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ARTICLE

Carbon losses from deforestation and widespread
degradation offset by extensive growth in African
woodlands
Iain M. McNicol 1, Casey M. Ryan 1 & Edward T.A. Mitchard 1

Land use carbon fluxes are major uncertainties in the global carbon cycle. This is because

carbon stocks, and the extent of deforestation, degradation and biomass growth remain

poorly resolved, particularly in the densely populated savannas which dominate the tropics.

Here we quantify changes in aboveground woody carbon stocks from 2007–2010 in the

world’s largest savanna—the southern African woodlands. Degradation is widespread,

affecting 17.0% of the wooded area, and is the source of 55% of biomass loss (−0.075 PgC

yr−1). Deforestation losses are lower (−0.038 PgC yr−1), despite deforestation rates being 5×

greater than existing estimates. Gross carbon losses are therefore 3–6x higher than pre-

viously thought. Biomass gains occurred in 48% of the region and totalled +0.12 PgC yr−1.

Region-wide stocks are therefore stable at ~5.5 PgC. We show that land cover in African

woodlands is highly dynamic with globally high rates of degradation and deforestation, but

also extensive regrowth.
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Carbon fluxes from vegetation growth and land-use change
are major uncertainties in the global carbon cycle1,2.
Deforestation and degradation are reducing woody carbon

stocks1,3,4, although tree growth and woody expansion may be
counterbalancing these losses5. The location and magnitude of
these changes are poorly resolved6, particularly in the densely
populated savannas and woodlands which dominate the tropical
land surface2. These seasonally dry ecosystems, which are char-
acterised by an open tree canopy and a continuous grass layer, are
the dominant vegetation of Southern Africa. Human activities are
thought to be driving widespread and rapid changes in woody
cover across the region, with potentially important implications
for both the global carbon cycle7–11, and local livelihoods, as over
150 million people depend on ecosystem services provided by the
woodlands and forests. Rising populations, stagnant yields,
altered consumption preferences and new connections to the
global economy are thought to be driving widespread deforesta-
tion (a reduction in wooded area), mostly due to agricultural
expansion, and degradation (a reduction in woody carbon density
in an area that remains woodland), often due to harvesting timber
or fuel wood4,7,12. However at the same time, several processes
are hypothesised to be increasing woody carbon stocks in the
region, including widespread and rapid regrowth following
shifting cultivation13, enhanced tree growth stimulated by
increased atmospheric CO2 concentrations14,15 and reductions in
browsing megaherbivores16. Yet, the location and rates of these
processes, particularly the extent of woody degradation, biomass
growth and regrowth, and the impact of these changes on
aboveground woody carbon stocks (AGC), are largely unknown2.

Addressing these uncertainties is hampered by a lack of
knowledge of the carbon-area (MgC ha−1) density of the wood-
lands, and its changes over time. Existing coarse resolution maps
of AGC have large discrepacies over African woodlands17–19,
whilst the seasonality20 and mixed tree-grass structure of savanna
woodlands challenges optical remote sensing estimates of tree
cover change4,21, as green leaf area and reflectance are dynamic
and weakly linked to woody biomass. In addition, many of the
current datasets on woodland dynamics, including the UN Food
and Agricultural Organisation’s (FAO) Forest Resource Assess-
ment (FAO-FRA)22, present an incomplete picture of woodland
and forest dynamics by failing to account for the low intensity,
but widespread, losses occurring in these systems due to wood
harvesting, fire and selective logging7,10,23 (i.e. degradation), or
the extent of AGC gains, which are largely unmeasured11.
Obtaining both accurate and spatially explicit estimates of
deforestation, degradation, and biomass (re)growth are crucial to
evaluate the response of savanna woodlands to global change24,
and also to support accurate resource assessment, land manage-
ment, and the effective targeting and monitoring of land use
emission abatement policies.

Here we generate novel estimates of the rates, locations and
carbon stock changes associated with degradation and biomass
(re)growth across Southern African woodlands, and provide new,
contrasting data on deforestation. These estimates are derived
from 25m resolution maps of AGC across Southern African for
2007–2010, created using a combination of space-borne L-band
radar imagery and field data. A key advantage of using radar data
is that unlike optical imagery, it is largely insensitive to the intra-
and inter-annual variability in the grass layer and tree leaf phe-
nology25, which can hinder accurate change detection. Instead, L-
band backscatter from ALOS PALSAR26 is known to strongly
correlate with woody biomass at multiple sites across African
savanna woodlands27–29, where it has been used to detect small
scale changes associated with shifting cultivation and tree har-
vesting8,12, as well as areas of increasing biomass at larger
scales30. In this paper, we extend these analyses across the full

extent of the Southern African savanna woodlands and dry for-
ests. We find that degradation is widespread and the principal
source of carbon loss across the study region. Carbon losses via
deforestation are around half of those resulting from degradation.
As such, gross carbon losses are greater than previously thought;
yet total aboveground carbon stocks are relatively stable over time
due to extensive biomass gains, largely in remote areas.

