

Edinburgh Research Explorer

Secure Outsourcing of Cryptographic Circuits Manufacturing
Citation for published version:
Ateniese, G, Kiayias, A, Magri, B, Tselekounis, I & Venturi, D 2018, Secure Outsourcing of Cryptographic
Circuits Manufacturing. in The 12th International Conference on Provable Security 25-28 October, 2018,
Jeju, Rep. of Korea. Lecture Notes in Computer Science, vol. 11192, Security and Cryptology, vol. 11192,
Springer, Cham, Jeju, Rep. of Korea, pp. 75-93, 12th International Conference on Provable Security, Jeju,
Korea, Republic of, 25/10/18. https://doi.org/10.1007/978-3-030-01446-9_5

Digital Object Identifier (DOI):
10.1007/978-3-030-01446-9_5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The 12th International Conference on Provable Security 25-28 October, 2018, Jeju, Rep. of Korea

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Apr. 2024

https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1007/978-3-030-01446-9_5
https://www.research.ed.ac.uk/en/publications/cdfc7fc9-a21d-4172-83eb-92080255fb95

Secure Outsourcing of Cryptographic Circuits
Manufacturing

Giuseppe Ateniese1, Aggelos Kiayias2?, Bernardo Magri3,
Yiannis Tselekounis4?, and Daniele Venturi5

1 Stevens Institute of Technology, USA
gatenies@stevens.edu

2 The University of Edinburgh, United Kingdom & IOHK
akiayias@inf.ed.ac.uk

3 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
bernardo.magri@fau.de

4 The University of Edinburgh, United Kingdom
ytselekounis@ed.ac.uk

5 Sapienza University of Rome, Italy
venturi@di.uniroma1.it

Abstract. The fabrication process of integrated circuits (ICs) is com-
plex and requires the use of off-shore foundries to lower the costs and to
have access to leading-edge manufacturing facilities. Such an outsourcing
trend leaves the possibility of inserting malicious circuitry (a.k.a. hard-
ware Trojans) during the fabrication process, causing serious security
concerns. Hardware Trojans are very hard and expensive to detect and
can disrupt the entire circuit or covertly leak sensitive information via a
subliminal channel.
In this paper, we propose a formal model for assessing the security of ICs
whose fabrication has been outsourced to an untrusted off-shore manu-
facturer. Our model captures that the IC specification and design are
trusted but the fabrication facility(ies) may be malicious. Our objective
is to investigate security in an ideal sense and follows a simulation based
approach that ensures that Trojans cannot release any sensitive infor-
mation to the outside. It follows that the Trojans’ impact in the overall
IC operation, in case they exist, will be negligible up to simulation.
We then establish that such level of security is in fact achievable for the
case of a single and of multiple outsourcing facilities. We present two com-
pilers for ICs for the single outsourcing facility case relying on verifiable
computation (VC) schemes, and another two compilers for the multiple
outsourcing facilities case, one relying on multi-server VC schemes, and
the other relying on secure multiparty computation (MPC) protocols
with certain suitable properties that are attainable by existing schemes.

1 Introduction

The fabrication process adopted by the semiconductor industry is fundamentally
global, involving several parties that may not be trusted. As a result, integrated

? Research partly supported by the H2020 project PANORAMIX (# 653497).

circuits (ICs) are vulnerable to so-called hardware Trojans that can compromise
or disable critical systems, or covertly leak sensitive information [7]. Analogously
to a software Trojan, a hardware Trojan is a back-door deliberately added to the
circuit to disrupt its operation or disable it when certain events occur. A Trojan
can be added to the circuit during the design phase, by some malicious designer,
or more often during the manufacturing phase, by some malicious off-shore fab-
rication facility. A hardware Trojan’s objectives may be to modify the function-
ality of the circuit (e.g., in order to compromise or disable critical systems),
modify its specification (e.g., by changing its energy consumption), covertly leak
sensitive information (e.g., from a secret memory), or simply disable the entire
circuit when instructed to do so [6]. Once the Trojan is inserted into the circuit
it can stay active the entire time, or it can be “triggered” by some event such
as a special input to the circuit.

Reliably detecting compromised circuit components through testing and re-
verse engineering appears to be an impossible task given our current technol-
ogy [9]. Indeed, all non-destructive testing techniques can easily be circumvented
by properly obfuscating embedded Trojans. The U.S. military recognized this
threat and started two programs, Trust and IRIS, with the intent of develop-
ing techniques and metrics to certify ICs going into weapon systems. The main
concern is that advanced weapons may appear to work properly but then switch
off in combat or when triggered by some special events. Another stated concern
is information leakage, where a malicious component is programmed to leak
sensitive information [32].

The U.S. military however currently obtains trusted chips through the DOD
Trusted Foundry program which is currently managed by the NSA’s Trusted
Access Program Office (TAPO). Within this program, a trusted design center
and foundry are established through an exclusive partnership with IBM for se-
cure semiconductor fabrication and ASIC services, along with the involvement
of several Trusted Suppliers which are accredited by an accreditation authority
(DMEA). The intent of the Trusted Foundry program is to provide national se-
curity and defense programs with access to ICs from trusted sources. However,
a report by the U.S. Government Accountability Office (GAO) [25], released
in April 2015, found that even though the Trusted Foundry program started
in 2004, IBM remained the sole-source supplier for leading-edge technologies
meeting the criteria put forth by DOD. GAO’s report highlights two main is-
sues: First, it notices that IBM sold its microelectronics fabrication business
to a foreign-owned entity (GlobalFoundries). Second, relying on a single source
supplier for defense microelectronics hinders competition and thus innovation in
this critical area.

1.1 Previous Work

Inspired by the above considerations, in this work we put forward a formal se-
curity model for the problem of utilizing off-shore fabrication facilities for IC
manufacturing. Our main motivation is that the setting of secure circuit fabrica-

2

tion, while being an extremely important practical problem, almost completely
lacks theoretical foundations. We discuss a few remarkable exceptions below.

