Stability of Hydrogen Hydrates from Second-Order Møller–Plesset Perturbation Theory

Citation for published version:

Digital Object Identifier (DOI):
10.1021/acs.jpcl.8b02274

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The Journal of Physical Chemistry Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Stability of Hydrogen Hydrates from
Second-order Møller-Plesset Perturbation Theory

Jan Kosata,†,‡ Padryk Merkl,†,¶ Pattanasak Teeratchanan,†,§ and Andreas
Hermann*,†

†Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy,
The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom.
‡Current address: Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
¶Current address: Department of Microbiology, Tumor and Cell Biology, Karolinska
Institutet, 17177 Stockholm, Sweden
§Current address: Department of Physics, Faculty of Science, Srinakharinwirot University,
Bangkok, Thailand, 10110

E-mail: a.hermann@ed.ac.uk
Abstract

The formation of gas hydrates and clathrates critically depends on the interaction between the host water network and the guest gas species. Density functional calculations can struggle to quantitatively capture these dispersion-type interactions. Here, we report wave-function based calculations on hydrogen hydrates that combine periodic Hartree-Fock with a localised treatment of electronic correlation. We show that local second-order Møller-Plesset perturbation theory (LMP2) reproduces the stability of the different filled-ice like hydrates in excellent agreement with experimental data. In contrast to various dispersion-corrected density functional theory implementations, LMP2 correctly identifies the pressures needed to stabilise the C_0, C_1, and C_2 hydrates, and does not find a spurious region of stability for a ice-I_h based dihydrate. Our results suggest that LMP2 or similar approaches can provide quantitative insights into the mechanisms of formation and eventual decomposition of molecular host-guest compounds.

Graphical TOC Entry
Gas hydrates, compounds where simple atomic or molecular gases are encapsulated inside a water host network, are materials important for energy and climate science. They are characterised by weak hydrophobic-hydration interactions between the host network and the guest gas species,\(^1\) and usually require modest pressures to be stabilised.\(^2\) They are abundant in nature: methane clathrate hydrate covers large sections of the ocean floors,\(^3\) and is believed to have been a major component of planetary nebulae that formed the icy bodies of the outer solar system.\(^4\) Gas hydrates also have potential technological applications, in gas transport and storage, and are a known cause of pipe blockage in natural gas extraction.\(^5,6\) In recent years, it has been demonstrated that gas hydrates can be ‘emptied’ (thereby producing new polymorphs of ice\(^1,7\)) and subsequently re-filled with different guest species.\(^8\) Accurate computational modelling is indispensable to accompany these efforts of engineering new hydrates.

Hydrogen hydrates have been investigated extensively by experiment and theory, due to their large hydrogen weight content, being ideal for benign hydrogen storage, and their potential occurrence in icy satellites.\(^7,9-15\) Hydrates C\(_1\) and C\(_2\), based on filled ice-II and filled ice-I\(_c\), with H\(_2\):H\(_2\)O ratios of 1:6 and 1:1, respectively,\(^9\) have long been known, in addition to a cubic clathrate hydrate, based on the sII structure, at lower pressures.\(^10\) A series of recent experiments found and resolved another hydrate, C\(_0\), based on a new chiral water network, S\(_\chi\), also known as ice-XVII.\(^7,11-14\) Density functional theory (DFT) calculations are able to describe this sequence of hydrates and assign C\(_0\) to be a dihydrate, with H\(_2\):H\(_2\)O = 1:2,\(^14-17\) but do not agree quantitatively with experiment regarding its region of stability. DFT also consistently predicts a ice-I\(_h\)-based dihydrate to supersede C\(_0\) at higher pressure, which has not been seen in experiment.