Results
Woody cover and aboveground carbon stocks. Our study region
includes all southern African countries where savanna woodlands
are the dominant vegetation type (Supplementary Fig. 1),
including Angola, Zambia, Zimbabwe, Malawi, Tanzania,
Mozambique, and the southern parts of the Democratic Republic
of Congo (formerly Katanga Province)31,32 (Fig. 1). The area of
woodland and forest, defined here as pixels with an AGC density
≥10MgC ha−1 in 2007, was 2.3 M km2 (95% confidence intervals
(CI): 2.1–2.5 M km2, based on the uncertainty of the
biomass–backscatter relationship—see Methods). Our estimate is
similar to the 2005 forest area estimate from the FAO FRA
(Fig. 1) and equates to 50% of the total land area (Supplementary
Data 1), and 10% of the estimated global tropical forested area33.
The estimates of tree cover from Hansen et al.4 (hereafter Han-
sen) are markedly higher than our data, and that of the FAO-
FRA, even after applying a similar forest definition (10% tree
cover) (Fig. 1). Nationally, wooded area varies from 33% in
Zimbabwe to 55% in Mozambique and Zambia and 62% in the
(former) Katanga province of the Democratic Republic of Congo.

The mean region-wide carbon density was 24.0 [19.8–28.5]
MgC ha−1, with the most carbon dense woodlands located in
Katanga (mean 28.6 MgC ha−1), and the least dense in Zimbabwe
(19.6 MgC ha−1; Fig. 2). Total AGC stocks were approximately
constant from 2007 to 2010 (Fig. 2; Supplementary Data 1), being
estimated at 5.51 [4.90–6.14] PgC for 2007 and 5.46 [4.8–6.10]
PgC in 2010, equivalent to 2–3% of the tropical biomass
stock1,18,33, with similar values in 2008 (5.41 PgC) and 2009
(5.42 PgC) (Supplementary Fig. 2). Carbon stored in other
wooded lands, defined as areas with an AGC density <10 MgC
ha−1 in 2007, totalled ~0.7 PgC, however, owing to the higher
uncertainty in change detection in low AGC areas, we do not
consider the land cover change dynamics of these areas (see
Methods).

Our AGC estimates (excluding Katanga) are 61% lower than
the FAO FRA22, and 66 and 33% lower than the pan-tropical
AGC maps of Baccini et al.3 and Saatchi et al.33 respectively. The
recent fusion of multiple datasets by Avitabile et al.18 yielded total
AGC estimates only +3% higher than our own, [−9 – +12%],
albeit with large spatial differences between the two datasets, with
Avitabile et al. estimating considerably higher stocks in high AGC
areas relative to our data, alongside lower estimates in lower
density areas (Supplementary Fig. 3).

Land-cover change. The aggregate temporal stability in regional
carbon stocks between 2007 and 2010 conceals the presence of
widespread gross gains and losses, and large differences between
the east and west of the region (Fig. 3). Biomass gains were
detected in 48% [41–55%] of the wooded area, with deforestation
and degradation occurring in 8.4% [6.4–9.9%] and 17.0%
[14.0–19.7%], respectively (see Methods for a definition of these
land cover changes).

Degradation rates were highest in Mozambique, Malawi and
Tanzania (Fig. 4), with hotspots located near large, rapidly
expanding urban centres where woodland resources are scarce
(e.g. Dar es Salaam, Luanda and southern Malawi)7,34, and along
transport corridors, ports and some borders (e.g. Beira, Nacala

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05386-z

2 NATURE COMMUNICATIONS |  (2018) 9:3045 | DOI: 10.1038/s41467-018-05386-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and southern Tanzania)8,12. The spatial pattern (Supplementary
Fig. 4) suggests these hotspots might be linked to urban demand
for biomass energy, and domestic and international timber
markets, as opposed to the subsistence needs of the local
population7,8,12. Degradation typically reduced AGC from 29 ±
10MgC ha−1 (mean ± SD) to 20 ± 4MgC ha−1, with degradation
disproportionately prevalent in higher biomass woodlands
(Fig. 5). This suggests these areas are being targeted for

harvesting, probably because they contain trees of suitable size
and species for charcoal and timber.

The area affected by deforestation (193,000 [158,000–214,000
km2]) was around half (49%) the area degraded, with deforesta-
tion rates ranging from 1.8% yr−1 in Katanga to 4.7% yr−1 in
Malawi, and exceeding 2% yr−1 in the remaining countries
(Fig. 4b; Supplementary Data 1). In contrast to degradation, the
vast majority (95%) of deforestation was located in areas with a
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lower than average AGC density (mean biomass change: 14 ± 4
MgC ha−1 to 6 ± 5MgC ha−1; Fig. 5; Supplementary Fig. 4)8,
being particularly prevalent in already fragmented agricultural
landscapes, as typified in Fig. 3c, as opposed to the frontier-style
deforestation characterised in Fig. 3d.