– Seifert and Bayer [31] introduced a very strong security model for the fab-
rication of Trojan-resilient circuits, where the produced circuit is required
to always have the same output as the original circuit; unfortunately, they
show how to achieve their definition only for very limited classes of Trojans
(i.e., the adversary is allowed to “corrupt” only a small fraction of the gates
in each layer of the IC, and a small fraction of the wires connecting different
layers).

– Recently, Wahby et al. [33] introduced a new approach to the problem of
defeating hardware Trojans in fabless circuit manufacturing. Their model
reflects the fact that IC specification and design are trusted but the fabrica-
tion facility is not. Rather than testing or reverse engineering the IC hard-
ware received, which only provides limited security, they consider a class of
solutions where the IC’s operations are continuously verified.
In a nutshell, the goal of [33] is to make sure that the produced circuit
maintains correctness of the computation, meaning that the output of the
circuit is either invalid, or equal to the output of the original circuit. The
main drawback is that invalid outputs might be arbitrarily correlated with
the secret state of the circuit, which could expose key material in case the
produced circuit is a cryptographic circuit. (We will formalize this fact later
in the paper.)

– In [14], the authors show how to protect against hardware Trojans using
testing-based mechanisms. Their work is based on two existing techniques for
Trojan detection, called “input scrambling” and “split manufacturing” [20],
for which the authors provide formal models. Hence, they present a generic
compiler that transforms any circuit into a new (equivalent) circuit with
the following guarantee: Assuming the attacker invokes the circuit q times,
and that the device is being tested t times, for t > q uniform on a specific
range which is not known to the attacker, the compiled circuit is secure
with probability at least 1 − (q/t)`/2, were ` is the number of copies of the
sub-circuits whose production is outsourced.
The main limitation is that [14] assumes an a-priori known bound on the
number q of interactions between the user and the device; in fact, without
such a bound, their construction would require a super-polynomial number
of tests. Unfortunately, in many important applications, it is not realistic to
assume an upper bound on the value q, and thus it is an important open
problem to design a methodology that provides security for an arbitrary
polynomial number of interactions between the user/attacker and the device.

– The approach of applying secure distributed computing to defeat hardware
Trojans has also been recently explored in [26]. However, this work is more
focused on the implementation aspects of this idea, and moreover it assumes
that the possibly malicious circuit components run applications that are
developed and signed by a trusted software developer.

3

1.2 Our Contributions

We put forward a formal framework for assessing security of a circuit whose
production has been, in part, outsourced to a set of manufacturers that are not
trusted. Our security definition implies that using the produced circuit in the
wild leaks no information on its secrets. Additionally, the adversarial model we
consider does not assume any a-priori bound on the number of executions, and al-
lows the manufacturer(s) to make arbitrary modifications to the outsourced com-
ponents. In essence, our security model captures any attack in which the back-
doored circuit communicates with the user/attacker through the input/output
gates of the produced circuit. (This includes digital and analog Trojans, but not
hidden antennas as considered in [14].)

With such a framework in hand, we give several design methodologies that
achieve our definition with different tradeoffs in terms of security, efficiency, and
underlying assumptions. Thus, our work establishes the theoretical feasibility of
utilizing off-shore fabrication facilities for IC manufacturing. A more detailed
explanation of our main contributions follows below.

Secure circuit fabrication. Let Γ be the original circuit to be produced. Instead
of producing Γ directly, we first “compile” it into a different circuit Γ̂ using an
efficient, possibly randomized, procedure Φ that we call an outsourcing compiler.
The compiler Φ takes as input a description of Γ and returns a description of Γ̂ ,
together with some auxiliary information specifying how Γ̂ can be divided into
sub-components, and which of these components can be produced off-shore; the
remaining components will be instead built in-house. After all components have
been produced, the circuit designer re-assembles the circuit Γ̂ (by combining
the outsourced components and the components built in-house), which is then
initialized with some initial secret memory M1, and used in the wild.

In order to make sense, the above approach needs to satisfy a few important
requirements. The first requirement is that Φ needs to be functionality preserv-
ing, meaning that the compiled circuit Γ̂ should compute the same functionality
as the original circuit Γ (for all possible initial memories M1, and for all possible
inputs). The second requirement is that the effort needed to manufacture the
trusted sub-components should be (much) less compared to the effort required
to manufacture the original circuit Γ . The third requirement is that Φ should be
secure, meaning that, under an acceptable assumption about the manufacturers
who construct the outsourced components, the produced circuit Γ̂ can be safely
used in real-life applications.

Our security definition follows the simulation paradigm, and is inspired by
similar definitions in the setting of tamper-proof circuit compilers [22]. We refer
the reader to Section 1.3 for a more detailed comparison between the two ap-
proaches. In a nutshell, security of Φ is defined by requiring that whatever an
adversary can learn by interacting with the fabricated circuit Γ̂ (produced fol-
lowing the steps outlined above), can be simulated given only black-box access to
the original circuit Γ . This essentially means that, no matter how the outsourced
components are maliciously modified (e.g., by inserting a hardware Trojan), us-

4

ing circuit Γ̂ is as secure as using the original circuit Γ , and thus, in particular,
does not leak sensitive information on the secret memory. See Section 3 for a
precise definition.

Case study I: Single manufacturer. In Section 4, we show how to construct
secure outsourcing compilers that work for arbitrary circuits Γ in the setting
where all outsourcing manufacturers are corrupted. Similarly to [33], our com-
piler generically leverages a VC scheme for the function F implemented by Γ .
Recent breakthrough research on verifiable computation led to nearly practical
schemes that work for any function [29,10]; some schemes additionally preserve
the privacy of the inputs on which the function is being computed on [15]. VC
schemes satisfying the latter property are called input-private.

