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ABSTRACT  

 

The rational design of complementary DNA sequences can be used to create nanostructures that 

self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force 

microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides 

complementary structural information on the ensemble-averaged state of DNA nanostructures in 

solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA 

origami tiles that look identical when immobilized on a mica surface and imaged with atomic 

force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles 

with different crossover periodicities: these measurements highlight the extreme structural 

sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to 

quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA 

origami tile and use this method to measure the overall dimensions and geometry of the DNA 

nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used 

for the interpretation of SAXS data from biomolecules, to measure the distance between DNA 

helix pairs in a DNA origami nanotube. Together, these results provide important 

methodological advances in the use of SAXS to analyze DNA nanostructures in solution and 

insights into the structures of single-layer DNA origami. 
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The methods of DNA nanotechnology allow the construction of a wide variety of self-

assembling DNA nanostructures with nanometer precision.1 These include DNA polyhedra,2-4 

DNA tiles,5,6 DNA boxes,7 DNA tweezers,8 molecular walkers,8-11 robots,12 cogged gears13 and 

3D structures that reproducibly change arrangements many times over multiple days.14 DNA 

nanostructures were first imaged with atomic force microscopy (AFM), which generates three-

dimensional maps of surfaces through mechanical probing with a sharp tip.15 AFM provided 

verification of several seminal approaches to the design of DNA nanostructures including 2D tile 

arrays,5 the high-yield, single-step synthesis of a DNA tetrahedron,4 and DNA origami,6 a robust 

method for folding long, single stranded DNA into 2D and 3D shapes.16 More recently, 

transmission electron microscopy (TEM) has emerged as another important method for imaging 

DNA nanostructures.13,16-21 One benefit of TEM is that it avoids the deformation or damage of 

samples that can result from the mechanical interaction with an AFM tip. Moreover, structures 

can either be imaged on a surface, typically using an electron-dense stain as a contrast agent, or 

whilst cryogenically frozen and suspended in a thin layer of vitreous ice (cryo-EM). Cryo-EM 

avoids difficulties in surface-based imaging: nanostructures are captured in their native, hydrated 

state without the need for contrast agents.22 Image-averaging methods allow high-resolution 

(sub-nanometer) structural characterization including 3D shape reconstructions. The 3D 

structures of a handful of DNA nanostructures have been elucidated through the use of cryo-

EM,3,7,20,21,23,24 with structures of the DNA tetrahedron20 and a rigid multi-layer DNA origami 

object21 determined at resolution sufficient to reveal the structure of the double helix. A majority 

of DNA nanostructures however, have been imaged with negative-stain TEM or AFM. Both 

require the deposition of ‘soft’ biomolecules onto a surface: this can deform their structure, 

especially in the case of single-layer DNA origami.  
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The archetypal DNA origami tile consists of 26 DNA helices that form a ‘log-raft’ type 

structure.6 The tile is assembled from one long, single-stranded DNA scaffold, derived from the 

M13 bacteriophage genome, which is folded and held together by short, complementary DNA 

‘staples’ that cross over between helices (Figure 1A). These crossovers are designed to occur 

where DNA strands from neighbouring helices are in close proximity (Figure 1B). For a flat 

DNA tile, the spacing between crossovers that link a given pair of helices is constrained to be a 

multiple of the periodicity of the double helix, approximately 10.5 base pairs (bp)/turn13 (Figure 

1B-D). In practice, however, it is not always possible for crossover locations to strictly 

correspond to the periodicity of DNA. Indeed, the original DNA origami tile had an average 

crossover periodicity corresponding to 10.66 bp/turn (Figure. 1E) and consequently is thought to 

be twisted because helices would be under-wound if the tile were forced to be flat. Yet this tile 

appears flat when imaged with AFM.6 Conversely, where the crossover periodicity is less than 

the periodicity of a double helix, it is possible to assemble DNA origami structures that are 

twisted in the opposite direction (Figure 1F). Such global twists are observable in TEM 

micrographs of multi-layer origami structures where crossover periodicities deviate substantially 

(e.g. 10.0 bp/turn) from the periodicity of a DNA duplex.13 Since the global twist of a DNA 

origami structure depends not only on the crossover periodicity but also the torsional and 

bending stiffness of the structure, the effect of altering crossover periodicity on the global twist 

of single-layer DNA nanostructures is expected to be more pronounced than in multi-layer 

origami structures, but this has not yet been experimentally characterized. 
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Figure 1. Crossover spacing between staple strands and DNA periodicity determine twist in 