The total area of deforestation estimated here is 4.6 and 5 ×
higher than previous estimates by both the FAO-FRA22 (pro rata
for 2005–2010, excluding Katanga) and Hansen et al.4 for the
same time period (2007–2010) respectively. This larger deforested
area was observed despite our smaller starting estimate of wooded
area (due to a stricter forest definition; Fig. 1), meaning our
overall percentage deforestation rate (2.8% yr−1) is 7.8 and 9.4 ×
higher than the estimates from FAO and Hansen (Fig. 4b).
Increasing the tree cover threshold used to calculate ‘forest’ area
in Hansen dataset to 10% resulted in only a small increase in the
estimated rate of deforestation, meaning our conclusions are
robust. These contrasting rates and area estimates are in part due
to the differing definitions of deforestation, with Hansen mapping
areas of complete tree cover loss, whilst the FAO statistics are
based on extrapolated rates of change using diverse land use
classifications. The FAO estimates are also a net change figure
which includes estimates of both forest loss and expansion

meaning that the gross area and rate of loss are likely to be higher.
In contrast, our approach allows for the presence of residual trees
in deforested areas8,13, with only 10% of our deforested area
comprising areas that were completely cleared. We detect
deforestation in 59% of the locations where Hansen find
deforestation, and observe degradation in a further 21%, with
the remainder of the Hansen deforested area (20%) almost fully
accounted for by areas masked from our analysis, or not
considered woodland in 2007 (Supplementary Table 2). In
contrast, Hansen observed deforestation in only 19% of our
deforested areas, increasing to 38% when only areas of complete
clearance (i.e. 0 MgC ha−1) are considered, indicating that
differing definitions of deforestation only partially explain the
differences. Most of our extra deforestation occurred in areas with
low biomass and low tree cover in 2007 (Supplementary Fig. 5
and 6) suggesting our method is more sensitive to changes in
sparsely wooded areas. In such areas, crop or grass biomass
strongly influence the optical signal which could lead to
deforestation remaining undetected in the Hansen product if
the removal of trees only weakly affects the land surface
reflectance.
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Fig. 3 Change in above ground carbon stocks between 2007 and 2010. a The human population density and centres across the study region58. b The mean
percentage change in aboveground woody carbon stocks (AGC) at 1 km resolution. Areas masked from the study due to soil moisture differences between
years are masked by the white stripes, whilst irrigation or urban land covers are masked in grey. The sub figures c–e are at 25 m resolution and illustrate
three important syndromes of land cover change: c the deforestation (red) of small areas of woodland in an already largely deforested area of Tanzania
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Mozambique, and e the extensive degradation in frontier regions of Mozambique near to the demand centres of southern Malawi, suggestive of cross
border flows of biomass energy
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Alongside these rapid losses, we also find evidence of
widespread gains in biomass (1.3 ± 0.9 MgC ha−1yr−1; median
± SD), the magnitude of which is consistent with field data on
regrowth rates13. Biomass increases were more prevalent within
relatively low biomass stands, with 60% of the total gain area in
woodlands with AGC < 25MgC ha−1 in 2007 (Fig. 5). Wide-
spread gains were also observed in areas that are sparsely
populated, and/or have a relatively high mean annual precipita-
tion, including the southern and western parts of Tanzania and
Angola, western Zambia and southern DRC (Fig. 3)9,34,35.
Extensive gains are to be expected given the ubiquity of
disturbance in this ecosystem and the typically rapid subsequent
regrowth13. However, our finding that regional AGC stocks are
roughly constant, despite 24% of the region being deforested or
degraded over the 3-year period, implies some non-equilibrium
(re)growth, which may be caused by enhanced disturbance rates
prior to the study period (e.g. due to more severe fire regimes in a
less fragmented landscape10, or higher elephant densities),
possibly combined with enhanced current growth rates (which
are predicted under increased CO2

14,15).

Carbon stock changes. Carbon stock changes (which describe the
carbon committed to the atmosphere, a proxy for emissions)
associated with deforestation, degradation and (re)growth were
estimated by weighting the observed carbon stock changes by the
probability of each land cover change having occurred in each
pixel. Over the 3-year period, biomass changes due to (re)growth
were 0.35 [0.29–0.42] PgC with losses totalling 0.41 [0.34–0.48]
PgC, of which deforestation contributed 0.11 [0.08–0.14] PgC,
and degradation 0.22 [0.17–0.27] PgC, with the remainder being
minor losses which can often be due to natural processes. Thus
degradation accounts for 66% [59–72%] of the likely anthro-
pogenic (deforestation+ degradation) carbon losses (Fig. 4c) and
55% [41–68%] of total gross losses. There were large variations in
carbon dynamics across the region, with net reductions in
Mozambique (−3.4% of 2007 AGC stock), Tanzania (−4.8%) and
Malawi (−4.9%), and gains in Angola (+1.5%) and Zambia
(+1.0%) (Fig. 4c).