However, the various interactions at play in gas hydrates are difficult to capture by DFT methods. First and foremost, the weak host-guest interactions, dominantly of dispersion-type, are usually not accessible to semilocal exchange-correlation functionals of the LDA or GGA type. But dispersion-corrected functionals do not necessarily provide better results;
calculations of hydrogen hydrates with the empirical D2 correction scheme or the density-based vdW-DF and vdW-DF2 correlation functionals\cite{18-22} all incorrectly predict that both the C_0 and C_1 hydrates should be stable already at atmospheric pressure.\cite{15,17} Future functional developments might capture the physics of the weak interactions typically present in hydrates better. Post-DFT methods, based on either quantum chemistry or quantum Monte Carlo approaches, have emerged in recent years as promising tools to describe molecular crystals more accurately.\cite{23-27} Second order Møller-Plesset perturbation theory (MP2) has been applied successfully to individual ice polymorphs, either in incremental or fragment schemes,\cite{28,29} a local-MP2 (LMP2) approach,\cite{30} and a fully periodic implementation.\cite{31} MP2 has also been used to simulate bulk liquid water,\cite{32} and is generally able to describe hydrogen-bonded systems quite accurately (in particular involving water molecules)\cite{28,33} but also adsorption properties of molecular hydrogen.\cite{34} Diffusion Monte Carlo (DMC) lattice energies have been obtained for various ice phases\cite{35} and for methane clathrate hydrate\cite{36} – with which MP2 results compare favourably.\cite{37} LMP2 calculations have been performed on the high-pressure phase behaviour of N_2 and CO_2 and show very good agreement with experimental phase diagrams.\cite{38,39}

In this Letter, we report LMP2 and DFT-B3LYP calculations of the binary hydrogen-water system under pressure, where we consider the known hydrates of different stoichiometries and evaluate their stability against each other and decomposition into the constituents. We demonstrate that the LMP2 approach gives very good agreement with experimental results, and suggest it should be considered more widely for the description of hydrates and other host-guest compounds.

We consider the hydrogen hydrates shown in Figure 1: the known hydrates C_0 (with a 1:2 H_2:H_2O ratio), C_1 (1:6), and C_2 (1:1), as well as filled ice-I$_h$ (1:2, and using a dipole-free eight-molecule unit cell to model the I$_h$ water network). To establish their stability against decomposition, we consider the ice phases XI (space group $Cmc2_1$), II and VIII, as well as the chiral water network S_χ of the C_0 hydrate, now known as ice-XVII.\cite{7} Pure
Figure 1: Crystal structures of the hydrogen hydrates considered in this study, all drawn to the same scale. Red/white spheres denote O/H atoms. Unit cells are indicated by solid black lines, hydrogen bonds are shown as dashed lines. (a) C$_0$ hydrate, (b) I$_h$ hydrate, (c) C$_1$ hydrate, and (d) C$_2$ hydrate.

hydrogen’s free-rotor phase-I is modelled in a eight-molecule cell of $P6_3/m$ symmetry.40 From the enthalpies of the various hydrates (and the constituents ice and hydrogen) we can construct the binary water-hydrogen phase diagram. We do not consider zero-point energies here, which we expect to effect only small quantitative changes, as seen previously in DFT calculations of hydrogen hydrates.15 One reason for this is that hydrate formation does not lead to changes in the chemical bonding, and the local environments of the constituents (e.g. water’s tetrahedral coordination) are largely unchanged across the different structures. This suggests zero-point energies of hydrates and constituents, dominated by the molecular vibrons, would be very similar at comparable pressures; equilibrium properties could change by a few percent.41
We then obtain the stable phases under specific pressure conditions from the convex hull of the relative enthalpies,

\[\Delta H_f(x) = \frac{1}{m+n} \left[H_f(\text{Hy}) - mH_f(\text{H}_2\text{O}) - nH_f(\text{H}_2) \right] \]

(1)

where \(x = n/(m+n) \) is the molar hydrogen content of the hydrate \(\text{Hy} \equiv (\text{H}_2\text{O})_m(\text{H}_2)_n \). The compounds on the convex hull of \(\Delta H_f(x) \) are stable against all possible decomposition reactions.