DNA origami structures.  A) Adjacent DNA helices joined by staple strand crossover 

(reciprocal antiparallel strand exchange) as in a DNA origami tile. Scaffold strand is indicated in 

blue. Two staple strands, indicated in red, both cross over to the adjacent helix at the cross-over 

site indicated by the arrow. B, C) In the complete DNA tile there exist multiple crossover sites, 

indicated in C) as red dots and circles corresponding to crossovers on either side of the helix. If 

the average crossover separation is commensurate with the periodicity of DNA (~10.5 bp/turn, 

indicated by black lines) then crossover sites will lie in a plane, binding parallel helices together 

to form a flat tile. D) A scheme for the synthesis of a near-flat tile (the 10.55 tile). Crossovers are 

positioned such that, if the tile is flat, 285 base pairs on each helix correspond to 27 helical turns, 

resulting in average helical pitch of 10.55 bp/turn.  The original DNA origami tile6 had 288 base 

pairs per helix, corresponding to an average pitch of 10.66 bp/turn if flat. This structure, when 
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relaxed, is predicted to have a global twist as shown in E). It is possible to twist the tile in the 

opposite direction by using a shorter crossover spacing as shown in F).   

Small-angle X-ray scattering (SAXS) is a complementary technique for structural analysis that 

can be used to probe the shape of DNA origami nanostructures in solution. The method produces 

profiles of scattering intensity 𝐼(𝑞) as a function of the magnitude of the scattering wavevector 

𝑞 =  4𝜋𝑠𝑖𝑛𝜃/𝜆, where 2𝜃 is the scattering angle and 𝜆 the X-ray wavelength. Structural features 

are manifest as diffraction patterns that arise from the coherent scattering of X-rays from the 

electrons of atoms within the target particle. The utility of SAXS for the analysis of DNA 

nanostructures has only recently been established. The first two studies demonstrated that SAXS 

data can provide a useful test of the validity of  structural models of a DNA octahedron24 and a 

DNA origami box.7 SAXS has also been used to verify the formation of arrays of gold 

nanoparticles, connected through DNA octahedra.25  Two recent papers extend these studies, 

further illustrating the power of SAXS for analyzing DNA nanostructures in solution. They 

demonstrate that repeated geometrical features of DNA origami such as the interhelical spacing 

result in clearly discernible diffraction peaks which can be used to quantify their internal 

geometry.26 They also show that SAXS can quantify the equilibrium distribution of 

conformational states providing useful thermodynamic information,26,27 including the 

dependence of the folding of DNA origami structures and interhelical spacing, on temperature 

and the concentration of magnesium ions.26 The opportunity to perform time-resolved SAXS 

experiments at high-flux synchrotron beamlines has also been utilized to perform kinetic 

measurements on conformational transitions and dimerization of DNA origami structures with 

millisecond temporal resolution.28 
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There are, however, intrinsic challenges in the analysis of DNA origami structures with SAXS. 

In particular, sample requirements are stringent.29 Samples need to be sufficiently pure and 

monodisperse that diffraction from the origami dominates the observed scattering. Moreover, 

sample concentrations must be sufficiently high that diffraction peaks corresponding to internal 

features of a DNA origami structure are visible. DNA origami nanostructures at concentrations 

as low as 0.1 mg/ml produce high signal-to-noise at low scattering angles27 but the signal decays 

at the higher scattering angles which contain information on the internal structure of DNA 

origami: Fischer et al. used ~1.3 mg/ml of purified DNA origami nanostructures to quantify the 

interhelical spacing by resolving a corresponding diffraction peak at 𝑞 =  ~0.23 Å−1.26 

Although SAXS allows for the quantification of characteristic periodicities in DNA origami 

structures, SAXS data alone is insufficient to define global dimensions without a priori 

knowledge about the structure of the target particle. Absolute model-free distance measurements 

can be achieved by immobilising pairs of gold nanoparticles, which act as strongly scattering 

probes.30-33 This approach has recently been used to measure the arrangement of immobilised 

gold nanoparticles on DNA origami.34 

Here we demonstrate that SAXS can distinguish between single-layer DNA origami tiles 

designed to have different amounts of twist, even though when immobilised on a mica surface 

and imaged with AFM the tiles appear to have identical shapes. We use SAXS to explore the 

effect of crossover periodicity on the global twist of single-layer DNA origami structures. By 

comparing predicted scattering from finite-element (FE) models of twisted DNA tiles to 

experimental SAXS data, we show that the global twist in single-layer DNA origami is much 

more sensitive to staple crossover periodicity than has been previously observed in multi-layer 

DNA origami structures.13 We then address the challenge of making direct measurements of the 
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overall dimensions of DNA origami structures by using gold nanoparticles as fiducial marks. 