The small, insignificant net change in AGC observed here
(−0.02 [−0.4–0.4] PgC yr−1) contrasts with FAO-FRA22 statistics
which suggest a more rapid reduction in stocks across the study
region (−0.08 Pg yr−1; 2005–2010), probably because our dataset
better accounts for biomass gains (Supplementary Table 3). Our
estimate of gross AGC losses from deforestation and degradation
(0.11 PgC yr−1 [0.09–0.14] PgC yr−1) is 6 × higher than that
obtained from overlaying the most widely used maps of forest
change (Hansen4) and carbon stocks (Avitabile18) (0.016 PgC yr
−1), and 3 × higher than the recent estimate by Baccini et al.23

These boosted carbon emissions primarily reflect the incorpora-
tion of degradation losses, but also the higher deforestation area,
and differences in the carbon density of land undergoing change.
Our estimated gross anthropogenic AGC losses are similar to
those released from deforestation in the more spatially extensive
Brazilian Amazon (0.18 Pg yr−1)36, and are equivalent to 4–10%
of the current estimated gross tropical land-use emissions3,5,6,
indicating the importance of these woodlands for the global
climate system.

Discussion
Overall, our results present a picture of highly dynamic land
cover change across the region, with rapid deforestation and
degradation underway in hotspots around population centres.
Carbon losses from deforestation and degradation are markedly
higher than the current best-guess estimates for our study
region1,4,18,23, yet these losses are offset by previously undetected,
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but widespread gains in carbon stocks, which occur mostly in
more remote areas. Our results contrast with the recent study by
Baccini23 which suggests that the study region is a net source of
carbon emissions. In this analysis we exclude areas that were non-
wooded in 2007, which precludes the estimation of non-forest
carbon gains and losses, including wooded area expansion, which
could also be widespread9. Our results have clear implications for
the global carbon cycle, particularly if the scale of this under-
estimation in both carbon losses and gains is replicated across the
seasonally dry tropics.

Degradation, which has never been quantified at this scale in a
spatially explicit manner, is the main cause of biomass loss23,37,
being particularly prevalent in higher biomass areas, which are
often floristically diverse and of high conservation value38. Afri-
can savanna woodlands are unique in that they retain significant
wooded area and biomass, alongside a high human population
closely dependant on woodland resources. Thus, large degrada-
tion losses may be a unique feature of African woodlands, but are
still large enough to impact global land use emissions.

Our finding of high carbon losses from degradation presents
several challenges to attempts to reduce carbon emissions from
deforestation and degradation (REDD+). Firstly, most efforts
have focussed on avoided deforestation in intact woodlands,
whereas we show that degradation, and deforestation in low
biomass, mosaic landscapes, are the critical processes. This mis-
targeting is potentially costly, as for many regulating and provi-
sioning ecosystem services, the last tree to be felled is much more
valuable than the first. Secondly, since degradation is difficult to
monitor, most REDD+ policy and practice has been created with
little data on the rates and locations, and thus causes, of degra-
dation12. This links to a further challenge identified here: the
spatial pattern of degradation indicates that it is mostly driven by
distal actors, and probably linked to demand for energy and
timber in urban areas, or abroad7,39. Locally driven, rural demand
is unlikely to be a useful intervention point for mitigation, which
should instead focus on urban and international value chains and
demand.

Our results also highlight the extent of biomass (re)growth
across these woodlands, which counterbalance the carbon losses.
The dominant miombo and mopane woodlands have long been
subjected to, and thus are highly adapted13 to, disturbance by
hominids, fire, elephants and other browsers. Many of these
disturbance agents have declined markedly due to urban migra-
tion, defaunation, and landscape fragmentation10, which may
explain some of the widespread gains observed in more remote,
rural areas. Thus, the disturbances which we find to be wide-
spread around population centres may have replaced these quasi-
natural losses. The critical issues to maintaining ecosystem service
provision and carbon storage is therefore the post disturbance
land use, as when woodlands are not fully transformed, they can
recover their biomass within three decades of clearance13,
meaning they can support some level of clearing in perpetuity.
Continued monitoring of these systems is needed to evaluate the
permanence of these land cover changes, and to evaluate the
impacts of changes in climate and atmospheric CO2 concentra-
tions—drivers which are likely to have contrasting effects on
woody cover over the next century40.

The methods presented here are not specific to the radar
satellite used (ALOS PALSAR), and are applicable to longer
wavelength radar sensors, including the P-band BIOMASS mis-
sion41 designed to estimate biomass in more carbon dense moist
tropical forests, and the planned L-band SAOCOM-1 and NISAR
missions42. Future monitoring efforts will need to incorporate
repeat in situ observations of both AGC growth and loss to
corroborate remotely sensed estimates of change—something that
is not possible here due to the lack of region-wide con-
temporaneous measurements of biomass change. Future work
should also focus on understanding the drivers of woodland loss,
and the effectiveness of protected areas in reducing land use
change.