The main idea of how to use verifiable computation in order to build secure
outsourcing compilers is simple enough to describe it here. The fabrication of the
chips that perform the entire bulk of computation will be outsourced to the un-
trusted fabrication facility, whereas the only circuit components that need to be
built in-house are: (i) the component corresponding to the algorithm for encod-
ing the inputs (in case of input-private VC), (ii) the component corresponding
to the algorithm run by the client in order to verify correctness of the server’s
computation, and (iii) the component used to generate fresh random coins as
needed for computing the function (in case of randomized functions). Thanks to
the nature of VC, the size of the components in (i) and (ii) is independent of
the size of the original circuit computing the function. As for the component in
(iii), we can use any existing (and trusted) circuitry for generating true random
numbers (RNG). A good example is the Intel on-chip hardware random number
generator which can be accessed through the RDRAND instruction available on
all modern processors [19].

Our compiler relies on VC schemes with input-privacy, and achieves our
strongest security notion (i.e., no leakage required for the simulation).

Case study II: Multiple manufacturers. In Section 5, we show how to construct
secure outsourcing compilers for arbitrary circuits Γ in the setting where m ≥ 2
outsourcing manufacturers are available, and a certain unknown subset of them
is malicious. This is a strictly stronger assumption compared to the setting of a
single manufacturer, nevertheless, as we show, it opens the possibility for more
efficient constructions and stronger availability guarantees.

We present an outsourcing compiler utilizing a general client-server secure
multiparty computation (MPC) protocol, i.e., a protocol that, for any function,
enables a set of clients to privately communicate their inputs to a set of servers
that will perform a computation and return the output to a single designated
recipient. We stress that many MPC protocols follow this paradigm (e.g., [12]),
while others, as we comment later, can be easily adapted to it.

Given such a protocol, the compiler operates in the following way (see also
Section 5.1). For a given circuit Γ it produces the MPC protocol implement-
ing it, isolates the client and recipient computation for manufacturing in-house,
and outsources each of the other components (representing a server in the MPC

5

protocol) to the untrusted manufacturers. The key points of this compiler con-
struction are as follows: (i) The client and recipient computation are typically
quite lightweight; the client, in many protocols, simply performs an encryption
or a secret-sharing operation, and the recipient a secret-reconstruction protocol;
in either case, the computation is independent of the circuit that is outsourced.
(ii) There are MPC protocols that can tolerate up to m − 1 malicious servers,
something we can leverage to argue that if at least one of the outsourcing man-
ufacturer is honest the compiled circuit would be safe for use.

Additional properties of the underlying MPC protocol can also be very valu-
able by our compiler: for instance, if the underlying MPC protocol supports
guaranteed output delivery, we can use this guarantee to argue that the final
circuit will be resilient to a certain faulty outsourced sub-component. Moreover,
if the underlying protocol satisfies the identifiable abort property, cf. [21], we
can enable our compiled circuit to switch-off an outsourced sub-component that
is discovered to be faulty (or malicious), thus reducing energy consumption.

1.3 Related Work

Hardware Trojans. Prevention of hardware Trojans in ICs is a common practice
that might take place during the design, manufacturing, and post-manufacturing
stage [30,24]. However, since it is not always possible to efficiently prevent Tro-
jans insertion, Trojans detection has also been vastly explored [9]; once a Trojan
is detected, the circuit can be disposed and not used. Common methodologies
used to perform Trojans detection vary from invasive ones (that destroy the IC
to examine it inside), to non-invasive ones (where the circuit is executed and
compared against a trusted copy of the circuit, or against some expected output
values). Trojan detection is typically a very expensive and unreliable process,
therefore the best practice is usually not to rely on any kind of testing to protect
against Trojans. Explicit countermeasures against Trojans also exist, where the
objective is to guarantee the functionality or security of the circuit even in the
presence of some unknown Trojan. For instance, the so-called “data guards” are
designed to prevent a Trojan from being activated and/or to access sensitive
data [34]. Another approach is the duplication of logic elements and the division
of the sensitive data to independent parts of the circuit [27,34].

Tamper-proof circuits. Our main security definition shares similarities with anal-
ogous definitions in the context of protecting circuits against tampering at-
tacks [11]. The main difference between this setting and the one considered
in our paper is that tamper-proof circuit compilers are typically used to pro-
tect against fault injection [28] and tampering attacks at run-time; such attacks
are usually carried out in an adaptive manner, depending on the outcome of
previous attempts. Outsourcing compilers, instead, only protect against (non-
adaptive) tampering taking place during the circuit fabrication process. Impor-
tantly, the latter restriction allows to obtain security against arbitrary modifi-
cations, whereas in circuit tampering one has to consider very restricted attacks
(e.g., wire tampering [22] or gate tampering [23]).

6

Subversion. The above type of non-adaptive tampering is, in fact, reminiscent
of the setting of subversion attacks against cryptographic primitives and algo-
rithms. Inspired by the recent revelations of Edward Snowden [18], this line of
research recently led to constructing several concrete primitives resisting large
classes of subversion attacks [8,3]. In this light, our work could be interpreted as
formalizing the security of circuits that might have been subject to subversion
during fabrication.

2 Preliminaries

2.1 Notation

For a string x, we denote its length by |x|; if S is a set, |S| represents the number
of elements in S; for a natural number n, [n] denotes the set {1, . . . , n}. When
x is chosen randomly in S, we write x←$ S. When A is an algorithm, we write
y ← A(x) to denote a run of A on input x and output y; if A is randomized, then
y is a random variable and A(x; r) denotes a run of A on input x and randomness
r. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized
and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in at
most poly(|x|) steps. We denote with λ ∈ N the security parameter. A function
ν : N → [0, 1] is negligible in the security parameter (or simply negligible) if it
vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) = λ−ω(1).

The statistical distance between two random variables Z and Z′ defined over
some common set Z is defined as ∆(Z; Z′) = 1

2

∑
z∈Z |P [Z = z] − P [Z′ = z]|.

For two ensembles Z := {Zλ}λ∈N and Z′ := {Z ′λ}λ∈N, we write Z ≡ Z′ to
denote that the two ensembles are identically distributed. We also write Z ≈c Z′

to denote that the ensembles are computationally indistinguishable, i.e. for all
PPT distinguishers D there exists a negligible function ν : N → [0, 1] such that
∆D(Z; Z′) := |P [D(z) = 1 : z←$ Z]− P [D(z) = 1] : z←$ Z′| ≤ ν(λ).