Finally, we demonstrate that, with sample concentrations as low as 0.1 mg/ml, SAXS can be 

used to measure characteristic dimensions of a DNA origami nanotube, including the interhelical 

spacing and the diameter of an individual double helix. 
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RESULTS/DISCUSSION 

SAXS reveals structural features in solution that are not observable by AFM imaging. To test 

whether imaging with AFM can be used to measure the global twist of a DNA origami tile, we 

constructed a single-layer DNA origami tile with an average spacing between crossovers of 

10.44 bp/turn, a smaller deviation from the unstrained DNA helix periodicity than in twisted 

multi-layer DNA origami previously studied.13 We expected this ‘10.44 tile’ to be over-wound 

when flat and therefore to twist in the opposite direction to Rothemund’s original DNA origami 

tile6 (Figure 2A). Additionally, we prepared two variants: a ‘braced’ tile consisting of the same 

structure modified with two pairs of bracing DNA helices running across the surface, 

perpendicular to the DNA helices of the tile (Figure 2B), an attempt to flatten the tile and reduce 

any global twist; and a ‘rolled’ tile, with modified staples that were designed to join opposite 

edges to roll the tile into a tube (Figure 2C). These designs are detailed in Figure S1. We 

compared their structures when immobilized on a mica surface, imaged with AFM, and in 

solution, probed with SAXS. AFM images of all three tiles have the same overall shape and 

dimensions. The perpendicular braces are visible in images of the braced tile and a small fraction 

of the rolled tiles (3 out of 236 examples imaged) appear to be rolled into a tube which has been 

flattened on the surface (Figure 2D-F, Figure S2). In contrast, the SAXS scattering profiles for 

each tile type are clearly distinguishable and can be used to infer differences between the shapes 

of the tiles in solution. Scattering from all tile types displays a broad peak (Figure 2G). The 

rolled tile gives rise to the most prominent peak at the largest 𝑞-value (~0.032 Å−1), indicative 

of the most compact structure. The peak in the scattering data for the braced tile shows the least 

prominent peak at the smallest 𝑞-value (~0.020 Å−1), indicative of the most extended structure. 

Scattering from the unmodified tile is intermediate, with a peak at 𝑞 ≈  0.025 Å−1 (Figure 2G). 
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Differences between scattering data from each tile type are also clearly apparent in superimposed 

log(I) vs q and log(I) vs log(q) plots over an extended q range (Figure S3).  This behavior is in 

agreement with calculated scattering from a series of model tiles with different curvatures, for 

which the first scattering peak becomes less pronounced and moves to lower 𝑞 as curvature 

decreases (Figure S4). The braced tile is also most consistent with an analytical solution of 

scattering from a geometric model with theoretical dimensions of a flat tile (Figure S3). SAXS 

data thus demonstrates that the structures of these tiles differ in solution: the braced tile is the 

flattest and the rolled tile is the most compact.  

 

Figure 2. Comparison of DNA origami tiles imaged on a surface with AFM and in solution 

with SAXS. A)-C) Diagrams of the unmodified 10.44 (A), braced (B), and rolled (C) tiles, with 

modifications to the braced and rolled tiles indicated in red. D)-F) AFM images for unmodified 

(D), braced (E) and rolled (F) tiles respectively (field of view 1 µm x 1 µm; see Figure S2 for 

full images). Inset in D is a magnified image of a single tile in which individual helices can be 

resolved (scale bar 100 nm). In (F), representative examples of rolled (N = 3) and opened (N = 

233) tile are circled in green. (G) Small-angle X-ray scattering data for the unmodified (red), 
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braced (yellow), and rolled (green) tiles respectively. The first scattering peak is indicated in 

each case. 

 

The effect of crossover periodicity on single-layer DNA origami. To determine the effect of 

small deviations between crossover and DNA helix periodicity on single-layer DNA origami, we 

collected SAXS data from unbraced DNA tiles with three average crossover periodicities 

corresponding to 10.44, 10.55 and 10.66 bp/turn for a flattened tile (referred to as 10.44, 10.55 

and 10.66 tiles respectively); cadnano designs are in Figures S1A and S5. The 10.44 and 10.66 

tiles produce clear diffraction peaks whereas diffraction peaks from the 10.55 tile are 

substantially less pronounced (Figure 3). To resolve the shape of the tiles in solution we 

compared experimental data to theoretical SAXS profiles. These were calculated from 29 coarse-

grained FE models of tiles with varying degrees of global twist that were generated using the 

structural modelling program CanDo.35 The more twisted tiles adopt a tubular shape and produce 

more pronounced diffraction peaks than flatter tiles (Figure S4). The strong diffraction features 

in the 10.44 and 10.66 tiles allow unambiguous identification of the best-fitting structural model 

(Figure S6), which produces diffraction features that align well with experimental data, plotted in 

Figure 3. As an indication of the sensitivity of the fit to the twist of the tile, theoretical scattering 

from models with slightly different degrees of global twist (± 14° deg/tile) are also plotted. 

