasonable approximation 

to the experimentally determined lipidome (Figure 8 below). The prevalence of glycans on the 

surface of the outer leaflet of the lipid bilayer of the influenza A model suggested that antibody or 

therapeutic compound access to the M2 proton channel may have to overcome steric barriers. The 

three species of influenza A envelope protein moved slowly within the cholesterol-rich membrane, 

with diffusion constants matching previous experimental measurements by solid-state 

NMR.(Polozov, Bezrukov, Gawrisch, & Zimmerberg, 2008) The spacing between membrane 

glycoprotein molecules on the influenza A surface was consistent with previous experimental 

measurements.(Wasilewski, Calder, Grant, & Rosenthal, 2012) These spacings were analysed in the 

context of multivalence, suggesting that polyvalent interactions between HA and/or NA on the viral 

surface and sialic acid residues on the host membrane are likely. This would enable strong virus-host 

association despite relatively weak (~2-3 mM affinity) viral HA-single host receptor interaction in 

vitro.(Sauter et al., 1989) 



 

Figure 8 - The viral envelope membrane of influenza A modelled at coarse-grained resolution. The 

hemagglutinin, neuraminidase, and M2 proteins are orange, yellow and pink respectively. The 

glycolipid molecules are shown in cyan, and other lipids in grey. Overall (A) and zoomed-in (B) views 

are shown. C Model of an influenza A virion (with the red sphere indicating the approximate location 

of the genome within the virion, not currently modelled) docked against a simple model of a 

mammalian cell membrane(Koldsø & Sansom, 2015) with glycolipids in pale green, other lipids in 

darker green, and cell membrane proteins in orange. 

 

The membrane envelope of the Dengue virus has been simulated in two independent studies(Reddy 

& Sansom, 2016b) using the Martini coarse-grain force field.(Marrink & Tieleman, 2013) Reddy & 

Sansom used a combination of CG modelling and simulation to ‘add back’ the lipid bilayer to the 

cryoEM structure of the Dengue virus envelope proteins(Reddy & Sansom, 2016b) (Figure 9 below). 

This allowed them to address diffusive properties of lipids within the outer envelope of the dengue 

virion. The dense crowding of protein TM domains and the enclosure of the outer leaflet of the lipid 

bilayer within a protein shell resulted in lipid diffusive properties similar to those in the raft-like 

influenza A virion membrane, namely reduced diffusion coefficients D and exponents α less than 1, 

the latter indicative of anomalous diffusion. Simulation studies on crowded bacterial membrane 

models(Goose & Sansom, 2013) exhibited diffusive behaviour similar to that in the membrane of the 

enveloped viruses.  
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Figure 9 - A coarse-grained model of the envelope of dengue virus(Reddy & Sansom, 2016b) shown 

as (A) a cross-section of the entire virion envelope model is shown, along with (B) a zoomed-in view. 

Protein (orange) and lipid (dark green) components of the envelope are shown. 

 

Bond and co-workers(Marzinek, Holdbrook, Huber, Verma, & Bond, 2016) developed a novel 

optimisation protocol to embed the cryo-electron microscopy structure of the envelope protein 

complexes of the DENV-2 icosahedral shell within a spherical lipid vesicle, the composition of which 

was guided by lipidomics data. Microsecond timescale simulations of the virion envelope enabled 

refinement of the lipid/protein complex, assessed by comparing density maps generated from 

simulations with those from cryo-electron microscopy. The refined structures revealed locally 

induced curvature resulting from specific electrostatic interactions with anionic phosphatidyl-serine 

phospholipids. These lipids were shown to stabilise the native architecture of the transmembrane 

domains, and may facilitate subsequent fusion of the viral envelope with the host membrane inside 

the endosome during infection. These and other studies demonstrate the potential of very large 

scale simulation of viral envelopes. Future challenges for such studies include a full model of 

glycosylation of viral surface proteins, which will enable more realistic and hence predictive 

modelling of virions binding to models of target cell membranes, and the effects of antibodies on 

such interactions. Models of virions and other complex mesoscale biomolecular assemblies can be 

built with tools such as cellPACK(Johnson et al., 2014) with LipidWrapper,(Durrant & Amaro, 2014) 

incorporating a variety of experimental data. These models can be built in atomic detail, allowing 

simulations from this level and potentially connecting to larger scales.(Amaro & Mulholland, 2018)  