We rely on the following lemma (which follows directly from the definition
of statistical distance):

Lemma 1. Let Z and Z′ be a pair of random variables, and W be an event
defined over the probability space of Z and Z′. Then, ∆(Z; Z′) ≤ ∆(Z; Z′|¬W)+
P [W].

2.2 Circuits

A (Boolean) circuit Γ = (V,E) is a directed graph. The vertices V are logical
gates, and the edges E are wires connecting the gates. For the case of determin-
istic circuits, the gates can be of type AND, XOR and copy, where AND (resp. XOR)
have fan-in two and fan-out one, and output the AND (resp. XOR) operation
on the input bits; a copy gate, denoted copy, simply forwards the input bit into
two output wires. The depth of a circuit is defined as the longest path from an
input to an output; the size of a circuit is defined as its total number of gates.
Sometimes we explicitly write 〈Γ 〉 for the description of the circuit Γ . A circuit

7

is clocked if it evolves in clock cycles (or rounds). The input and output values
of the circuit Γ in clock cycle i are denoted by Xi and Yi, respectively. A circuit
is probabilistic if it uses internal randomness as part of its logic. We call such
probabilistic logic randomness gates and denote them with $. In each clock cycle
$ outputs a fresh random bit. Additionally, a circuit may contain memory gates.
Memory gates, which have a single incoming edge and any number of outgoing
edges, maintain state: at any clock cycle, a memory gate sends its current state
down its outgoing edges and updates it according to the value of its incoming
edge. Any cycle in the circuit graph must contain at least one memory gate. The
state of all memory gates at clock cycle i is denoted by Mi, with M1 denoting
the initial state. When a circuit is run in state Mi on input Xi, the circuit will
output Yi and the memory gates will be in a new state Mi+1. We will denote
this by (Yi,Mi+1)← Γ [Mi](Xi).

3 Secure Circuit Fabrication

In this section we put forward a formal model for assessing security of a (cryp-
tographic) circuit whose production is outsourced to one or more untrusted fa-
cilities. We start by recalling the standard notion of connected component of a
circuit or graph.

Definition 1. A circuit Γ ′ = (V ′, E′) is a (connected) component of circuit
Γ = (V,E) if V ′ ⊆ V , E′ ⊆ E and for all g1, g2 ∈ V ′ we have that (g1, g2) ∈ E′
iff (g1, g2) ∈ E.

Next, we introduce the notion of an outsourcing circuit compiler (or simply
compiler). In a nutshell, a circuit compiler is an efficient algorithm Φ that takes
as input (the description of) a circuit Γ , and outputs (the description of) a

compiled circuit Γ̂ . Additionally, Φ returns a list of sub-components Γ̂i of Γ̂
whose production can be outsourced to one or more external manufacturers,
together with the relevant information on how to connect those sub-components
with the remaining ones (that need to be built in-house) in order to re-assemble

the compiled circuit Γ̂ .

Definition 2. Let Γ be an arbitrary circuit. A (ρ,m)-outsourcing compiler Φ is

a PPT algorithm (Γ̂ , aux)← Φ(Γ), such that the following holds:

– aux := ((Γ̂1, . . . , Γ̂n),M, (I1, . . . , Im)), with n ∈ N and Ij ⊆ [n], for j ∈ [m],
mutually disjoint subsets.

– (Γ̂1, . . . , Γ̂n) are disjoint (connected) components of Γ̂ such that V =
⋃
i∈[n] Vi,

where Γi = (Vi, Ei).
– M : V × V → {0, 1} is a function such that M(v, v′) = 1 iff v, v′ ∈ Vi, Vj

for some i 6= j and (v, v′) ∈ E.

We call ρ :=
∑

i∈[n]\I1∪...∪Im
|Γ̂i|

|Γ | the outsourcing ratio of the compiler.

8

i1

i2

i3

i4

i5

i6

o1

o2

o3

o4

o5

i1

i2

i3

i4

o1

o2

o1

o2

i1

i2

i3

Fig. 1: On the left side we present the description of a (compiled) circuit. On
the right side the same circuit is represented as three different components. The
mapping function M establishes the connections between the components.

Intuitively, in the above definition, the outsourcing ratio ρ represents the
fraction of the compiled circuit (w.r.t. the original circuit) that should be built

in-house. Note that the sub-components (Γ̂i)i∈[n] “cover” the entire compiled

circuit Γ̂ (without overlap), and the mapping function M specifies how to con-

nect the different components in order to reconstruct Γ̂ . The sets of indexes
Ij ⊆ [n] represents the sub-components whose production will be outsourced to
manufacturer j ∈ [m].

Correctness of an outsourcing compiler demands that the compiled circuit
maintains the same functionality of the original circuit.

Definition 3. We say that an outsourcing compiler Φ is functionality preserving
if for all circuits Γ , for all values of the initial memory M1, and for any set of
public inputs X1, . . . , Xq, the sequence of outputs Y1, . . . , Yq produced by running
the original circuit Γ starting with state M1 is identical to the sequence of outputs
produced by running the transformed circuit Γ̂ starting with state M1 (with all
but negligible probability over the randomness of the compiler and the randomness
of the original and compiled circuit).

For randomized functionalities we require the output distributions of the original
and the compiled circuits, to be statistically close.