These nearby models produce scattering peaks which are clearly not in alignment with the 

experimental data. From the best-fit models, we estimate that in solution, tiles with average 

crossover periodicities consistent with 10.44 and 10.66 bp/turn for a flattened tile are twisted by 

180° over a distance of 120 nm, presumably in opposite directions although SAXS data cannot 

distinguish between the handedness of the twist (Figure S7). By comparison, multi-layer DNA 
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origami structures with crossover periodicities of 10 and 11 bp per turn (deviating from the 

nominal periodicity of a DNA helix by +/- 0.5 bp per turn) have been observed to twist by 180° 

in 235 ± 32 nm and 286 ± 48 nm respectively.13 Our data show that single-layer structures are 

much more sensitive to crossover periodicity, enabling a more precise estimate of the relaxed 

average periodicity of DNA helices in an origami. The similar magnitude of the opposite twists 

of the 10.44 and 10.66 tiles suggests that a tile designed with an average periodicity of 10.55 bp 

per turn would be approximately flat (although the asymmetry of the tile, which was designed 

such that all staple ends are positioned on the same face, may mean that its twist is not 

symmetrically sensitive to over- and underwinding). The 10.55 tile is indeed flatter: a geometric 

model of a flat sheet is consistent with the lack of clear diffraction peaks in the 10.55 tile but not 

the strong diffraction features of the 10.44 and 10.66 tiles (Figure S7). Moreover, the best fitting 

model tile has a lower global twist and all flatter tile models fit similarly well to experimental 

data (Figure S6). For comparison, scattering from the best-fitting tile and a completely flat tile 

are shown overlaid with experimental scattering from the 10.55 tile in Figure 3.  
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Figure 3. Effect of crossover periodicity on the global twist of the DNA origami tile. 

Experimental scattering (black circles) for 10.44 tile (top), 10.55 tile (middle), and 10.66 tile 

(bottom). For each data set, the best-fitting theoretical scattering data (smallest root mean 

squared deviation) from the set of model tiles (Figure S4) is overlaid (yellow line). For the 10.44 

and 10.55 tile, theoretical scattering from model tiles that are less twisted (red dashes) and more 

twisted (green dot-dashes) is also overlaid (± 14˚/tile global twist). The corresponding model 

structures are shown on the right. For the 10.55 tile (middle), the structure and calculated 

scattering for the completely flat model tile is displayed in blue for comparison.  
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Measuring distances between reference points on a DNA origami in solution using 

immobilised gold nanoparticles. We used SAXS to measure distances between pairs of gold 

nanoparticles of 55 ± 8 Å diameter tethered to specific locations near corners of the 10.44 tile 

(Figure S8). The ratio between the electron densities of gold and water is significantly greater 

than that between DNA and water (approximately 14 and 2, respectively).36 Scattering intensity 

is proportional to the square of the contrast in electron density between the scattering particle and 

solvent.36 Thus, scattering from the pair of gold nanoparticles, which contains information about 

their size and the distance separating them, is readily observable in SAXS data. Scattering 

intensities from the 10.44 tile, unlabelled and labelled with either one or a pair of gold 

nanoparticles, are shown in Figure 4A. Scattering from doubly- or singly-labelled tiles closely 

resembles scattering from a control suspension of gold nanoparticles, indicating that scattering 

from the gold labels dominates that from the origami, as expected. Small, approximately evenly 

spaced peaks at small wavevector magnitudes q < 0.05 Å−1 are observable in SAXS data from 

tiles with gold pairs. These are absent in scattering from tiles labelled with a single gold particle 

and from unlabelled tiles. We attribute these features to coherent scattering from pairs of gold 

nanoparticles immobilized on the same tile, for which we expect intensity maxima close to those 

of the function sin(qd)/qd where d is the distance between the gold pairs. By fitting these small-

angle peaks (Figure S9) we estimate that d = 819 Å,  95% CI = (814 Å, 823 Å).  
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Figure 4. Measuring distances between reference points using pairs of immobilised gold 