 

Conclusion 

Biomolecular simulation exploits and complements the vast amounts of structural data generated 

from techniques such as X-ray crystallography, NMR, and cryo-electron microscopy to model and 

thus understand interactions, mechanism and function. As experiments generate ever more 

structural, genetic and kinetic data, the need for simulation and model building becomes greater. 

Complementary tools, such as microscopy and cross-linking, often provide such different types of 

experimental information that it is impossible to reconcile them without computer modelling. The 

multi-scale nature of biology implies that no single experimental technique, or informatics dataset 

will be sufficient to inform reliable manipulation and modulation of biological systems. It is only by 

combining experiment with modelling and simulation that we will be able to connect together all of 

the different types of biological information, and thus gain an understanding how information flow is 
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controlled during genome activity, for example. Simulations have an essential role in interpreting, 

extending and adding value in structural investigations, complementing experiment. For example, 

Hub and co-workers have used atomistic models of macromolecules to extract information from 

SAXS data.(Chen & Hub, 2014) Simulations (e.g. with QM/MM methods) can exploit structures of 

enzyme reaction intermediates (Olmos et al., 2018) to model reactions in proteins and predict 

barriers.(Van der Kamp & Mulholland, 2013) Great opportunities (and challenges) for synergistic 

investigation come from cryo-EM e.g. in developing and tests models of biomolecular ensembles, 

from individual proteins to macromolecular complexes.  

 

Simulation also allow the study of biomolecular ensembles, allowing calculations of the free energy 

differences which determine equilibria. Ongoing developments in biomolecular simulation will vastly 

increase their scope and utility. We are likely to see more progress on the computation of various 

aspects of ligand binding kinetics(Deganutti & Moro, 2017) particularly in a pharmaceutical 

context(Schuetz et al., 2017). One exciting example is using MSMs to characterise allosteric binding 

sites(Bowman, Bolin, Hart, Maguire, & Marqusee, 2015). One of the central challenges is how to use 

this information in a predictive fashion. It is of course important that, where possible, predictions 

from simulation are compared directly to experimental observables. Also, simulations should 

demonstrate significance and reproducibility (as with all experiments) in order to give reliable 

predictions. The effects of e.g. choice of forcefield and uncertainties in structural models should also 

be considered. When applied with care, simulations have shown that they can be computational 

assays for predicting important properties such as drug resistance.  

 

Using methods such as constant pH MD,(M. S. Lee, Salsbury, & Brooks, 2004; Mongan, Case, & 

McCAMMON, 2004) polarisable force fields,(Albaugh et al., 2016; Patel, Mackerell, & Brooks, 2004) 

QM/MM (see section QM/MM modelling of enzyme reactions), and ab initio MD(Marx & Hutter, 

2009; Tuckerman, Laasonen, Sprik, & Parrinello, 1995) can yield more accurate ensembles and allow 

modelling of biomolecular reactions in addition to interactions. Simulations on larger scales will 

analyse the fundamental processes involved in complex biomolecular processes such as 

photosynthesis, ATP production, and ubiquitination.(Johnson et al., 2014) The increasing ability to 

reach long timescales brings into view detailed simulation of processes such as protein folding, 

translation, and transcription. It will also allow us to predict biomolecular kinetics with high 

accuracy. Finally, multiscale approaches(Amaro & Mulholland, 2018) promise to connect interactions 

and reactions modelled and revealed by biomolecular simulations to macroscopic observables at the 

levels of organelles and cells, and potentially tissues, and beyond. 
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