3.1 Security

We define security using the simulation paradigm. Our approach is similar in
spirit to previous work on tamper-resilient circuit compilers (see, e.g., [22]). In
a nutshell, security is defined by comparing two experiments. In the first exper-
iment, also called the real experiment, the circuit designer compiles the circuit
and outsources the production of some of the components in the compiled circuit
to a set of m untrusted manufacturers. A subset of size t of the manufacturers
are malicious, and controlled by a monolithic adversary A; of course the circuit
designer does not know which manufacturers are malicious and which ones are
honest. During production, A is allowed to completely change the outsourced
circuit components under its control, whether by adding, removing or changing

9

gates and/or wires. Later, the designer assembles the circuit by re-combining
all the components (the outsourced ones and the ones built in-house). Finally,
A can access the assembled circuit in a black-box way, that is, it can observe
inputs/outputs produced by running the assembled circuit (with some initial
memory M1). In the second experiment, also called the ideal experiment, a sim-
ulator is given black-box access to the original circuit (initialized with initial
memory M1). The goal of the simulator is to produce an output distribution
which is indistinguishable from the one in the real experiment. In its most gen-
eral form, our definition allows the simulator to obtain a short leakage on the
initial memory. This captures the (reasonable) scenario where the adversary, in
the real experiment, could learn at most a short amount of information on the
private memory.

Real experiment. The distribution RealA,Φ,C,Γ,M1
(λ) is parameterized by the

adversary A = (A0,A1), the set of corrupt manufacturers C, the compiler Φ,
and the original circuit Γ with initial memory M1.

1. (Γ̂ , aux)← Φ(Γ): In the first step, the description of the original circuit Γ is
given as input to the compiler Φ; the compiler outputs the description of the
compiled circuit Γ̂ plus the auxiliary information aux := ((Γ̂1, . . . , Γ̂n),M,
(I1, . . . , Im)) which is used to specify how the compiled circuit is split into
sub-components, how the different sub-components are connected (via the
mapping functionM), and the subset of sub-components whose production
is outsourced to each manufacturer (in the index sets Ij , for j ∈ [m]).

2. ({Γ̂ ′i}i∈I , τ) ← A0(1λ, {〈Γ̂i〉}i∈I , 〈Γ 〉, 〈Γ̂ 〉): The adversary is given as input
the description of the components from the index set I = ∪j∈CIj , the de-
scription of the original circuit Γ , the description of the compiled circuit
Γ̂ , and returns the modified components along with some value τ that may
contain some auxiliary state information.

3. Γ̂ ′ := (V̂ ′, Ê′): The compiled circuit Γ̂ ′ is rebuilt by replacing the compo-

nents (Γ̂i)i∈I with the modified components (Γ̂ ′i)i∈I , and by connecting the
different components as specified by the mapping function M.

4. AΓ̂
′[M1](·)

1 (1λ, τ): Adversary A1, with auxiliary information τ , is given oracle

access to the rebuilt circuit Γ̂ ′ with compiled private memory M1.

Simulation. The distribution IdealS,A,Φ,C,Γ,M1,`(λ) is parameterized by the sim-
ulator S, the adversary A = (A0,A1), the compiler Φ, the set of corrupt man-
ufacturers C, the original circuit Γ with initial memory M1, and some value
` ∈ N.

1. f ← S(1λ, 〈Γ 〉, Φ,A, C, `): Given as input a description of the original circuit,
of the compiler and of the adversary, the subset of corrupt manufacturers,
and the parameter ` ∈ N, the simulator specifies an arbitrary polynomial-
time computable function f : {0, 1}∗ → {0, 1}`.

2. SA,Γ [M1](·)(1λ, L) : The simulator takes as input leakage L = f(M1), and is
given oracle access to adversary A = (A0,A1) and to the original circuit Γ

10

with private memory M1. We remark that the simulator is restricted to be
fully black-box. In particular, S only accesses the modified sub-components
returned by A0 in a black-box way (i.e., without knowing their description).

Definition 4. We say that a (ρ,m)-outsourcing circuit compiler Φ is (`, t)-
secure if the following conditions are met.

(i) Non-triviality: ρ < 1, for sufficiently large values of λ ∈ N.
(ii) Simulatability: For all C ⊆ [m] of size at most t and for all PPT adver-

saries A, for all circuits Γ , there exists a simulator S with running time
poly(|A|, |Γ |), such that for all initial values of the memory M1 ∈ {0, 1}∗,
{RealA,Φ,C,Γ,M1

(λ)}λ∈N ≈c {IdealS,A,Φ,C,Γ,M1,`(λ)}λ∈N .

In the above definitions the adversary is allowed to modify each Γ̂i arbitrarily,
i.e., there is no restriction on the edges and nodes of Γ̂ ′i , as long as the input
and output gates enable connectivity with the remaining components. We also
allow arbitrary modifications of the circuit memory (cf. Remark 1). Observe
that, the above definition is only interesting for small values of ` (as, e.g., it
becomes trivial in case ` = |M1|). The non-triviality condition demands that
the ratio between the size of the sub-components of the compiled circuit built
in-house, and the size of the original circuit, should be less than one. This is
necessary, as otherwise a manufacturer could simply produce the entire circuit
by itself, without the help of any off-shore facility. Clearly, the smaller ρ is, the
better, as this means that a large fraction of the original circuit production can
be outsourced.

4 Case Study I: Single Manufacturer

In this section we study secure outsourcing compilers that work for any circuit,
in the presence of a single malicious manufacturer. In Section 4.1 we describe our
compiler, that is based on any verifiable computation (VC) scheme (satisfying
some properties) for the function computed by the underlying circuit.

A typical VC scheme needs to satisfy some properties that we informally
discuss below.

– Correctness: The ProbGen algorithm produces problem instances that allow
for a honest server to successfully compute values ΣY such that Y = F(X).

– Soundness: No malicious server can “trick” a client into accepting an incor-
rect output, i.e, some value Y such that Y 6= F(X). We require this to hold
even in the presence of so-called verification queries [15].

– Input privacy: No server can learn the input value X that the function is
being computed on.

– Outsourceability: The time to encode the input plus the time to run a veri-
fication is smaller than the time to compute the function itself.

The reader is deferred to the full version [2] of this paper for a more thorough
treatment of the definitions for VC schemes.