Methods
Study area. Our study region includes all southern African countries where
savanna woodlands - mixed tree-grass ecosystems consisting of an open tree layer
and a continuous grass layer - are the dominant vegetation type31,32,43. This
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includes Angola, Zambia, Zimbabwe, Malawi, Tanzania and Mozambique, and the
southern parts of the Democratic Republic of Congo (formerly Katanga Province).
The decision to restrict the study to the extent of savanna woodlands stems from
the fact that our primary data source (L-band radar) is sensitive to woody carbon
stocks up to a saturation point of around 75MgC ha−1. Most savanna woodlands
lie beneath this value, meaning the method is able to detect changes in these
areas27,44. We use political rather than vegetation boundaries to define our study
region so as to provide country-specific data on AGC gains and losses that is
relevant to policy makers.

The region corresponds to the Zambezian region identified in Linder et al.45 as
being biologically distinct from other African regions in terms of plants, mammals,
amphibians, and reptiles, with high levels of diversity and endemism. Although our
study region is defined by the presence and dominance of savanna woodlands,
variations in climate, soils and disturbance mean that our study region
encompasses a structurally and compositionally diverse mosaic of habitats,
covering a spectrum from open savanna with a dominant grass layer and scattered
trees, through open canopy woodland with an understory of grasses and shrubs, to
denser woodlands and dry forest (Supplementary Fig. 1).

The dominant vegetation type is miombo woodland, the vernacular name for
tree species in the genera Brachystegia, which along with Julbernardia is largely
endemic to region and helps differentiate these typically open canopy woodlands
from other savanna type ecosystems. At the woodier end of the spectrum,
woodlands eventually grade in to closed canopy dry forest, such as those in the
Eastern Arc Mountains of Tanzania and the East African Coastal Forests. The
climate is characterised by distinct wet and dry seasons with 95% of the annual
rainfall falling within a period of 3–7 months35. Regular dry season fires fuelled by
the senescing grass layer are a characteristic feature of these systems and are
thought to be a major constraint to woody growth46. Human population density is
high compared to humid forest regions, and there is a heavy reliance on the
woodlands for local livelihoods across the region40. Increasing human pressure
linked to resource extraction is known to be driving widespread, but uncertain,
losses of AGC, as well the localised extinction of important tree species7,8, the
majority of which is likely being driven by subsistence agriculture and the small-
scale production of cash crops12,47. Shifting cultivation is the traditional method of
agriculture in the region13, with agriculture often the main source of income
among local communities. At the continental scale, the shifting cultivation cycle is
thought to be a significant source of carbon to the atmosphere48, although the
initial loss is partially, if not fully, offset by the subsequent regrowth13.
Traditionally, these landscapes have been of little commercial value to farmers due
to the relatively infertile soils and the prevalence of Tsetse flies which largely
prevent the keeping of cattle. This may be changing with shifting cultivation
systems gradually being replaced by more intensive farming practices and a shift to
more export-oriented activities49,50

Approach. The basis of our approach is the creation of a time series of above-
ground woody carbon (AGC) density maps, which were generated using a com-
bination of satellite radar images and in situ carbon stock estimates8,12,27. The plot

data used for calibration form part of the Socio-Ecological Observatory for the
Southern African Woodlands database and are available for use in line with the
SEOSAW Code of Conduct (https://seosaw.github.io). These carbon density maps
are used to quantify the areal extent of four land cover changes of interest -
degradation, deforestation, minor losses and biomass gains - and the carbon stock
changes associated with each of these processes. These land cover and biomass
change estimates are reported at national and subnational level (Supplementary
Data 1). We used the Geospatial Data Abstraction Library (GDAL, 2017), imple-
mented using the Python programming language version 3 (Python Software
Foundation, https://www.python.org/), for all of our data processing. All statistical
analyses and Figures were created using R Statistical Software (R Core Team, 2014).
More detailed descriptions of our approach are available in the Supplementary
Methods.

Radar data. Radar imagery was obtained from the Phased Array L-Band Synthetic
Aperture Radar sensor on-board JAXA’s Advanced Land Observation Satellite
(ALOS-PALSAR). We use the 25 m horizontal-send vertical-receive (HV) polar-
isation mosaic product which provides annual maps of radar backscatter for
2007–201026 L-band HV backscatter is known to be sensitive to woody biomass
density up to a saturation point of around 75MgC ha−1 and has been shown to be
able to detect deforestation, degradation, and regrowth in savanna wood-
lands8,12,27. The mosaic product comprises images obtained throughout the year
(April—December) and has terrain and radiometric corrections applied. The raw
digital numbers were converted to backscatter (γ0 in decibels; the ratio of the power
returned to the sensor relative to the energy emitted, expressed on the decibel scale)
using the calibration coefficients of Shimada et al.51 after which they were con-
verted to natural units to allow arithmetic, not geometric means to be used in
subsequent analyses8. Images were filtered using an Improved Lee Filter52 with a
5 × 5 window to reduce the effect of speckle, a noise-like quality inherent in radar
which results from interference among the signal from individual scatterers within
a pixel53.