Figure 2: Cohesive energies of various water networks as function of volume, from counterpoise (CP) corrected LMP2 \(E(V) \) data (circles), and fits with the Vinet equation of state (solid lines).

In Figure 2 we show the LMP2 cohesive energies for the pure ice phases (see the Supporting Information, SI, for pure hydrogen results). These demonstrate that LMP2 can capture the correct phase sequence of ice: ice-XI has the lowest cohesive energy overall, with subsequent transitions at high pressures (small volumes) first to ice-II and then to ice-VIII; ice-XVII is metastable, as expected. The equilibrium properties of the different ice phases, obtained from the equation of state (EOS) fits, agree well with experimental data, see Table 1, but have a tendency to underestimate the binding energies. This correlates with
Table 1: Ground state properties of water ice phases from CP-corrected LMP2 $E(V)$ data. Equilibrium properties include lattice energies E_b and volumina V_0 (both given per molecule), bulk moduli B_0, and their pressure derivatives $B'_0 = dB/dP$. Numbers in brackets are from B3LYP calculations and experiment (italicised; Ref. 42 $T=25$K; Ref. 43 0K; Ref. 44 248K; Ref. 45 110K; Ref. 46 200K; Ref. 47 80K).

<table>
<thead>
<tr>
<th>Ice</th>
<th>E_b [eV]</th>
<th>V_0 [Å3]</th>
<th>B_0 [GPa]</th>
<th>B'_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>XVII</td>
<td>-0.504</td>
<td>40.58</td>
<td>7.65</td>
<td>4.43</td>
</tr>
<tr>
<td></td>
<td>(-0.623)</td>
<td>(34.85)</td>
<td>(9.16)</td>
<td>(4.41)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(35.042)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>-0.508</td>
<td>37.28</td>
<td>8.14</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>(-0.63)</td>
<td>(32.09)</td>
<td>(10.52)</td>
<td>(4.47)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ih)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.6143)</td>
<td>(32.544)</td>
<td>(9.244)</td>
<td>(5.544)</td>
</tr>
<tr>
<td>II</td>
<td>-0.475</td>
<td>29.36</td>
<td>11.27</td>
<td>4.26</td>
</tr>
<tr>
<td></td>
<td>(-0.549)</td>
<td>(26.50)</td>
<td>(12.23)</td>
<td>(5.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ih)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.6143)</td>
<td>(25.3545)</td>
<td>(14.846)</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>-0.405</td>
<td>23.54</td>
<td>11.49</td>
<td>6.11</td>
</tr>
<tr>
<td></td>
<td>(-0.429)</td>
<td>(21.45)</td>
<td>(15.50)</td>
<td>(6.53)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ih)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.5843)</td>
<td>(20.647)</td>
<td>(21.747)</td>
<td>(4.747)</td>
</tr>
</tbody>
</table>

overestimates of the equilibrium volumes. The corresponding B3LYP results (see the SI for $E(V)$ plots) deviate less from experiment. With LMP2, we predict the phase transitions from ice-XI to ice-II and from ice-II to ice-VIII to occur at 0.71 and 2.15 GPa, respectively (1.86 and 4.03 GPa with B3LYP). In experiment these transitions are not observed directly, due to the presence of intermediate ice phases not considered here; but one could estimate them to occur roughly around 0.3 and 1.2 GPa, respectively. The LMP2 transition pressures are thus of similar quality as the best results from dispersion-corrected DFT functionals. The parametric formation enthalpies $H_f(p(V)) = E(V) + p(V)V$ of all three ice phases are combined to give the ice formation enthalpy H_f(H$_2$O) in equation 1.