11

4.1 Compiler based on Input-Private VC

In this section we construct an outsourcing circuit compiler by using a VC
scheme that satisfies the properties of correctness, soundness, input-privacy and
outsourceability. Let Γ be a circuit; the idea is to invoke a VC scheme for the
function F corresponding to the functionality computed by Γ . The compiled cir-
cuit will consist of four main components Γ̂ProbGen, Γ̂Compute, Γ̂Verify, and Γ̂$. The
first three components are the circuit representations of the algorithms ProbGen,
Compute and Verify corresponding to the underlying VC scheme; such compo-
nents hard-wire keys (SK ,PK) generated using algorithm KeyGen. The fourth
component samples the random coins Ri to be used during each invocation of
the circuit. The production of component Γ̂Compute will then be outsourced to
a single untrusted facility, whereas all other components are built in-house (as
their implementation needs to be trusted). Notice that the implementation of
algorithm KeyGen can be thought of as a pre-processing stage that runs only
once (and could be carried out in software).

An important observation is that the size of circuit Γ̂Verify and Γ̂ProbGen is

independent, and much smaller, than the size of circuit Γ̂Compute. As discussed in

the introduction, the size of Γ̂$ can also be considered to be constant (consisting
only of a few gates). We describe our first compiler below in more details.

The compiler Φ1
VC. Let Γ be a circuit, and VC = (KeyGen,ProbGen,Compute,

Verify) be a VC scheme for the function F implemented by Γ . Our first compiler
is depicted in Fig. 2, and can be described as follows.

1. First run (SK ,PK)← KeyGen(F , λ) once, obtaining the pair of keys (SK ,PK).

2. Let Γ̂Memory be a circuit component consisting only of memory gates, as
needed by the original circuit Γ , storing the initial value of the private mem-
ory M1.

3. Let Γ̂$ be a circuit outputting random coins R̂i (as needed in each invocation
of the compiled circuit).

4. Define a component for each function ProbGen, Compute and Verify of the
VC scheme as explained below.

– Γ̂ProbGen: This component embeds the secret key SK , and it takes three
inputs; the input Xi, the (current) private memory Mi, and random

coins R̂i := Ri||R′i. It implements function ProbGenSK (Xi||Mi||Ri;R′i),
that produces two outputs: an encoding ΣXi,Mi,Ri

, and a verification
key V KXi,Mi,Ri

.

– Γ̂Compute: This component embeds the public key PK , and it takes as
input an encoding. It implements the function ComputePK (ΣXi,Mi,Ri),
that produces the encoding ΣYi,Mi+1

of (Yi,Mi+1) = F(Xi,Mi;Ri) as
output.

– Γ̂Verify: This component embeds the secret key SK , and it takes two in-
puts; the encoding ΣYi,Mi+1

and the verification key V KXi,Mi,Ri
. It im-

plements function VerifySK (V KXi,Mi,Ri , ΣYi,Mi+1), to produce the out-

12

KeyGen

Γ̂Memory

Γ̂ProbGen

Γ̂$

Γ̂Compute Γ̂Verify

1λ

F

Xi

PK

SK

ΣXi,Mi,Ri

V KXi,Mi,Ri

ΣYi,Mi+1

R̂i

Mi+1

Yi

Fig. 2: The description of compilers Φ1
VC . The green components (i.e., Γ̂ProbGen,

Γ̂Verify, and Γ̂$) need to be built in-house, while the production of the red com-

ponent (i.e., Γ̂Compute) can be outsourced; the blue component (i.e., KeyGen) is
built only once (not necessarily in hardware). The dotted line depicts the circuit
boundaries. The dotted line depicts the circuit boundaries.

put Yi ∈ {0, 1}∗∪{⊥}, and eventually update the circuit private memory
to Mi+1.

5. The output of Φ1
VC is defined as follows. The first output is a (description

of the) compiled circuit Γ̂ as depicted in Fig. 2. The auxiliary information

aux consists of the components Γ̂ProbGen, Γ̂Compute, Γ̂Verify, Γ̂Memory, and Γ̂$, the
mapping function M that describes the physical connections between such
components (i.e., the arrows in Fig. 2), and the index set I = {2} specifying

the component Γ̂Compute as a candidate for outsourcing.

Remark 1 (On outsourcing memory gates.). In the compiler depicted in Fig. 2,

Γ̂Memory is being built in-house. In order to outsource private memory to a po-
tentially malicious manufacturer we can modify the above compiler as follows:
instead of storing in Γ̂Memory the value Mi in plaintext, we store C ← AESK′(Mi),
where C is the encryption of Mi using a symmetric, semantically secure authen-
ticated encryption scheme, with secret key SK ′. Moreover, Γ̂ProbGen is modified
such that when receiving the private memory value C, it first decrypts it using
SK′ and then executes the original circuit Γ̂ProbGen on the resulting plaintext.
We also substitute Γ̂Verify so that it outputs the encryption of Mi+1, under SK ′.
This modification enables the simulator to execute the circuit using the all-zeros
bit-string as the initial memory value, and security follows by the semantic se-
curity of the encryption scheme. Finally, whenever the decryption of C gives ⊥
the circuit output is ⊥.

The theorem below, whose proof appears in the full version [2] of the paper,
states that the compiler from Fig. 2 satisfies our strongest security notion (i.e.,

13

Definition 4 with ` = 0), provided that the underlying VC scheme is correct,
sound, input-private, and outsourceable.

Theorem 1. Let Γ be an arbitrary circuit and let VC be a verifiable computation
scheme for the function F computed by Γ , satisfying the properties of correct-
ness, soundness, input-privacy and outsourceability. Then the compiler Φ1

VC is a
correct, (0, 1)-secure (o(1), 1)-outsourcing circuit compiler.

Proof idea. We give an intuition for the security proof. Correctness of the com-
piler and the fact that ρ = o(1) follow immediately, respectively, from the cor-
rectness and the outsourceability of the underlying VC scheme. As for security,
we need to build a simulator S that is able to “fake” the real experiment for all
adversaries A, for all circuits Γ , and for all initial memory values M1. The simu-
lator runs compiler Φ1

VC upon input Γ , forwards the circuit component Γ̂Compute

to A obtaining a modified component Γ̂ ′Compute, and re-assembles the compiled

circuit Γ̂ ′ plugging together all the required components. Thus, upon input a
query Xi from A, the simulator simply runs Γ̂ upon input Xi and using some
fixed memory (e.g., the all-zero string); if the output is invalid, S answers the
query with ⊥, and otherwise it answers the query by using black-box access to
the original circuit.