Estimating aboveground woody carbon stocks. To generate maps of AGC, we
regressed backscatter (γ0) (in natural units, not dB) against the equivalent field
measured carbon stocks at 137 sites in Malawi, Mozambique and Tanzania
(median plot size 0.6 ha) (Fig. 6). We derived a general model (AGC= 715.67 ×
γ0–5.97; r2= 0.57; cross validation RMSE= 8.5 MgC ha−1; bias= 1.1 MgC ha−1),
which we use to convert radar backscatter to maps of AGC (See Supplementary
Methods). The RMSE represents the error on a prediction of biomass for a single
pixel, which decreases as pixels are aggregated together (i.e. RMSE is minimal at the
scale of the districts that we report here). However, bias is a separate quantity from
RMSE and does not cancel out. As such, bias is the main source of uncertainty in
biomass estimation at regional scales8. Our method is built on the commonly
applied assumption that there is a relationship between the remotely sensed
quantity and the biophysical attribute of the land surface which holds true over
time8,11,34,54, and that this is valid for the range of vegetation types in our study
area. The assumption of an invariant physical relationship between the remotely
sensed observation and land surface is common among change detection studies
using radar and other sensors8,11,34,55. In our case soil moisture effects have been
accounted for (see below), and the stability of the sensor response over time has
been verified26, meaning any changes in backscatter are likely to be related to
changes in land cover. A more detailed description of the model fitting procedure
along with additional information on the field plots used for calibration is located
in the Supplementary Methods and Supplementary Table 1.

Soil moisture correction and mask. L-band radar backscatter is somewhat sen-
sitive to soil moisture, which can enhance backscatter relative to dry conditions
and reduce the distinction between wooded and bare areas44. The ALOS PALSAR
mosaic product includes some images acquired outside the dry season (typically
May- Nov) meaning that some wet season imagery is present in the data. The
resultant seasonal soil moisture effects combined with the effect of the local
hydrology of drainage lines and flood plains needs to be accounted for in multi-
temporal AGC estimation. To reduce the effect of this on the estimates of biomass
and biomass change, we undertook the following procedures: First, we developed a
statistical model that applies a small correction to the estimated change in
backscatter in areas where the estimated soil moisture was different between years.
The model provides differential corrections according to the estimated AGC
density, following the logic of the Water Cloud Model56, with lower density
areas more like to be susceptible to moisture effects (Supplementary Fig. 8 and
Fig. 9). Thus, as a secondary precaution we do not include non-woodland lands
(<10 MgC ha−1 in 2007) in our change analysis as soil effects in these areas are
likely to be particularly strong8,44. Third, areas where soil moisture varied markedly
between 2007 and 2010 observations (e.g. when the data was collected at very
different times of the year) were removed from the analysis (2% of land area).
Finally, we exclude areas likely to have elevated soil moisture, or be seasonally
flooded, including areas near rivers, water bodies, deltas and irrigated croplands
(11% of the total land area) (Supplementary Fig. 7). A more detailed description of
the soil moisture correction and masking procedure is located in the Supplemen-
tary Methods.
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Land-cover change definitions. The multi-temporal AGC maps were to estimate
the occurrence of the four land-cover-change (LCC) processes of interest, identified
by comparing pixel carbon densities in 2007 and 2010. Areas where carbon stocks
were found to be decreasing were classified according to whether they were
symptomatic of deforestation (a reduction in wooded area), degradation (a
reduction in biomass density), or whether losses were of a low intensity, symp-
tomatic of minor disturbance. This distinction is designed to provide information
on the manner and causes of change following Ryan et al. (2014).

Deforestation (more properly, the loss of wooded areas), is used to refer to a
scenario where a pixel loses more than 20% of its biomass and moves from above
the forest or woodland threshold in 2007, to below the threshold in 2010. The
woodland- non woodland threshold is defined as 10 MgC ha−1, based on data
from the Tanzanian field plots where a biomass density of 10 MgC ha−1 was
equivalent to a tree canopy cover of 10–15%38 meaning that our definition of
woodland is similar to part of the United Nations Food and Agricultural
Organisation’s (FAO) forest definition57. These disturbances are likely to result
from agricultural clearances—both small scale and commercial—or urban
expansion12. Our definition of deforestation is designed to better capture areas
converted to small scale agriculture by allowing for some residual woody
biomass in the post clearance land cover - a common feature of the typically low-
input, shifting agriculture that is widely practised in the region13. Shifting
cultivators commonly leave large trees standing in their fields due to the
disproportionate effort involved in their felling, or because the tree provides
other ecosystem services, but as the resultant land cover is primarily agricultural,
such land is properly classified as deforested.

Degradation is defined as reduction in carbon density to <80% of its 2007 value,
whilst remaining above the woodland threshold. Previous studies12,30 have shown
that changes >20% of the 2007 AGC value are often caused by timber extraction
and harvesting for charcoal production, as well as many other livelihood activities.
Lower intensity losses where AGC is reduced by <20% are not considered as
degradation or deforestation and instead are classified as minor losses, as they are
often caused by quasi natural processes such as fire and tree mortality.