We then determine the EOS for the different hydrogen hydrates, see Figure 3 and the SI for full details of the fits. While these can not be compared against one another, due to different compositions, they illustrate the validity of the EOS fits, which form the basis for all enthalpy considerations that follow. The calculated pressure $P = -\partial E/\partial V$ at the smallest volume data point of I$_h$-hydrate is 3.32 GPa, while those of all other hydrates exceed 9.9 GPa.
Figure 3: Cohesive energies of various hydrogen hydrates as function of volume, from CP-corrected LMP2 energies (circles), and fitted to the Vinet EOS (solid lines). Energies are normalised per water molecule.

The smallest volume data point of ice-VIII has a pressure of 5.64 GPa, and for hydrogen it is 4.85 GPa. We are therefore confident to discuss reaction enthalpies up to 5 GPa, as they require virtually no EOS-based extrapolation of the LMP2 data, and construct convex hull diagrams for a sequence of pressures up to that point. In the top panel of Figure 4 we show two representative convex hulls. At 1 GPa, we find both C\textsubscript{0} and C\textsubscript{1} hydrates to be stable. The I\textsubscript{h}-hydrate is less stable than C\textsubscript{0}, and C\textsubscript{2} is unstable against formation of C\textsubscript{0} and excess hydrogen. At 2 GPa, C\textsubscript{1} remains stable and C\textsubscript{2} is now also a stable phase, while both C\textsubscript{0} and I\textsubscript{h}-hydrate are unstable.

From similar convex hull constructions on much finer pressure grids we then obtain the overall stability ranges of every single hydrate. This data is compiled in the lower panel of Figure 4, which also includes experimental formation pressures of the different hydrates extrapolated to low temperatures.12 The LMP2 calculations show excellent agreement with the experimental data: they correctly predict the onset of the C\textsubscript{0} and C\textsubscript{1} hydrates at 0.35 and 0.8 GPa, respectively, with a small underestimation of the formation pressure of C\textsubscript{2}.
(1.16 GPa in calculations vs. 1.6 GPa in experiment). Note that we do not consider the clathrate structure sII, due to the high computational demand, which might shift the onset of stability of C\textsubscript{0} to slightly higher pressures. The full stability ranges of all hydrates are compared with results from B3LYP and other DFT functionals in Table 2. An important result from the LMP2 calculations is that they do not return any region of stability for a I\textsubscript{h}-hydrate – which is in agreement with current experimental knowledge, but not with the DFT calculations. The dispersion-corrected functionals included here (vdW-DF, vdW-DF2, and D2) also predict the C\textsubscript{0} hydrate to be stable at atmospheric pressure already; while the functionals that lack explicit inclusion of dispersion corrections (B3LYP and PBE) are qualitatively better in that they only stabilise C\textsubscript{0} at finite pressures.

We have previously shown that the weak interaction of the H\textsubscript{2}O\textperiodcentered H\textsubscript{2} dimer is quite well described with PBE, while dispersion-corrected functionals significantly overbind this interaction.16 It is possible that this overbinding of the dimer translates into a spurious stabilisation of the extended hydrogen hydrates. On the other hand, both B3LYP and PBE predict too large stabilisation ranges for all hydrates (compared with LMP2), delayed onsets of stability for all hydrates (compared with experiment), and feature the I\textsubscript{h}-hydrate in an intermediate pressure region. The first two effects could be related to the significant overestimation of the transition pressures in the pure ice phases with these functionals. An ad-hoc rescaling of the PBE and B3LYP stability regions given in Table 2 by a factor of 0.5 results in quite good agreement overall across all hydrogen hydrates. This will not affect the emergence of the I\textsubscript{h}-hydrate, which is due to the energy balance between the C\textsubscript{0} and I\textsubscript{h}-hydrates, and their high-pressure decomposition into C\textsubscript{1} and C\textsubscript{2}. In fact, the LMP2 calculations also predict that I\textsubscript{h}-hydrate is more stable than C\textsubscript{0} above 1.3 GPa, but this is just above the pressure where both these hydrates are predicted to decompose into C\textsubscript{1} and C\textsubscript{2}. In the SI, we show the distance of the I\textsubscript{h}-hydrate from the convex hull (i.e., its energetic instability) as function of pressure; in the LMP2 calculations, it comes very close to being, but never is, stable.
Figure 4: Top panel: two convex hull constructions of hydrates’ stabilities at 1 and 2 GPa. Bottom panel: the full phase diagram of hydrogen hydrates, from LMP2 calculations. Regions of stability for the individual hydrates (solid lines) are shown as function of pressure and hydrogen content. Experimental low-temperature onsets of stability of different hydrates from Ref.12 are indicated by diamond symbols. For reference, the calculated phase sequence of water ices is shown as gray lines.
Table 2: Stability ranges of hydrogen hydrates from LMP2 and B3LYP calculations, compared to experimental low-temperature estimates and other DFT results. All pressures are given in GPa.