Intuitively, by soundness of the underlying VC scheme, whenever the output
of Γ̂ [Mi](·) is not ⊥, such value must be equal to the output of the function
F(·,Mi). On the other hand, the fact that the output is valid or not must be
independent of the actual memory used for the computation, as otherwise one
could break the input-privacy property of the VC scheme. With this in mind, one
can show the indistinguishability between the real and the simulated experiments
using a hybrid argument.

5 Case Study II: Multiple Manufacturers

In this section we focus on outsourcing compilers in the presence of multiple
manufacturers, aiming to improve the efficiency of the resulting circuit at the
expense of achieving security in the weaker model where there are m ≥ 2 man-
ufacturers, a t-fraction of which is malicious (for some threshold t ≤ m− 1).

Our solution, described in Section 5.1, is based on client-server multi-party
computation protocols.

5.1 Compiler based on MPC

In this section we present our compiler based on a client-server multi-party
computation (MPC) protocol. The reader is referred to the full version [2] of
this paper for a formal definition of client-server MPC.

14

The compiler ΦΠF . Let Γ be a circuit implementing the function F(M1, ·),
where for any X and i ∈ N, we have (Y,Mi+1) = F(Mi, X). Let ΠF =
(C, S,Enc,Dec,Next) be an r-round protocol realizing the function F , over a

set of m servers with a single client. The compiler produces (Γ̂ , aux)← ΦΠF (Γ),
where

– Γ̂ is the circuit that implements ΠF having as a sub-circuit Γ̂Memory, which
is a circuit consisting only of memory gates, as needed by the original circuit
Γ . During initialization, Γ̂Memory stores the initial private memory value, M1.

– aux = ((Γ̂1, . . . , Γ̂m+2),M, (I1, . . . , Im)), where

• Γ̂m+1 = Γ̂Enc and Γ̂m+2 = Γ̂Dec, i.e., the circuits Γ̂m+1 and Γ̂m+2 imple-
ment the encoder, Enc, and the decoder Dec, of ΠF , respectively.
• For i ∈ [m], Γ̂i is the circuit that implements the code of the i-th server,

for the entire execution of ΠF (r-rounds). Those circuits can be imple-
mented in a straightforward way using the next message function Nexti
.
• The mapping functionM describes the physical connections between the

circuits described above, and Ij , for j ∈ [m], specifies the components
that will be outsourced to the manufacturer with index j. In our case
Ij = {j}.
• In case the original circuit is randomized, in addition to the components

described above, Φ also outputs a circuit Γ̂$ producing random coins Ri
(as needed in each invocation of the circuit).

Our construction must be non-trivial (cf. Definition 4), thus the underlying
protocol Π must satisfy the following outsourceability property.

Definition 5 (Outsourceability of procotols). A protocol Π = (C, S,Enc,
Dec,Next) that realizes the function F can be outsourced if it satisfies the fol-
lowing condition: The circuit computing the encoding and decoding procedures
(Enc,Dec) must be smaller than the circuit computing the function F .

We prove the following result in the full version [2] of this paper:

Theorem 2. Let F be any function, and let ΠF be a (t,m)-private MPC pro-
tocol for F , satisfying the correctness and outsourceability properties. Then, the
compiler ΦΠF is a correct, (0, t)-secure, (o(1),m)-outsourcing circuit compiler.

6 Concrete Instantiations

In this section we propose several instantiations for the compilers analyzed in
the previous sections, highlighting several possible tradeoffs between security,
efficiency, and underlying hardness assumptions.

15

Compiler Reference t sin sout No Self-Destruct Leakage Assumption

§ 4.1 [15] – O(n+ v) O(s log s) 3 0 KoE + FHE

§ 5.1 [13] m− 1 O(dm) O(sm+m3) 3 0 SHE
[36] m− 1 O(dm2) O(sm2 · λ/ log s) 3 0 OT

Table 1: Comparing our compilers in terms of security, efficiency, and hardness as-
sumptions. We write s, n, v for the size, number of inputs and number of outputs of
the original circuit Γ , respectively; as usual m denotes the number of servers of which
up to t might be corrupted (note that t = m corresponds to the case of a single manu-
facturer). The values sin and sout denote, respectively, for the sizes of the components
built in house and the size of the outsourced components; d denotes the number of
multiplications in Γ . KoE stands for “Knowledge of Exponent” assumptions, FHE for
“Fully-Homomorphic Encryption”, OT for “Oblivious Transfer” and SHE for “Some-
what Homomorphic Encryption”. The first (colored) row represents the compiler with
a single outsourcing facility (m = 1), while the remaining rows represent the compiler
with multiple outsourcing facilities (m ≥ 2).

6.1 Case Study I

The area of verifiable computation has a long history in the cryptographic liter-
ature [4,16] . We refer the reader to the excellent survey by Walfish and Blum-
berg [35] for a thorough introduction. By now, several schemes and models for the
problem of outsourcing computation are known (see, among others, [1]). Below,
we focus only on single server VC schemes suitable for the single manufacturer
compiler.

Input privacy. For the compiler of Section 4.1, we need a VC scheme satisfying
both soundness and input-privacy (in the presence of verification queries). The
only known schemes meeting these requirements are the ones constructed by
Fiore, Gennaro, and Pastro [15]

6.2 Case Study II

We describe below a few possible instantiations for the multiple manufacturers
compilers of Section 5.

Client-server MPC. Many MPC protocols satisfy the outsourceability property,
as the values that feed the main computation, i.e., the output of the encoder,
are independent of the function that is being evaluated, and mostly depend on
the number of parties, as in the case of [17] (where the same holds for decoding).
An explicit (t,m)-private protocol is given in [12], for t < m/2, in which there is
a pre-processing phase that can be implemented by the encoder, with running
time independent of the function that is being evaluated. The construction uses
secure point-to-point and broadcast channels, that can be implemented directly
between the components, and besides privacy it also guarantees output delivery.