nanoparticles. (A) Scattering intensities and (B) fitted pair distance distribution functions from 

the 10.44 tile, either unlabelled (blue), labelled with a single gold nanoparticle (red) or a pair of 

nanoparticles (green). Corresponding data for a suspension of free gold nanoparticles (yellow) is 

shown for comparison. Inset in (A) is an enlargement of scattering intensities from gold-labelled 

tiles within the region encircled by a dotted rectangle; arrows point to regular diffraction features 

seen only in tile labelled with pairs of gold nanoparticles. Black data in (A) is a linear 

combination of scattering spectra that depends on the interference between scattering from pairs 

of immobilised gold nanoparticles (Figure S9): this was fitted to the function 1 + 2 ×

𝑠𝑖𝑛(𝑞𝑑)/𝑞𝑑 to estimate 𝑑, the distance between pairs of gold nanoparticles.  

 

Information on the structure of the scattering particles can also be derived from SAXS data using 

an indirect Fourier Transform method37 implemented in the software GNOM.38 This computes a 

real-space electron pair distance distribution function 𝑃(𝑟) for which the calculated scattering is 

consistent with SAXS data; it is frequently used for the interpretation of SAXS from biological 

samples.29 The 𝑃(𝑟) function derived from SAXS data for the unmodified DNA tile (Figure 4B) 

has a single, broad peak with maximum at approximately 300 Å. For gold-labelled tiles, the 
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calculated 𝑃(𝑟) has a similar peak which is slightly broader and has a shoulder at approximately 

180 Å; we attribute these shape changes to density correlations between the tile and gold labels 

(leading to interference between scattering from these components), and possibly to distortion of 

the tile by the labels. An additional prominent peak at 33 Å in 𝑃(𝑟) for both sets of labelled tiles 

matches the sharp peak in 𝑃(𝑟) calculated from scattering from a suspension of gold 

nanoparticles: it originates from density correlations within a single gold particle. This peak is 

observed at a larger distance than expected for a uniform 55 Å sphere, for which 𝑃(𝑟) is 

maximal at 29 Å:37 we attribute this increase in apparent nanoparticle size to the additional 

electron density contributed by the coating of thiolated T15 oligonucleotides. A second additional 

peak is observed in 𝑃(𝑟) for the doubly gold labelled tile only; we attribute this to density 

correlations between the two gold nanoparticle labels. This feature has a maximum at 828 Å 

which is close to the particle spacing deduced from the same data by the alternative analysis 

presented above (Figure S9).  The second peak is expectedly broader, but its width cannot be 

explained by the particle size alone and is likely contributed to by flexibility in the AuNP 

anchor34 or the DNA origami structure or both. 

These results indicate that the distance between immobilised pairs of gold nanoparticles is 

slightly shorter than the expected separation between their binding sites for a flat tile (~855 Å) 

but longer than the distance calculated from the FE model that best fits the SAXS data from the 

10.44 tile (~750 Å) (Figure S8). Gold nanoparticles have previously been used in SAXS 

experiments to measure distances on a range of nucleotide structures. These include for 

determining the length distributions of double stranded DNA30,31 more recently with anomalous 

scattering,33 to probe conformational changes induced by the Escherichia coli mismatch repair 

system,39 the solution conformations of RNA kink-turn motifs,32 to quantify the repeat distance 



 17 

in 2D arrays33 and chiral arrangements of nanoparticles on DNA origami.34 Here, we have 

demonstrated the use of gold nanoparticles as fiducial markers to measure much longer 

distances, well beyond the range of alternative Förster resonance energy transfer methods 

(typically less than 100 Å),40 on a DNA origami structure.  

Resolving the internal structure of DNA nanotubes. Previous studies have demonstrated that 

prominent periodicities such as the inter-helical spacing in DNA origami nanostructures can be 

inferred directly from peaks in SAXS scattering data.26 However, SAXS data from structures that 

are flexible (such as single-layer origami) or that have more than one closely-separated 

characteristic distance may not be readily deconvolved into a small number of well-defined 

peaks. Here, we extend the use of indirect Fourier methods to determine the internal structure of 

a single-layer, rotationally symmetric, DNA origami nanotube comprising 10 DNA helices 41 

(Figure S10). Experimental scattering data from DNA nanotubes were compared to the 

theoretical scattering profiles for a set of atomic models with a range of tube diameters (80 Å – 