<table>
<thead>
<tr>
<th></th>
<th>C₀</th>
<th>Iₜₜ</th>
<th>C₁</th>
<th>C₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp.°</td>
<td>0.35 - . . .</td>
<td>-</td>
<td>0.8 - . . .</td>
<td>1.6 - . . .</td>
</tr>
<tr>
<td>LMP2</td>
<td>0.34 - 1.26</td>
<td>-</td>
<td>0.82 - 2.46</td>
<td>1.16 - . . .</td>
</tr>
<tr>
<td>B3LYP</td>
<td>0.77 - 2.20</td>
<td>2.20 - 3.36</td>
<td>1.91 - . . .</td>
<td>2.77 - . . .</td>
</tr>
<tr>
<td>optB88-vdw¹⁵</td>
<td>0.00 - 0.35</td>
<td>0.35 - 1.5</td>
<td>0.00 - 3.5</td>
<td>1.5 - . . .</td>
</tr>
<tr>
<td>rPW86-vdW2¹⁷</td>
<td>0.00 - 0.11</td>
<td>0.11 - 1.60</td>
<td>0.01 - 2.62</td>
<td>0.88 - . . .</td>
</tr>
<tr>
<td>PBE+D²¹⁷</td>
<td>0.00 - 0.24</td>
<td>0.24 - 1.53</td>
<td>0.81 - 2.87</td>
<td>1.25 - . . .</td>
</tr>
<tr>
<td>PBE¹⁷</td>
<td>0.86 - 2.01</td>
<td>2.01 - 4.00</td>
<td>2.52 - . . .</td>
<td>3.30 - . . .</td>
</tr>
</tbody>
</table>

In summary, we have presented a comprehensive energetic analysis of hydrogen hydrates using wave-function based local-MP2 calculations. This level of theory should be capable of capturing the weak host-guest interactions that are crucial to the formation of any gas hydrate. Indeed, our results demonstrate that this methodology can be used to understand the complex interplay of different phases under pressure, as it reproduces the formation and eventual decomposition conditions of the different hydrates in very good agreement with experiment. The LMP2 results for the high-pressure evolution of pure water ice are of comparable quality to the best dispersion-corrected DFT functionals, while for the hydrogen hydrates they represent a qualitative improvement, regarding both the onset of the first hydrate phase, C₀, at moderate pressures, and the non-appearance of an ice-Iₜₜ hydrate. Potential avenues to build upon these results include consideration of higher order correlation effects, e.g. by incremental corrections,²³ full optimisation of geometric degrees of freedom at MP2 level,²⁸,⁵⁰ and subsequent consideration of vibrational entropies. We expect that similar wave-function based calculations can capture the essential interactions in other high-pressure systems that are dominated by weak interactions between host matrices and guest species, such as filled zeolites.
Computational Methodology