Gains in AGC stocks reflect the growth of woody vegetation and are limited to
areas that were already wooded in 2007. This will include both the growth of
mature, intact vegetation and areas re-growing following disturbance; hence, we
sometimes refer to this process using the term (re)growth. We do not evaluate re-
or afforestation as we exclude areas that are non-woodland in 2007.

Probabilistic change detection. To estimate the area and carbon emissions
associated with each LCC process, we adopt a probabilistic approach, rather than
a binary classification of change according to the most likely LCC type, e.g.
degraded / not degraded. A probabilistic approach is ideally suited to biomass
maps derived from synthetic aperture radar (SAR) imagery given the noise-like
phenomenon of speckle that is inherent to this type of data, and which leads to
high RMSE. Speckle arises because of interference between the signal from
scatterers within a pixel, and leads to a well characterised distribution of
observed backscatter, even over homogenous areas53. Any error distributions in
backscatter will also be present in biomass maps, and could signal false LCC
events when biomass maps from different time points are compared directly. If
not accounted for, speckle would lead to an overestimation of land cover change;
thus, we developed a statistical model that accounts for both the speckle-induced
changes in backscatter, and the uncertainty on the regression model used to
convert backscatter to biomass.

To account for speckle-induced changes in backscatter, and the synergy with
errors in the regression between backscatter and biomass, we statistically model the
expected effect of speckle through a simulation procedure. We first simulate 10,000
possible values (realisations) of backscatter (γ0) following a gamma distribution; γ0

~ Γ(k,θ)53. The parameters of the speckle model k and θ were estimated empirically
using backscatter data extracted from 20 pseudo homogeneous areas (area= 3–98
km2; mean estimated AGC= 0–45MgC ha−1), chosen because the vegetation
appeared homogenous, and their remoteness or inaccessibility suggested low levels
of human disturbance. In each location we fitted gamma distributions to the
observed backscatter distributions and estimated the parameters k and θ. As
expected53, θ, the scale parameter, was a linear function of the mean backscatter,
bγ0, such that θ ¼ αbγ0 þ β, with α and β estimated as 0.0134 ± 0.004 (mean ± SE)
and 0.0001 ± 0.0001, based on a OLS regression fit (R2= 0.49, RMSE= 0.00011).
The shape parameter, k, is effectively the equivalent number of looks in a PALSAR
25m mosaic, and was calculated by dividing the observed, or expected backscatter
value, by the scale parameter. As some of the variance in these areas will be due to
vegetation heterogeneity, this approach is likely to overestimate the contribution of
speckle to the observed variability in backscatter, resulting in conservative estimates
of land cover change.

Each simulated value of γ0 was then used to simulate 200 realisations
of woody biomass, B, with B~N(μ, σ2), where μ is given by the regression
equation, and σ2 is the standard error of the model. These two simulations
give 2,000,000 possible values of AGC for each observation of backscatter (γ0).
The simulations are repeated for the full range of observed combinations of γ0 in
2007 and 2010, and for each combination, the proportion of times that the
simulated values met the land cover change criteria (Eqs. 1–6) is used as

the probability that the change has occurred:

P deforestedð Þ ¼ P B07 � 10ð ÞP B10<10ð ÞP B10=B07½ �<0:8ð Þ ð1Þ

P degradedð Þ ¼ P B07>10ð ÞP B10 � 10ð ÞP B10=B07½ �<0:8ð Þ ð2Þ

P gainð Þ ¼ P B07 � 10ð ÞP B10 � 10ð ÞP B10>B07ð Þ ð3Þ

P minor lossesð Þ ¼ P B07 � 10ð ÞP B07>B10ð ÞP B10=B07½ � � 0:8ð Þ ð4Þ

There is also the probability that the pixel was wooded, or non-wooded in 2007:

P woodedð Þ ¼ P B07 � 10ð Þ ð5Þ

P non� woodedð Þ ¼ P B07<10ð Þ ð6Þ

These simulations were used to create lookup tables of the probability for each
land cover change given the observed backscatter in 2007 and 2010 (Fig. 7), which
are then used to apply probabilities of each to whole study area. Our approach is
therefore not to draw an arbitrary threshold between areas where we are confident
a change has occurred and areas where we are not, but to instead represent each
potential change event according the probability that it is real and correctly
classified.