120 Å). The atomic model with a 95 Å diameter provided the best fit to the experimental 

scattering (Figure 5A and 5B), significantly better than for atomic models with diameters 

deviating by ±10 Å. SAXS data was also well described by analytical solutions to a hollow 

cylinder with a diameter of 95.6 ± 0.3 Å and wall thickness of 23.4 ± 0.4 Å, which is consistent 

with the width of a DNA duplex (Figure S12). Analytical models also demonstrated how sharp 

dips in model compared to experimental data can be accounted for by allowing for size 

dispersion in the diameter (Figure S12).  
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Figure 5. Analysis of SAXS data from DNA origami nanotubes. A) Experimental SAXS for 

10-helix DNA nanotube (black circles) overlaid with the theoretical scattering from the best-

fitting model nanotube (95 Å diameter, yellow line). Nearby models are indicated for comparison 

(85 Å diameter, red dashed; 105 Å diameter, green dot-dashed). B) χ2 Goodness-of-fit residuals 

between experimental scattering and simulated scattering for model barrels of various diameters. 

Coloured circles indicate model barrels plotted in A. C) Cross-sectional P(r) inferred from 

experimental data and for models shown in A. D) Cross-section of model nanotube indicating 

characteristic distances corresponding to peaks in P(r). 

The nanotube is an elongated particle (approximately 100 Å × 2100 Å) with consistent cross-

section. It is also likely to be rigid in solution since it is far shorter than the reported persistence 

length of a 10 helix DNA nanotube of 15 m.42 The nanotube is therefore ideally suited for 

cross-sectional analysis with SAXS. For elongated particles scattering intensities are given by: 
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𝐼(𝑞) =  
𝑙𝜋

𝑞
𝐼𝑐(𝑞) 

where 𝑙 is the length of the particle and 𝐼𝑐(𝑞) depends only on its cross-sectional structure.43 This 

allows the use of Fourier transform methods to derive a cross-sectional real-space pairwise 

distance distribution function (𝑃𝑐(𝑟)) for the DNA nanotube (Figure 5C and S12) and the cross-

sectional radius of gyration, Rg = 48.2±0.3 Å which, for a thin cylinder, is equal to the radius. We 

thus estimate the mean diameter of the nanotube to be 96.3±0.6 Å, consistent with the diameters 

determined by fitting geometric models as described above and corresponding to an inter-helical 

spacing of 30 Å.  

Experimental and model-generated 𝑃𝑐(𝑟) plots for the 10-helix barrel comprise 4 distinct peaks 

(Figure 5C). Experimental peaks are broader than those calculated for models comprising rigid, 

parallel helices. This may reflect flexibility of the tubes and the bending of helices within an 

origami structure in which interhelical distances are typically observed to be smallest at 

crossover locations.6,21,44 By calculating 𝑃𝑐(𝑟) plots for pairs of parallel helices spaced at 

different distances, and for tubes with different diameters and numbers of helices (Figure S11), 

we were able to attribute the first (at 9.8 Å), second (at 27.5 Å) and third (at ~60 Å) peaks to 

coherent scattering from an individual helix, from neighbouring helices, and from next-nearest 

neighbour helices respectively. The fourth peak (at 88.2 Å) was attributed to scattering over the 

entire cross section of the tube. This occurs at a distance slightly smaller than the tube diameter. 

The inferred interhelical spacing of the single-layer DNA nanotube is comparable to that 

measured using SAXS from a 3D DNA origami lattice (26 Å).26 The interpretation of diffraction 

peaks in scattering from structures lacking the regular lattice of a typical 3D origami can be 

difficult,26 and concentrated samples may be necessary to provide adequate signal-to-noise. We 
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have shown that indirect Fourier methods provide an alternative approach to probing the internal 

geometry of non-lattice DNA origami structures, enabling quantitative analysis of dilute 

samples.  

 

METHODS/EXPERIMENTAL 

DNA origami synthesis and purification. Ten-fold excess (~2 μM) of each staple oligo 

(Integrated DNA Technologies) over scaffold DNA (M13mp18 ssDNA viral genome, Bayou 

Biolabs) were combined in synthesis buffer (33.0 mM Tris Acetate, 12.5 mM Mg Acetate, pH 

8.3). DNA origami structures were synthesised in a single step by heating to 94˚C then cooling to 

20˚C over 6 hours. Excess staples were then removed by size exclusion chromatography, with at 

least three passes through 350µL Sephracyrl S300 beads (GE Healthcare) equilibrated in 

synthesis buffer as previously described. 10 

Attachment of gold nanoparticles to DNA origami structures. Gold nanoparticles were attached 

to DNA tiles as previously described.45,46 Briefly, 5.5 nm gold nanoparticles (Nanopartz, Batch 