We performed LMP2 calculations using the CRYSTAL14 and CRYSCOR09 software packages.51,52 Each structure’s lattice and atomic positions were optimised at a sequence of unit cell volumes at B3LYP level of theory.53 B3LYP geometries were previously found to be very close to MP2 geometries for isolated small molecules (such as water) and for ice.54–56 We then obtained the Hartree-Fock energies and wave functions for those geometries. Reciprocal space was sampled using regular (8,8,8) grids. Subsequent LMP2 calculations involve the construction of Wannier orbitals based on molecular domains (see the SI for an example), from which the LMP2 amplitudes were determined. Two-electron integrals for pairs of Wannier orbitals separated by less than 6 Å (13 Å) were evaluated using the density fitting (multipole expansion) approaches, respectively; longer-range interactions were included in a Lennard-Jones extrapolation. We used triple-ζ basis sets with additional polarization functions (TZP) for both oxygen and hydrogen, as used previously in a study of ice-XI polymorphs.57 For comparison, the SI shows results obtained using Pople’s 6-311G(d,p) basis set, which was also used for ice-XI previously; we find that this standard basis set performs roughly equal at B3LYP level, but less well at LMP2 level. Basis set superposition errors were corrected with the counterpoise (CP) method, where energies of all molecular entities are re-calculated in the presence of ‘ghost’ basis functions in the exact configuration present in the extended solids.58 Specifically, the CP-corrected energy $E_{\text{MP2}}^{\text{CP}}(\text{Hy})$ of a hydrate $\text{Hy} \equiv (\text{H}_2\text{O})_m(\text{H}_2)_n$ was determined as

$$E_{\text{MP2}}^{\text{CP}}(\text{Hy}) = E_{\text{MP2}}^0(\text{Hy}) - mE_g(\text{H}_2\text{O}) - nE_g(\text{H}_2)$$

$$- \sum_{i=1}^m \left(E_{\text{Hy}}^{gh}(\text{H}_2\text{O}_i) - E_{\text{Hy}}(\text{H}_2\text{O}_i) \right)$$

$$- \sum_{j=1}^n \left(E_{\text{Hy}}^{gh}(\text{H}_2j) - E_{\text{Hy}}(\text{H}_2j) \right)$$

There, E_{MP2}^0 are the un-corrected LMP2 energies; E_g are the MP2-optimised gas phase energies for the H$_2$O and H$_2$ molecules (see the SI for the details of their potential energy
surfaces); E_{H_y} are the molecular energies of bare molecules in their crystalline geometry; and $E_{H_y}^{gh}$ are the molecular energies in the presence of ‘ghost’ basis functions. We found that basis functions within a spherical radius of 6 Å around the molecular species give sufficiently converged energies (see the SI). The resulting $E_{MP2}^{CP}(V)$ data points were fitted to the Vinet equation of state,59 which then enabled a parametric determination of the formation enthalpies $H_f(p(V)) = E(V) + p(V)V$.

DFT calculations with dispersion-corrected functionals used the VASP package with ‘hard’ PAW datasets and a plane-wave cutoff energy of 875 eV.60,61 All geometries were optimised until residual force components were below 2 meV/Å.

Acknowledgement

The authors thank Prof. Beate Paulus and Dr. Casten Müller for fruitful discussions of local correlation methods. Computational resources provided by EPSRC via the UKCP consortium (EP/P022790/1), the UK National Supercomputing Service (project ID d56 “Planetary Interiors”), and the Royal Society (RG-150247) are gratefully acknowledged. P.T. acknowledges support from a Royal Thai Scholarship.

Supporting Information Available

Examples of Wannier orbitals, LMP2 energies of H$_2$ and H$_2$O molecules, convergence of BSSE-CP correction, EOS of hydrogen phase-I, hydrate data from B3LYP, (in)stability of I_h-hydrate, and 6-311G(d,p) basis set calculations.

References

(49) Santra, B.; Klimeš, J.; Tkatchenko, A.; Alfé, D.; Slater, B.; Michaelides, A.; Car, R.; Scheffler, M. On the accuracy of van der Waals inclusive density-functional theory