In practise, the probability of a change having occurred increases with the size
of the observed change in biomass (Fig. 7), unless the AGC in 2007 or 2010 is close
to the 10MgC ha−1 threshold used to classify wooded/ non-wooded lands and
separate deforestation from degradation. When the observed 2007 AGC is near the
threshold, there is a high chance that a pixel was not wooded in the first place. For
example, in the case of a single pixel that was estimated at 25MgC ha−1 in 2007,
but only 16MgC ha−1 in 2010 (Fig. 7d–f)—a change that is consistent with our
definition of degradation—we assign that pixel a probability of 0.75 [95% CI:
0.71–0.84; see next section for explanation how these CI values were derived] that it
was in fact degraded. This is because we account for the probability that - due to
speckle noise and uncertainties on the regression - the reduction was only a minor
loss, and the even smaller probability that the loss is actually a gain. Similarly, if we
consider a pixel in 2007 with the average AGC of 24 MgC ha−1 which increased in
biomass by 4MgC ha−1 over the 3 years then we assign the pixel a gain probability
of 0.79 [0.75–0.85].

Quantifying land cover and carbon stock changes. The total area affected by
each LCC is calculated by summing the probabilities of each LCC having occurred
in a single pixel (Fig. 7), which is appropriate given there is no spatial pattern to
speckle. To estimate the carbon stock changes caused by each of the LCC processes
of interest, the observed per pixel changes in AGC stocks between 2007 and 2010
were multiplied by the probability that each LCC type has occurred to produce a
weighted estimate of biomass change for each type in each pixel.

Uncertainties. Uncertainties on all quantities were estimated through the propa-
gation of the uncertainty in the biomass-backscatter relationship, including the
bias. We employed a 5000 × 2-fold cross-validation procedure8, withholding half of
the ground data used to calibrate the radar data, and using the remainder to
generate the biomass-backscatter relationship. This uncertainty procedure was
applied to a random subsample of 5% the study area, comprising 2000 × 100 km2

areas randomly distributed across the study area. For each area, we calculated all
derived quantities, retaining the 2.5th and 97.5th percentiles of the 5000 estimates,
and using these 95% CI to approximate the uncertainties over the whole study area
(Supplementary Fig. 10). A more detailed explanation of our approach to quan-
tifying changes and the associated uncertainties is located in the Supplementary
Methods.

Comparison to existing estimates. We compare our wooded area estimates to the
estimated forest area in 2005 from the FAO Global Forest Resources Assessment
2015 (FAO-FRA)22—which includes updated values for the previous assessments
covering our study period—and the Hansen et al. (2013) dataset4, which provides
estimates of percentage tree cover for the year 2000 (https://earthenginepartners.
appspot.com/science-2013-global-forest). In the Hansen dataset, trees are defined
as “all vegetation taller than 5 m in height” and are presented as the percentage
cover per 30 m grid cell (0–100%). As Hansen is a tree cover data set, and not a
forest cover dataset, we initially defined wooded lands in the Hansen dataset as
being any area with a tree canopy cover ≥1%. This threshold was chosen based on a
visual analysis of the Hansen tree cover and forest loss dataset which revealed the
presence of loss events (2007–2010) in areas with a tree canopy cover of <10% in
2000, indicating that these areas should be considered as wooded in all subsequent
comparisons. To increase comparability, we include only those pixels that had not
been cleared as of 2007. We also calculated woodland area using a 10% canopy
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cover threshold to mimic the definition of used by FAO and the one adhered to in
this study

Our carbon stock estimates were compared to those in the FAO-FRA dataset—
which also includes information on carbon stock changes (Supplementary Table 3)
—and to the satellite derived stock estimates from Baccini et al., (2012) and Saatchi
et al., (2011), and the more recent dataset of Avitabile et al. (2016) which integrates
these pan-tropical datasets into a 1 km resolution AGB map (carbon stocks
assumed to be 0.47 of biomass) using an independent reference dataset of field
observations and high-resolution biomass maps (Supplementary Fig. 2). The
Baccini study reports AGC stocks for the period 2007–2008 and is cropped to the
extent of the tropics (23.4N–23.4S), whereas the Saatchi estimates refer to the early
2000s; therefore we compare these stocks to our 2007 AGC map.

Our deforestation estimates were compared to the FAO-FRA forest area change
statistics for 2005–2010, and to Hansen (technically tree cover loss). For the
former, we calculated change pro rata, whereas for the latter, we extracted only
those changes that occurred between 2007 and 2010 and divided these by the

estimated wooded area in 2007, which was any area with a tree canopy cover ≥1%.
We repeated this using a 10% wooded area threshold as the denominator to
examine how differences in tree cover influence the reported rates of change and
the resultant comparisons.

In order to compare the location of detected deforestation to the Hansen
dataset, we analysed only those pixels from this study where deforestation or
degradation is the most likely outcome. All three datasets (Hansen, deforestation,
degradation) were aggregated to 9 ha (300 m × 300m) to ease the processing time
given the large extent of the study region, but also to account for any minor geo-
location differences between to two datasets. The absolute differences in the
proportion of each 9 ha pixel that was deforested is shown for the entire study
region in Supplementary Fig. 5, and is analysed by the baseline AGC density and
the woody cover in 2007 according to Hansen et al. (2013) in Supplementary Fig. 6.

Data availability. Data are available from the University of Edinburgh DataShare
service at the following address: https://datashare.is.ed.ac.uk/handle/10283/3059.
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