No. 16216) were first concentrated by precipitation by addition of NaCl, then coated with Bis(p-

sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP) (Sigma-Aldrich) by first 

resuspending in 1 mM BSPP and 50% methanol, then pelleting and resuspending again in 2.5 

mM BSPP in water. Following this, poly-T oligonucleotides functionalized with a sulfhydryl 

group at the 5’ end were coupled to the surface of gold nanoparticles by incubating gold particles 

in 75 fold molar excess of 5’-thiolated DNA (T15-SH) for two days at room temperature in 

1×TBE (10 mM Tris-HCl, 1mM EDTA). Excess thiolated DNA was removed immediately prior 
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to coupling to DNA origami structures with four passes through a 100 kDa centrifugal filter 

(Amicon).  

To couple poly-T-coated gold nanoparticles to DNA origami structures, a 50-fold molar excess 

of gold nanoparticles was incubated with purified DNA origami nanostructures with three poly-

A staple extensions per gold nanoparticle, spaced approx. 6 nm apart and centred around each 

desired gold binding site. The mixture was incubated for at least 24 hours at room temperature 

before excess gold nanoparticles were removed by three passes through 350µL Sephracyrl S300 

beads equilibrated in synthesis buffer.  

 

Atomic force microscopy. The origami sample was diluted to an appropriate concentration in 

12.5 mM magnesium acetate and 1×Tris-acetate, pH 8.3 (40 mM Tris, 20 mM acetic acid), then 

purified before imaging by 3 rounds of filtration through Sephacryl S-300 resin, where the resin 

had been equilibrated in a buffer comprising 1×TE (10 mM Tris-HCl, 1mM EDTA, pH 8.0), 50 

mM NaCl and 10 mM MgCl2. A volume of a few μL of origami was deposited on freshly 

cleaved mica and allowed to adsorb. Atomic Force Microscope images were acquired using a 

Veeco Dimension 3100 in tapping mode in fluid. The imaging buffer contained 12.5 mM 

magnesium acetate, 4 mM NiCl2, in 1×Tris-acetate, pH 8.3. Bruker SNL probes were used. 

Images were processed using Nanoscope Analysis; this involved flattening to second order and 

adjustment of the image contrast. 

Small-angle X-ray scattering. SAXS data for the 10.44, 10.55 and 10.66 DNA origami tile as 

well as the 10 helix DNA origami nanotube were collected on the SAXS/WAXS Beamline at the 

Australian Synchrotron, Melbourne, Victoria. Samples at concentrations of ~0.1 mg/ml 

(equivalent to 20 nM) for unlabelled origami and ~ 0.05 mg/ml for gold-labelled origami, were 
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passed multiple times through a 1.5-mm quartz capillary at 20 °C, through which monochromatic 

X-rays (11 keV) were passed at a flux of 4 × 1012 photons per second. SAXS data were collected 

with exposure times of 5 s on a Pilatus 1M photon counting detector (Dectris), and scattering 

intensity I(q) was collected in the range of 0.0015 < q < 0.4 Å-1, where q=(4πsinθ)/λ, 2θ is the 

scattering angle and λ is the X-ray wavelength. SAXS data for comparing the unmodified, rolled 

and braced 10.44 DNA origami tile as well as with immobilized gold nanoparticles were 

collected at the European Molecular Biology Laboratory (EMBL) on the EMBL-P12 BioSAXS 

beamline at the PETRAIII storage ring (DESY, Hamburg) with a 2D photon counting pixel X-

ray detector Pilatus 2M (Dectris, Switzerland). The scattering intensity, 𝐼(𝑞), was recorded in the 

range of 0.0054 <  𝑞 <  0.55 Å−1. All data were collected in synthesis buffer.  

Processing of SAXS data. SAXS data reduction was performed using beamline-specific software 

packages at the SAXS/WAXS beamline at the Australian Synchrotron and EMBL-P12 BioSAXS 

beamline at the PETRAIII storage ring. After removal of outlier frames resulting from air or 

meniscus in the capillary, sample datasets and buffer datasets (from synthesis buffer alone) were 

averaged. For all samples, including SAXS data from DNA origami structures with and without 

immobilised gold nanoparticles and colloidal gold nanoparticles, solvent blanks were subtracted 

before further processing. Data subtraction and scaling were performed using the software 