16

We can also easily adapt the SPDZ protocol [13] to the client-server setting.
The SPDZ protocol requires a pre-processing phase that is performed by the
parties, and that will feed the encoder circuit who will perform the actual en-
coding (which is only a linear operation). The complete protocol requires a linear
number of public-key operations in the circuit size s, with the encoder requiring
only a linear number of operations in m and the number of multiplications of
the original circuit. The efficiency of the pre-processing stage can be further im-
proved [5]. This construction does not guarantee output delivery, but it is secure
against adversaries that corrupt up to m− 1 sub-components.

References

1. Prabhanjan Ananth, Nishanth Chandran, Vipul Goyal, Bhavana Kanukurthi, and
Rafail Ostrovsky. Achieving privacy in verifiable computation with multiple servers
- without FHE and without pre-processing. In PKC, pages 149–166, 2014.

2. Giuseppe Ateniese, Aggelos Kiayias, Bernardo Magri, Yiannis Tselekounis, and
Daniele Venturi. Secure outsourcing of circuit manufacturing. Cryptology ePrint
Archive, Report 2016/527, 2016. https://eprint.iacr.org/2016/527.

3. Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient
signature schemes. In ACM CCS, pages 364–375, 2015.

4. László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In ACM STOC, pages 21–31, 1991.

5. Carsten Baum, Ivan Damg̊ard, Tomas Toft, and Rasmus Winther Zakarias. Better
preprocessing for secure multiparty computation. In ACNS, pages 327–345, 2016.

6. Mark Beaumont, Bradley Hopkins, and Tristan Newby. Hardware trojans — pre-
vention, detection, countermeasures (a literature review). Technical report, Aus-
tralian Government Department of Defence, 07 2011.

7. Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson.
Stealthy dopant-level hardware trojans: extended version. J. Cryptographic Engi-
neering, 4(1):19–31, 2014.

8. Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric
encryption against mass surveillance. In CRYPTO, pages 1–19, 2014.

9. Shivam Bhasin and Francesco Regazzoni. A survey on hardware trojan detection
techniques. In IEEE ISCAS, pages 2021–2024, 2015.

10. Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In IEEE Symposium on Security and Privacy, pages 253–270, 2015.

11. Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits and protocols
against 1/poly(k) tampering rate. In TCC, pages 540–565, 2014.

12. Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In CRYPTO, pages 378–394, 2005.

13. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In CRYPTO, pages 643–
662, 2012.

14. Stefan Dziembowski, Sebastian Faust, and François-Xavier Standaert. Private cir-
cuits III: hardware trojan-resilience via testing amplification. In ACM CCS, pages
142–153, 2016.

15. Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computa-
tion on encrypted data. In ACM CCS, pages 844–855, 2014.

17

https://eprint.iacr.org/2016/527

16. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In CRYPTO, pages 465–
482, 2010.

17. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In ACM STOC,
pages 218–229, 1987.

18. Glenn Greenwald. No place to hide: Edward Snowden, the NSA, and the U.S.
surveillance state. Metropolitan Books, May 2014.

19. Mike Hamburg, Paul Kocher, and Mark Marson. Analysis of Intel’s Ivy Bridge
digital random number generator. Technical report, Cryptography Research, Inc.,
03 2012.

20. Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V. Tripunitara. Se-
curing computer hardware using 3d integrated circuit (IC) technology and split
manufacturing for obfuscation. In USENIX Security Symposium, pages 495–510,
2013.

21. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation
with identifiable abort. In CRYPTO, pages 369–386, 2014.

22. Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits
II: keeping secrets in tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

23. Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient circuits: The adversary
at the gates. In ASIACRYPT, pages 161–180, 2013.

24. Eric Love, Yier Jin, and Yiorgos Makris. Enhancing security via provably trust-
worthy hardware intellectual property. In IEEE HOST, pages 12–17, 2011.

25. Marie A. Mak. Trusted Defense Microelectronics: Future Access and Capabilities
Are Uncertain. Technical report, United States Government Accountability Office,
10 2015.

26. Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek, Dusan Klinec, and
George Danezis. A touch of evil: High-assurance cryptographic hardware from
untrusted components. In ACM CCS, pages 1583–1600, 2017.

27. David R. McIntyre, Francis G. Wolff, Christos A. Papachristou, and Swarup Bhu-
nia. Dynamic evaluation of hardware trust. In IEEE HOST, pages 108–111, 2009.

28. Martin Otto. Fault Attacks and Countermeasures. PhD thesis, University of Pader-
born, Germany, 2006.

29. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE Symposium on Security and Privacy,
pages 238–252, 2013.

30. Miodrag Potkonjak. Synthesis of trustable ics using untrusted CAD tools. In DAC,
pages 633–634, 2010.

31. Jean-Pierre Seifert and Christoph Bayer. Trojan-resilient circuits. In Al-
Sakib Khan Pathan, editor, Securing Cyber-Physical Systems, chapter 14, pages
349–370. CRC Press, Boca Raton, London, New York, 2015.

32. Brian Sharkey. Trust in Integrated Circuits Program. Technical report, DARPA,
03 2007.

33. Riad S. Wahby, Max Howald, Siddharth J. Garg, Abhi Shelat, and Michael Walfish.
Verifiable asics. In IEEE S&P, pages 759–778, 2016.

34. Adam Waksman and Simha Sethumadhavan. Silencing hardware backdoors. In
IEEE Symposium on Security and Privacy, pages 49–63, 2011.

35. Michael Walfish and Andrew J. Blumberg. Verifying computations without reex-
ecuting them. Commun. ACM, 58(2):74–84, 2015.

36. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty
computation. In ACM CCS, 2017.

18

	Secure Outsourcing of Cryptographic Circuits Manufacturing