PRIMUS.47 SAXS provides structural information from the shape of scattering profiles rather 

than their absolute intensities, which relates to several factors including sample concentration, 

molecular weight and beam flux. Thus, to aid comparison between the structure of target 

particles, all data were scaled between different datasets and scattering intensities presented in 

figures are in arbitrary units.  
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Generation of 3D structural models. A basis set of 29 tiles with increasing degrees of twist from 

a completely flat tile was generated as follows. A subset of tile models twisted to various degrees 

were generated using finite element modeling by entering DNA origami tile design files with 

different crossover spacing and by altering the input ‘DNA periodicity’ parameter in the program 

CanDo.35 This produced 3D models of twisted tiles where each DNA helix was represented as a 

set of cylinders. These were converted into ‘dummy atom’ models, which were formatted as 

protein databank (PDB) files so that theoretical scattering could be calculated using the software 

FOXS.48 In dummy atom models, DNA helices were represented as  arrays of spheres with 

diameter 22.5 Å, positioned side-by-side along the helical axis. However, models generated from 

CanDo provided a coarse sampling over a range of twist magnitudes. For a finer sampling, we 

generated models of intermediate twist states by linearly interpolating coordinates between 

structures from CanDo outputs. The global twist in model tiles was calculated by summing the 

local pitch at the position of each dummy atom. The local pitch was calculated by measuring the 

dihedral angle defined by all sets of four adjacent dummy atoms as illustrated in Figure S4C. 

 

DNA nanotubes were constructed using the molecular modelling software The PyMOL 

Molecular Graphics System, Version 1.8 (Schrödinger, LLC) as atomic models consisting of 10 

ideal B-DNA helices, each 2100 Å in length, arranged as described in Figure S11. From these 

PDB files, we generated theoretical scattering using FOXS. 48 

Model fitting to scattering data. The fit between model and experimental data were quantified 

using the reduced χ2 error weighted scoring function48,49 𝜒2 =
1

𝑀
∑ (

𝐼𝑒𝑥𝑝(𝑞𝑖)− 𝐼𝑚𝑜𝑑𝑒𝑙(𝑞𝑖)

𝜎(𝑞𝑖)
)

2
𝑀
𝑖=1 over 

0.01 Å−1 <  𝑞 <  0.05 Å−1 for the DNA tiles and for 0.015 Å−1 <  𝑞  <  0.3 Å−1 for DNA 

nanotubes. 
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Analytical models were fit to experimental SAXS data using SasView v4.1.2 

(http://www.sasview.org). 

Calculation of Distance Probability Distributions. GNOM (ATSAS v2.7.1) was used to 

calculate pairwise distance distribution functions from scattering profiles with indirect Fourier 

methods.38 For real-space cross-sectional analysis of the DNA origami barrels, the range 

0.0 Å−1  <  𝑞 <  0.3 Å−1 was used with Rmin restrained to 0. Since Dmax is an ill-defined 

parameter in pairwise distance distribution functions, we examined the effect on peak positions 

at different Dmax values between 50 and 200 Å at 10 Å resolution. The peak positions remained 

similar above a threshold Dmax of 120 Å and the peak values of the 𝑃𝑐(𝑟) distributions varied by 

less than 2 Å between 120 and 200 Å. Therefore, Dmax for both experimental and model 𝑃𝑐(𝑟) 

curves were set to 200 Å in Figure 5C and Figure S11 and for calculation of sum χ2 goodness of 

fits between experimental and model data. 200 Å was sufficient to account for the maximal 

cross-sectional distance in the DNA nanotube model with the largest outer diameter. For all 

models, the pairwise distance distribution approached 0 where r was equal to the maximal cross 

sectional diameter of the model. For the final experimental 𝑃𝑐(𝑟) plot from which structural 

parameters such as Rg were calculated, the Dmax was set to Dmax=146 Å because this resulted in 

the highest scoring fits between 𝑃𝑐(𝑟) plots and scattering data. 𝑃𝑐(𝑟) and 𝑃(𝑟) plots were scaled 

for comparison. Subsequently, units presented in figures are arbitrary.  

Transmission electron microscopy of DNA Nanotube. DNA nanotube solution (2 µL, 10nM in 

TAE consisting of 40 mM Tris-acetate and 1 mM EDTA, pH 8.3) was drop cast onto 

carbon/formvar-coated copper grids and left to adsorb for five minutes before excess liquid was 

wicked away with filter paper. Samples were negatively stained with 2% (w/v) uranyl acetate in 

water for two minutes. Excess stain was similarly wicked with filter paper and the grids dried 



 25 

overnight. Imaging was performed with a Tecnai G2 20 Transmission Electron Microscope (FEI) 

in bright-field mode at 200 keV. 
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